Fourteen-vertex homo- and heterobimetallic metallacarboranes

David Ellis, Maria Elena Lopez, Ruaraidh McIntosh, Georgina M. Rosair and Alan J. Welch*

Received (in Cambridge, UK) 7th January 2005, Accepted 25th January 2005 First published as an Advance Article on the web 15th February 2005 DOI: 10.1039/b500236b

Reduction of 4-(*p*-cymene)-4,1,12-*closo*-RuC₂B₁₀H₁₂ followed by metallation with {M'} fragments (M' = {CpCo²⁺}, {(arene)Ru²⁺} or {(dppe)Ni²⁺}) affords 14-vertex bimetallic 1,14,2,10-RuM'C₂B₁₀ species having bicapped hexagonal antiprismatic structures.

Supraicosahedral heteroborane chemistry, established nearly 35 years ago with the synthesis of the 13-vertex metallacarborane 4-Cp-4,1,6-*closo*-CoC₂B₁₀H₁₂,¹ continues to be an area of significant research activity: the possible structures of supraicosahedral boranes and heteroboranes attract major interest from computational chemists² and, at least in principle, several of the current applications of boron cluster compounds would be enhanced if larger clusters could be prepared.³ Within carborane chemistry the initial goals are large, supraicosahedral, carboranes, *e.g.* C₂B_xH_{2+x} with x > 10. Although we were recently successful in preparing the first such compound (x = 11)⁴ we have always appreciated that valuable lessons could be learned by working first with analogous metallacarboranes in which one or more {BH} fragment was replaced by an isolobal transition metal fragment.⁵

Although there are in excess of a hundred 13-vertex metallacarboranes known there are fewer than ten 14-vertex bimetallacarboranes. From Me₄C₄B₈H₈ and subsequent thermolysis Grimes has produced a series of 14-vertex compounds with $Fe_2C_4B_8$ cores.⁶ In these a *closo* Wadian skeletal electron count⁷ results from there being four {CMe} fragments (3e sources) and two {CpFe} fragments (le sources) per cluster: however, only the final two isomers in the series are actually closed. A 14-vertex bimetallacarborane analogous to Wadian 12-vertex MC₂B₉ and 13-vertex MC_2B_{10} species would have only two {CH/CR} fragments and two 2e {M} fragments, truly isolobal with {BH}. In 1974 Evans and Hawthorne prepared such a compound, (CpCo)₂C₂B₁₀H₁₂, in two isomeric forms (one from reduction and metallation of a 4,1,8-CoC₂B₁₀ precursor, the other from similar treatment of the analogous 4,1,12-CoC₂B₁₀ species). However, these 14-vertex clusters were only principally characterised by mass spectrometry and low-resolution ¹¹B NMR spectroscopy.⁸

We recently reported the first synthesis of 13-vertex 4,1,10- MC_2B_{10} compounds and their facile isomerisation into corresponding 4,1,12-isomers,⁹ work which has afforded us gram quantities of a wide range of new 4,1,12- MC_2B_{10} species. We now describe the reduction and subsequent metallation of one of these, 4-(*p*-cymene)-4,1,12-*closo*-RuC_2B_{10}H_{12}, leading to a series of both homo- and heterobimetallic 14-vertex $MM'C_2B_{10}$ metallacarboranes (the latter reported for the first time) in sufficient yields for complete characterisation and ultimate further polyhedral expansion reactions.

Reduction of 4-(p-cymene)-4,1,12-closo-RuC₂B₁₀H₁₂ with Na in THF followed by treatment with CoCl2-NaCp afforded the 14-vertex ruthenacobaltacarborane ${(p-cymene)Ru}{CpCo} C_2B_{10}H_{12}$ (1) in modest yield. †Compound 1 was characterised by microanalysis, mass spectrometry and ¹H and ¹¹B NMR spectroscopies but did not produce crystals suitable for X-ray diffraction study. Treatment of the reduced metallacarborane with [(η-C₆H₆)RuCl₂]₂ or [(p-cymene)RuCl₂]₂ similarly yielded the diruthenacarboranes {(p-cymene)Ru}{ $(n-C_6H_6)Ru$ }C₂B₁₀H₁₂ (2) and $\{(p-cymene)Ru\}_2C_2B_{10}H_{12}$ (3) respectively, but in much better yields.[†] Compound 3 is revealed by NMR spectroscopy to be symmetric, with only one set of resonances assigned to the p-cymene ligand and one C_{cage}H resonance in the ¹H spectrum, and only four resonances (relative integrals 1:2:1:1) in the ${}^{11}B{}^{1}H{}$ spectrum. Compound 2 has only five, equally intense, resonances in its ${}^{11}B{}^{1}H{}$ spectrum, although eventual structural assignment (vide infra) suggests that these are all 1 + 1 coincidences. One particularly notable feature of the spectra of 2 and 3 is the low frequency of the weighted average ¹¹B chemical shifts, -21.5 and -21.2 ppm, respectively.

Although compound 2 could not be persuaded to crystallise sufficiently well for a diffraction study, good-looking crystals of 3 were obtained by slow evaporation of a CH_2Cl_2 solution. The results of a crystallographic determination of 3 are shown in Fig. 1.‡The molecule is located on a crystallographic C_2 axis passing through the mid points of the B2–B2A and B5–B5A connectivities. The dimetallacarborane cluster has a bicapped hexagonal antiprismatic structure with the Ru atoms in the 6-connected (with respect to the polyhedron) capping vertices. Unfortunately it proved impossible to assign the cluster C atoms with certainty and refinement was completed with B atoms occupying all six crystallographically unique 5-connected sites. There is additional minor disorder in the ⁱPr group of the *p*-cymene ligand.

The mixed ruthenium–nickel species {(*p*-cymene)Ru}-{(dppe)Ni}C₂B₁₀H₁₂ (**4**) was similarly afforded by addition of (dppe)NiCl₂ to the reduced ruthenacarborane, and initially characterised by ¹H, ¹¹B and ³¹P NMR spectroscopies.[†] For the ruthenanickelacarborane **4** the weighted average ¹¹B chemical shift is -16.9 ppm, essentially the same as that for the ruthenacobaltacarborane **2** (-17.0 ppm), still relatively low frequency but not so low as for the diruthenacarboranes **2** and **3**. Although **4** is afforded in poor yield relative to **2** and **3** it formed single crystals which proved to be free of cage atom disorder allowing unequivocal structural determination.[‡]

A perspective view of a single molecule is given in Fig. 2. The bicapped hexagonal antiprismatic structure observed for 3 is again evident, but this time the cage C atoms were readily distinguished on the twin bases of refined (as B) equivalent isotropic thermal

^{*}a.j.welch@hw.ac.uk

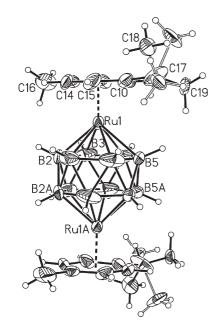
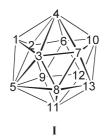



Fig. 1 Perspective view of the diruthenacarborane compound 3. The molecule bestrides a crystallographic C_2 axis passing through the mid points of the B2–B2A and B5–B5A connectivities. The cage C atoms were not located, all non-Ru cluster vertices being refined as B. Selected interatomic distances (Å) include : Ru1–B2 2.255(6), Ru1–B3 2.251(7), Ru1–B4 2.232(7), Ru1–B5 2.265(6), Ru1–B6 2.251(7), Ru1–B7 2.241(6), Ru1…Ru1A 4.3985(9). The dihedral angle between the least-squares planes through B2B3B4B5B6B7 and B2AB3AB4AB5AB6AB7A is 1.94(16)°.

parameters and interatomic separations. The species is thus identified as $1-(p-cymene)-14-(dppe)-1,14,2,10,-closo-RuNiC_2-B_{10}H_{12}$. By analogy, compounds 1-3 presumably have similar heteroatom patterns, *i.e.* 1,14,2,10-RuCoC₂B₁₀, 1,14,2,10-Ru₂C₂B₁₀ and 1,14,2,10-Ru₂C₂B₁₀, respectively. These results confirm Hawthorne's proposed structure of $1,14-Cp_2-1,14,2,10$ - $closo-Co_2C_2B_{10}H_{12}$ for the isomer ('isomer I') derived from 4-Cp-4,1,12- $closo-CoC_2B_{10}H_{12}$.⁸ With the structure of **4** thus established we looked again at the crystallographic structure of **3** focussing on the 3/3A and 6/6A positions as potential C atom sites (both possibilities would have afforded $1,14,2,10-Ru_2C_2B_{10}$ architectures consistent with the crystallographic C_2 symmetry) but neither was convincing and this structure remains disordered.

Attempted syntheses of 14-vertex bimetallacarboranes starting from 4-(*p*-cymene)-4,1,10-*closo*-RuC₂B₁₀H₁₂ were unsuccessful: this isomer of the 13-vertex precursor does not appear to undergo reduction by Na–naphthalene in THF.¹⁰ In cases where reduction *is* successful we believe that the reduced (nido) species is stabilised by the presence of a cage C atom in its open face, since this affords

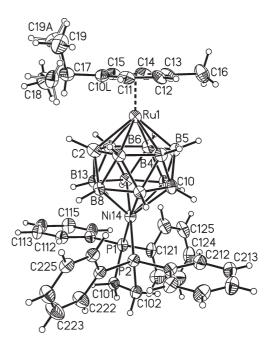


Fig. 2 Perspective view of the ruthenanickelacarborane compound 4. Selected interatomic distances (Å) include: Ru1–C2 2.257(4), Ru1–B3 2.281(4), Ru1–B4 2.253(4), Ru1–B5 2.261(4), Ru1–B6 2.283(4), Ru1–B7 2.254(4), Ni14–B8 2.198(4), Ni14–B9 2.167(4), Ni14–C10 2.306(4), Ni14–B11 2.244(4), Ni14–B12 2.147(4), Ni14–B13 2.215(4), C–B 1.657(5)–1.733(6), B–B 1.713(6)–1.795(6), Ru1···Ni14 4.3225(6). The upper (C2B3B4B5B6B7) and lower (B8B9C10B11B12B13) hexagonal least-square planes are inclined at a dihedral angle of $0.16(1)^{\circ}$. The ⁱPr group of the *p*-cymene ligand shows partial disorder.

the C atom its preferred low connectivity.¹¹ Thus 4,1,8-, 4,1,12and 4,1,11-MC₂B₁₀ species would seem to be attractive 13-vertex metallacarboranes for further reduction–expansion reactions (see I for numbering) whilst expansion starting from the 4,1,2-, 4,1,6and 4,1,10-isomers could be more difficult (the remaining 4,1,X-MC₂B₁₀ isomer, 4,1,5-, is unlikely to yield to synthesis since it contains a high-connected C atom). So far both we and Hawthorne have been successful in reduction–expansion of 4,1,8and 4,1,12-MC₂B₁₀ compounds. The 4,1,11-MC₂B₁₀ isomer has not yet been reported but represents an attractive future target.

These studies establish the first complete characterisation of 14vertex $M_2C_2B_{10}$ metallacarboranes and report the first examples of heterobimetallic analogues. They provide a firm basis on which to develop 15-vertex (and possibly beyond) heteroborane chemistry, which is currently without precedent.

We thank the EPSRC (DE, MEL) and the Carnegie Trust (RMcI) for support, Dr R. Ferguson and Mr G. P. Smith for mass spectrometry, Dr A. F. S. Boyd for NMR spectroscopy and Ms C. Graham for microanalysis.

David Ellis, Maria Elena Lopez, Ruaraidh McIntosh, Georgina M. Rosair and Alan J. Welch*

School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK EH14 4AS. E-mail: a.j.welch@hw.ac.uk; Fax: +44 131 4513180; Tel: +44 131 4513217

Notes and references

† Experimental procedure. For 1: 4-(*p*-cymene)-4,1,12-*closo*-RuC₂B₁₀H₁₂ (0.10 g, 0.26 mmol) was dissolved in dry, oxygen-free THF (30 ml). Sodium pieces (0.06 g, 2.50 mmol) and naphthalene (ca. 0.010 g) were added and the solution was stirred at room temperature for 72 hours. The deep red solution was cooled to 0 °C. NaCp (0.39 ml of a 2 M solution in THF, 0.78 mmol) was added followed by solid CoCl₂ (0.13 g, 0.95 mmol) and the reaction mix stirred at room temperature for 18 hours. The purple product isolated by TLC (80% : 20% CH₂Cl₂ : 40/60 petrol, $R_{\rm f}$ 0.62). Yield 0.010 g (8%). IR (CH₂Cl₂): $v_{\rm max}$ at 2503 cm⁻¹ (B–H). ¹H NMR (CDCl₃, 298 K): δ 5.00-5.20 (m, 4 H, C₆H₄), 4.79 (s, 5 H, C₅H₅), 2.75 (sept, 1 H, CH(CH₃)₂), 1.95 (s, 3 H, CH₃), 1.10 (d, 3 H, CH(CH₃)), 1.06 (d, 3 H, CH(CH₃)), neither cage CH resolved. ¹¹B{¹H} NMR (CDCl₃, 298 K): δ -11.69 (3B), -15.31 (1B), -17.67 (3B), -20.17 (1B), -23.18 (2B). Mass spectrometry: m/z 503 (M⁺). Satisfactory microanalytical data were obtained for all compounds reported. For 2: 4-(p-cymene)-4,1,12-closo-RuC₂B₁₀H₁₂ (0.26 mmol) reduced and treated with $[(\eta$ -C₆H₆)RuCl₂]₂ (0.13 mmol). Yield 35%. IR (CH₂Cl₂): v_{max} at 2492 cm⁻¹ (B–H). ¹H NMR (CDCl₃, 298 K): δ 5.35 (s, 6 H, C₆H₆), 5.05–5.25 (m, 4 H, C₆H₄), 2.60 (sept, 1 H, CH(CH₃)₂), 1.95 (s, 3 H, CH₃), 1.75 (br s, 1 H, C_{cage}H), 1.15 (d, 3 H, CH(CH₃)), 1.07 (d, 3 H, CH(CH₃)), 0.80 (br s, 1 H, C_{cage}H). ¹¹B{¹H} NMR (CDCl₃, 298 K): δ -16.49 (2B), -20.68 (2B), -21.27 (2B), -22.90 (2B), -25.94 (2B). Mass spectrometry: *m/z* 560 (M⁺). For 3: 4-(*p*-cymene)-4,1,12-*closo*-RuC₂B₁₀H₁₂ (0.75 mmol) reduced and treated with [(*p*-cymene)RuCl₂]₂ (0.38 mmol). Yield 40%. IR (KBr): ν_{max} at 2520 cm⁻¹ (B-H). ¹H NMR (CDCl₃, 298 K): δ 5.15-5.25 (m, 8 H, C₆H₄), 2.65 (sept, 2 H, CH(CH₃)₂), 2.00 (s, 6 H, CH₃), 1.70 (br s, 2 H, C_{cage}H), 1.05 (overlapping d, 12 H, CH(CH₃)₂). ¹¹B{¹H} NMR (CDCl₃, 298 K): δ -16.14 (2B), -20.69 (4B), -23.01 (2B), -25.60 (2B). Mass spectrometry: *m*/*z* 615 (M ⁺), 470 (M-C₂B₁₀H₁₂). For 4: 4-(p-cymene)-4,1,12-closo-RuC2B10H12 (0.26 mmol) reduced and treated with (dppe)NiCl₂ (0.26 mmol). Yield 7%. IR (CH₂Cl₂): v_{max} at 2502 cm⁻ (B-H). ¹H NMR (CDCl₃, 298 K): δ 7.2–7.7 (m, 20H, C₆H₅), 5.02–5.19 (m, 4 H, C₆H₄), 2.62 (sept, 1 H, CH(CH₃)₂), 2.19 (br s, 2 H, CH₂), 1.90 (s, 3 H, CH₃), 1.77 (br s, 2 H, CH₂), 1.05 (d, 6 H, CH(CH₃)₂), neither cage CH resolved. ¹¹B{¹H} NMR (CDCl₃, 298 K): δ -9.34 (2B), -13.40 (2B), -16.72 (3B), -20.34 (1B), -24.80 (1B), -27.78 (1B). ³¹P{¹H} NMR (CDCl₃, 298 K): δ 61.9.

‡ Crystal data. For 3: C₂₂H₄₀B₁₀Ru₂, $M_r = 614.78$, monoclinic, C2/c, a = 16.319(2), b = 16.9323(18), c = 10.3987(12) Å, $\beta = 115.413(5)^\circ$, V = 2595.3(5) Å³, Z = 4 (C₂ symmetry imposed), $\mu = 1.175$ mm⁻¹, F(000) = 1240. Data to $\theta_{max} = 28.7^\circ$ collected at 100(2) K on a Bruker AXS X8 diffractometer using Mo-Kα radiation. 14050 reflections, 3319 independent reflections, $R_1 = 0.1231$, $wR_2 = 0.1082$, S = 0.961, for all data. For 4: C₃₈H₅₀B₁₀NiP₂Ru, $M_r = 836.60$, monoclinic, P2₁/n, a = 12.7337(9), b = 17.0657(12), c = 17.4612(12) Å, $\beta = 92.338(4)^\circ$, V = 3791.3(5) Å³, Z = 4, $\mu = 1.009$ mm⁻¹, F(000) = 1720. Data collection as for 3 except $\theta_{max} = 24.6^\circ$. 85924 reflections collected, 6348 independent reflections, $R_1 = 0.0670$, $wR_2 = 0.1175$, S = 1.054 for refinement with all data. CCDC 260453 and 260454 for **3** and **4**, respectively. See http://www.rsc.org/suppdata/cc/b5/b500236b/ for crystallographic data in .cif or other electronic format.

- 1 G. B. Dunks, M. M. McKown and M. F. Hawthorne, J. Am. Chem Soc., 1971, 93, 2541.
- L. D. Brown and W. N. Lipscomb, *Inorg. Chem.*, 1977, 16, 2989;
 J. Bicerano, D. S. Marynick and W. N. Lipscomb, *Inorg. Chem.*, 1978, 17, 2041;
 J. Bicerano, D. S. Marynick and W. N. Lipscomb, *Inorg. Chem.*, 1978, 17, 3443;
 W. N. Lipscomb and L. Massa, *Inorg. Chem.*, 1992, 31, 2297;
 P. v. R. Schleyer, K. Najafian and A. M. Mebel, *Inorg. Chem.*, 1998, 37, 6765;
 M. M. Balakrishnarajan, R. Hoffmann,
 P. D. Pancharatna and E. D. Jemmis, *Inorg. Chem.*, 2003, 42, 4650;
 Z. X. Wang and P. v. R. Schleyer, *J. Am. Chem. Soc.*, 2003, 125, 10484.
 We restrict this list to calculations on true supraicosahedral species and do not include the elegant work of Jemmis *et al.* on large fused icosahedral and subicosahedral species, *e.g. E. D. Jemmis*, M. M. Balakrishnarajan and P. D. Pancharatna, *Chem. Rev.*, 2002, 102, 93.
- 3 A. H. Soloway, W. Tjarks, B. A. Barnum, F. G. Rong, I. M. Codogni and J. G. Wilson, *Chem. Rev.*, 1998, **98**, 1515; I. Krossing and I. Raabe, *Angew. Chem., Int. Ed.*, 2004, **43**, 2066.
- 4 A. Burke, D. Ellis, B. T. Giles, B. E. Hodson, S. A. Macgregor, G. M. Rosair and A. J. Welch, *Angew. Chem., Int. Ed.*, 2003, **42**, 225.
- 5 A. S. F. Boyd, A. Burke, D. Ellis, D. Ferrer, B. T. Giles, M. A. Laguna, R. McIntosh, S. A. Macgregor, D. L. Ormsby, G. M. Rosair, F. Schmidt, N. M. M. Wilson and A. J. Welch, *Pure Appl. Chem.*, 2003, 75, 1325.
- W. M. Maxwell, R. F. Bryan and R. N. Grimes, J. Am. Chem. Soc., 1977, 99, 4008; W. M. Maxwell, R. Weiss, E. Sinn and R. N. Grimes, J. Am. Chem. Soc., 1977, 99, 4016; J. R. Pipal and R. N. Grimes, Inorg. Chem., 1978, 17, 6; R. N. Grimes, Acc. Chem. Res., 1978, 11, 420; R. N. Grimes, Adv. Inorg. Chem. Radiochem., 1983, 26, 55.
- 7 K. Wade, J. Chem. Soc., Chem. Commun., 1971, 792; K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 1.
- 8 W. J. Evans and M. F. Hawthorne, J. Chem. Soc., Chem. Commun., 1974, 38.
- 9 D. Ellis, M. E. Lopez, R. McIntosh, G. M. Rosair, A. J. Welch and R. Quenardelle, *Chem. Commun.*, 2005, DOI: 10.1039/b416646a.
- 10 A. Vicente, M. E. Lopez, D. Ellis and A. J. Welch, unpublished results.
- 11 R. E. Williams, Inorg. Chem., 1971, 10, 210; R. E. Williams, Chem. Rev., 1992, 92, 177.