This article was downloaded by: [McMaster University] On: 27 December 2014, At: 12:31 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

SYNTHESE ET STEREOCHIMIE DE MONO ET BIS (THIO-OXAZAPHOSPHOLIDINES)

Douraid Houalla^a, Christine Lopez^a, Tzveta Gospodova-ivanova^b & Yuri Stefanovsky^b

^a Laboratoire de Synthèse et Physico-Chimie Organique ESA 5068, Université Paul Sabatier Toulouse III, 31062, Toulouse, Cedex 4, France

^b Institut de Chimie Organique, Acad. G. Bontchev Bl. no^o 9, 1113, Sofia, Bulgarie Published online: 24 Sep 2006.

To cite this article: Douraid Houalla, Christine Lopez, Tzveta Gospodova-ivanova & Yuri Stefanovsky (1998) SYNTHESE ET STEREOCHIMIE DE MONO ET BIS (THIO-OXAZAPHOSPHOLIDINES), Phosphorus, Sulfur, and Silicon and the Related Elements, 142:1, 27-48, DOI: <u>10.1080/10426509808029664</u>

To link to this article: http://dx.doi.org/10.1080/10426509808029664

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any

losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u> Phosphorus, Sulfur and Silicon, 1998, Vol. 142, pp. 27-48 Reprints available directly from the publisher Photocopying permitted by license only © 1998 OPA (Overseas Publishers Association) Amsterdam N.V. Published under license by the Gordon & Breach Science Publishers imprint. Printed in Malaysia

SYNTHESE ET STEREOCHIMIE DE MONO ET BIS (THIO-OXAZAPHOSPHOLIDINES)

DOURAID HOUALLA^{a*}, CHRISTINE LOPEZ^a, TZVETA GOSPODOVA-IVANOVA^b and YURI STEFANOVSKY^b

^aLaboratoire de Synthèse et Physico-Chimie Organique ESA 5068, Université Paul Sabatier Toulouse III. 31062 Toulouse Cedex 4 France and ^bInstitut de Chimie Organique. Acad. G. Bontchev B1. n° 9 1113 Sofia Bulgarie

(Received 02 June, 1998)

La sulfuration des mono et bis(hydridobicyclophosphoranes) 1 - 8 conduit facilement aux mono et bis(thio-oxazaphospholidines) 1=S-8=S. L'analyse des données de RMN permet de préciser la stéréochimie de ces nouveaux composés.

The sulfuration of mono and bis(hydridobicyclophosphoranes) 1 - 8 provides very easily the mono and bis(thio-oxazaphospholidines) 1=S - 8=S. The stereochemistry of these new compounds was established by means of NMR studies.

Keywords: Hydridobicyclophosphoranes; Sulfuration; Thio-oxazaphospholidines.

INTRODUCTION

Les organyloxy thio-oxazaphospholidines du type (I) sont réputés pour avoir des propriétés phytosanitaires intéressantes.^[1-5]

^{*} Correspondence Author.

En ce qui nous concerne, nous poursuivons depuis quelque temps l'étude de la réactivité des 1-hydrido 1-organyloxy bicyclophosphoranes (II). Parmi les réactions effectuées avec ces composés, la sulfuration (réaction A) s'est révélée être une voie d'accès facile aux organyloxythio-oxazaphospholidines II=S qui ne se distinguent de (I) que par la présence du groupe OH dans le reste \mathbf{R}' lié à l'atome d'azote cyclique. En effet, bien que cette réaction conduise au mélange de II=S et des thio-phosphates II=S*, ces derniers disparaissent au bout d'un temps relativement court^[6] (24 h maximum) pour ne laisser place qu'aux thio-oxazaphospholidines II=S.^[7] La présence, dans ces derniers, du groupe OH pourrait leur conférer des propriétés phytosanitaires particulières. Aussi avons-nous entrela synthèse d'un certain nombre de mono et bis(thiopris oxazaphospholidines) en vue de vérifier cette hypothèse. Nous nous contenterons dans cet article de la présentation de la synthèse et de l'étude stéréochimique de ces nouveaux composés.

I – RESULTATS ET DISCUSSION

I.1- Les précurseurs

Les précurseurs utilisés au cours de ce travail sont au nombre de 8. Ce sont les hydridobicyclophosphoranes 1 et 2 et les bis(hydridobicyclophosphoranes) **3–8** représentés ci-dessous. Ils ont tous été obtenus par addition oxydante^[10] du nucléophile ou binucléophile correspondant sur le "bicyclophosphane"^[11] BCP. Les dérivés $2^{[12]}$, $3^{[13]}$, $4^{[14]}$, $5^{[15]}$ et $6^{[15]}$ ont déjà été décrits alors que les composés 1, 7 et 8 sont originaux. L'éther méthylique du diéthylèneglycol HO-(CH₂-CH₂O)₂CH₃ **a** qui a servi à la préparation de 1(réaction B) est un produit commercial alors que les

bis(hydroxy)téréphthalamides **b** et **c** qui ont respectivement servi à la préparation de 7 et 8 (réaction C), ont été spécialement préparés pour cet usage .Les dérivés originaux 1, 7 et 8 ont été caractérisés par RMN (Voir la partie expérimentale)

I.2- Sulfuration

La sulfuration des précurseurs 1-8 a été réalisée selon le mode opératoire mis au point au laboratoire^[6]: le soufre, en quantités stoechiométriques, est ajouté à la solution toluénique du produit de départ ; sa dissolution totale, qui marque la fin de la réaction, intervient selon le cas,

soit rapidement à la température ambiante, soit après un léger chauffage (environ 50°C). L'analyse du spectre de RMN ³¹P du mélange réactionnel ainsi obtenu montre la présence d'un signal, largement prédominant, situé vers $\delta = 84$ attribuable à la forme thio-oxazaphospholidine **II=S**, accompagné d'un signal très minoritaire situé aux alentours de $\delta = 50$ attribuable à la forme thiophosphate **II=S**^{*}. Ce dernier disparaît totalement dans un délai de 24 h au maximum. L'enlèvement du solvant laisse déposer une huile légèrement jaunâtre que nous n'avons réussi ni à distiller ni à cristalliser mais dont l'analyse par RMN a montré que c'était un produit suffisamment pur pour être étudié tel quel.

II – Étude Stéréochimique

L'étude stéochimique des thio-oxazaphospholidines **II=S** ainsi obtenus est essentiellement basée sur l'exploitation des données de RMN. Elle sera présentée en deux parties : la première sera consacrée aux dérivés à un atome de phosphore, **1=S** et **2=S** et la deuxième aux dérivés à deux atomes de phosphore 3=S - 8=S.

II.1- Les thio-oxazaphospholidines 1=S et 2=S

Les paramètres de RMN ¹H et ¹³C de ces deux composés sont rassemblés dans les Tableaux 1 et 2. Leur examen conduit aux remarques suivantes :

 Concernant la conformation des cycles pentagonaux nous admettrons qu'elle est identique à celle que nous avons proposée pour les composés du même type précédemment étudiés^[6] et qui s'appuie sur l'étude par diffraction des Rayons X du dimère 11 qui contient deux fois le même groupe thio-oxazaphospholidine^[16]: il s'agit d'une forme enveloppe dont le rabat est situé sur l'atome de carbone en α de l'oxygène.

- L'existence d'une relation du type Karplus^[17] entre les constantes de couplage ³J_{PH} et les angles dièdres P(1)N(5)C(4)H(41) et P(1)N(5)C(4)H(42) nous amène à dire que la proximité des valeurs des constantes de couplage ³J_{H-C-N-P} des protons NCH₂ cycliques avec le phosphore traduit une libration relativement rapide de ce cycle.
- Comme prévu, la chiralité de l'atome de phosphore a pour conséquence de rendre magnétiquement inéquivalents tous les sites chimiquement équivalents de ces molécules. Cette conséquence est parfaitement visible sur les signaux des groupements CH₃(11 et 12), des protons H(61 et 62) et des protons H(141 et 142).

$\begin{array}{c} Me_{10} & Me_{9} \\ H_{42} & 3 & 2 \\ H_{41} & N_{5} & 1 \\ H_{61} & N_{5} & 1 \\ HO_{8} & M_{61} \\ HO_{8} \end{array}$	$ \begin{array}{c} H_{141} & H_{142} \\ h_{141} & H_{142} \\ h_{17} & 17 \\ h_{17} & 18 \\ h_{12} & 15 \\ h_{12} & 1=8 \\ \end{array} $	20 DCH3	$\begin{array}{c} M_{10} & M_{29} \\ H_{42} & 3 & 2 \\ H_{41} & 4 & 5 & * \\ H_{41} & 5 & * \\ H_{61} & 5 & * \\ H_{61} & M_{61} \\ HO_{8} \end{array}$	$\begin{array}{c} \begin{array}{c} H_{141} & H_{142} \\ H_{141} & H_{142} \\ H_{15} & 0 \end{array} \\ \\ S \\ S$	21 23 OCH ₃
	<i>l=S</i> δ	J		2=S δ	J
CH ₃ (9,10,11,12)	4s 1,14 ; 1,15 ; 1,2; 1,21		CH ₃ (9,10,11,12)	4s 1,15 ; 1,16 1,2; 1,21	
H (61)	dd ^a 2,73	² J _{HH-14,6} ³ J _{HP} 12,9	H(61)	dd ^a 2,74	² J _{HH} -14,5 ³ J _{HP} 14,5
H (41)	dd ^a 2,9	² J _{HH -9,3} ³ J _{HP} 13,3	H(41)	dd ^a 2,92	² J _{HH} -9,2 ³ J _{HP} 13,5
H (42)	dd ^a 3,15	³ J _{HP} 10,0	H(42)	dd ^a 3,2	³ J _{HP} 9,7
H(62)	$dd^a \approx 3,3$	³ J _{HP} nd ^b	H(62)	$dd^a \approx 3,3$	³ J _{HP} nd ^b
CH ₃ (20)	s 3,11		CH ₃ (23)	s 3,12	
CH ₂ (15+17+18)	m 3,3 – 3,45		CH ₂ (15–21)	m 3,3 – 3,6	
H(141)	dddd ^c 4,07	² J _{HH} -11,4 ³ J _{HH} 3,4 ³ J _{HH} 5,7 ³ J _{HP} 9,3	H(141)	dddd ^c 4,1	² J _{HH} -11,4 ³ J _{HH} 3,5 ³ J _{HH} 5,6 ³ J _{HP} 9,2
H(142)	dddd ^c 4,22	³ J _{HH} 3,5 ³ J _{HH} 6,4 ³ J _{HP} 10,2	H(142)	dddd ^c 4,2	³ J _{HH} 3,5 ³ J _{HH} 6,4 ³ J _{HP} 9,9

TABLEAU I Paramètres de RMN ¹H des thio-oxazaphospholidines 1=S et 2=S (δ , J en Hz)

(a) H(41) et H(42) constituent la partie AM d'un système AMX (X=P). Il en est de même pour H(61) et H(62). (b) non déterminé. (c) H(141) et H(142) constituent la partie AM d'un système AMXYZ (X,Y = CH₂(15), Z = P).

Nous retrouvons avec ces composés les observations antérieures^[6] relatives à l'effet de l'anisotropie de la double liaison P=S qui accentue les écarts entre les déplacements chimiques de ces sites. C'est ainsi que les $\Delta\delta$ entre les protons des deux groupes *NCH*₂, H(41) et H(42), d'une part, H(61) et H(62), d'autre part, sont respectivement égaux à 0,25 et 0,57 pour **1=S**, 0,28 et 0,56 pour **2=S** alors que dans le composé similaire **9**, où la double liaison P=S a été remplacée par une double liaison P=O⁴, $\Delta\delta$ est égal à 0,12 pour H(41) et H(42) et nul pour H(61) et H(62) traduisant le fait que, dans ce composé, ces derniers protons apparaissent comme équivalents^[6].

$\begin{array}{c} Me_{10} & M \\ H_{42} & J \\ H_{41} & N \\ H_{62} & J \\ H_{61} \\ HO_8 \end{array}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$	¹⁸ 20 OCH3	$\begin{array}{c} Me_{10} & Me\\ H_{42} & 3 \\ H_{41} & 5 \\ H_{62} & 6 \\ H_{61} \\ H_{61} \\ H_{68} \end{array}$	$\begin{array}{c} & & & \\$	8 20 21 0 OCH3
	<i>l</i> = <i>S</i>			2=S	
	δ	J		δ	J
C(9,10,11,12)	4s 27,4 ; 27,6 27,9 ;27,9	-	C(9,10,11,1 2)	4s 27,5 ; 27,6 27,9 ; 27,9	
C(6)	d 58,1	${}^{2}J_{CP} = 8,8$	C(6)	d 58,1	${}^{2}J_{CP} = 4,7$
C(20)	S 58,5		C(23)	S 58,7	
C(4)	d 62,3	J ^a _{CP} = 11, 2	C(4)	d 62,3	$J^{a}_{CP} = 11,2$
C(14)	d 67,4	${}^{2}J_{CP} = 7,4$	C(14)	d 67,4	${}^{2}J_{CP}=5,4$
C(15)	d 70,3	${}^{3}J_{CP} = 7,3$	C(15)	d 70,3	${}^{3}J_{CP} = 7,1$
C (17)	S 70,5		C(17+18)	s 70,8	
			C(20)	s 70,9	
C(3)	d 71,5	$J^{b}_{CP} = 5,9$	C(3)	d 71,5	$J^{b}_{CP} = 4,2$
C(18)	s 72,1		C(21)	s 72,3	
C(7)	s 82,5		C(7)	s 82,6	

TABLEAU II Paramètres de RMN 13 C des thio-oxazaphospholidines 1=S et 2=S (δ , J en Hz)

(a) $J_{CP} = 1/2(^2J_{C-N-P} + {}^3J_{C-C-O-P})$ (b) $J_{CP} = 1/2(^2J_{C-O-P} + {}^3J_{C-C-N-P})$.

En complément de ces informations il nous a paru intéressant de comparer les paramètres des protons NCH_2 des quatre composés suivants : le dimère **10** et son dérivé soufré **11** que nous avons antérieurement étudiés^[16], le bicyclophosphane **BCP** et son dérivé soufré **BCP=S** spécialement préparé pour cet usage (Tableau 3) ce qui revient à comparer l'effet d'anisotropie d'un doublet libre et d'une double liaison P=S alors que dans le paragraphe ci-dessus nous avons comparé les effets d'anisotropie d'une double liaison P=S et d'une double liaison P=O.

Nous constatons que le passage de **10** à **11** n'a pratiquement aucun effet sur les protons NCH_2 du cycle à 5 chaînons H(41) et H(42), alors que ceux du cycle à 10 chaînons présentent des différences extrêmement importantes : l'un, H(61), est **déblindé** de 0,81 tandis que l'autre, H(62), est **blindé** de 1,13. C'est d'ailleurs l'association de cette différence de comportement et de la connaissance, à l'aide de la diffraction des rayons X, de la structure moléculaire de **11**, qui nous a permis de proposer pour l'angle du cône d'anisotropie de la double liaison P=S, la valeur de 147° ± 12^[16] (Figure 1).

En ce qui concerne le bicyclophosphane **BCP** et son dérivé soufré **BCP=S**, nous constatons qu'un seul des protons NCH_2 , H(41), subit l'effet du remplacement du doublet libre par le soufre avec un **blindage** de 0,38. Compte tenu de la forme "toit à deux pentes" adoptée par ces molécules^[18], nous pensons qu'il y a de fortes chances pour que ce proton soit celui qui est du même côté que le soufre, c'est à dire "sur le toit". La faible amplitude de l'effet, comparée à ce qui a été observé dans **11**,

FIGURE 1 Cône d'anisotropie de la double liaison P=S

indiquerait que le proton H(41) serait placé, à l'intérieur du cône d'anisotropie, assez loin de l'axe des Z représenté dans la figure 1.

TABLEAU III Paramètres de RMN ¹H des protons NCH₂ (δ, J en Hz)

	10		11		ВСР		BCP=S	
	δ	J	δ	J	δ	J	δ	J
H(41)	2,63	${}^{2}J_{HH} = -8,2$	2,7	${}^{2}J_{HH} = -8,7$	2,73	${}^{2}J_{HH} = -11,5$	2,35	${}^{2}J_{HH} = -11$
		${}^{3}J_{HP} = 12,4$		${}^{3}J_{HP} = 8,7$		${}^{3}J_{HP} = 8$		${}^{3}J_{HP} = 11.8$
H(42)	3,23	${}^{3}J_{HP} = 1,7$	3,2	${}^{3}J_{HP} = 13,9$	2,99	${}^{3}J_{HP} = 9,3$	3,01	${}^{3}J_{HP} = 11,1$
H(61)	3,0	$^{2}J_{HH} = -13$	3,81	${}^{2}J_{HH} = -14,7$				
		${}^{3}J_{HP} = 16,8$		${}^{3}J_{HP} = 12,7$				
H(62)	3,25	$^{3}J_{HP}=10$	2,12	${}^{3}J_{HP} = 10,6$				

II. 2- Les bis(thio-oxazaphospholidines) 3=S - 8=S

Ces composés possèdent, bien entendu, toutes les caractéristiques stéréochimiques des mono thio-oxazaphospholidines exposées ci-dessus. Leur spécificité réside dans le fait qu'ils comportent deux atomes de phosphore chiraux. Ils sont donc constitués de deux mélanges racémiques diastéréoisomères : SR + RS, d'une part, SS + RR, d'autre part. (Figure 2). L'examen de ces entités montre que dans le mélange SR + RS, le plan qui passe par le milieu de la chaine reliant les deux atomes de phosphore est un plan de symétrie de la molécule. Il en résulte que les sites magnétiques primés sont équivalents aux sites non primés (C(4') est équivalent à C(4)... et ainsi de suite). Dans le mélange SS + RR, le même plan n'est plus un plan de symétrie de la molécule, ce qui fait que les sites primés ne sont plus équivalents aux sites non primés. Pour des raisons de clarté et d'homogénéité nous avons rassemblé dans les tableaux 4 et 5 les paramètres de RMN ¹H et ¹³C des dérivés 3=S - 6=S, qui sont tous issus de polyéthylèneglycols, et dans les tableaux 6 et 7, ceux des composés 7=S et 8=S, issus des bis(hydroxy)téréphthalamides.

II. 2.1- Les bis(thio-oxazaphospholidines) 3=S-6=S

Il est connu que lorsque la distance qui sépare les deux centres chiraux d'une molécule augmente, la détection des deux diastéréoisomères devient de plus en plus difficile et finit par être impossible au delà d'une certaine distance.L'examen des spectres dont sont extraites les données rassemblées dans les tableaux 4 et 5 permet de retrouver cette observation. En effet dans le composé 3=S, dont les deux atomes de phosphore chiraux ne sont séparés que par quatre atomes, la présence des deux diastéréoisomères est visible sur quasiment tous les sites magnétiques. En RMN ¹H les groupements CH₃ donnent naissance à 10 pics d'inégale intensité indiquant que les 12 pics attendus sont bien présents ; chacun des protons H(41), H(42), H(61) et H(62) est représenté par deux signaux parfaitement séparés tandis que le massif des protons P-OCH₂ se présente comme deux multiplets particulièrement riches en pics que le découplage du phosphore a relativement peu simplifié*. En RMN ¹³C, des dédoublements comparables sont observés sur quasiment tous les signaux des noyaux de carbone. Celui du carbone C'(4) est particulièrement démonstratif puisqu'il se présente sous la forme d'un doublet majoritaire attribuable au diastéréoisomère SR + RS, encadré par deux autres doublets moins intenses provenant du diastéréoisomère SS+RR.

Dans les composés 4=S et 5=S, les deux atomes de phosphore chiraux sont respectivement séparés par 7 et 10 atomes. Nous constatons que le dédoublement des pics révélateur de la présence des deux diastéréoisomères s'atténue. C'est ainsi que dans le spectre de 5=S, le signal correspondant au proton H(61) ou H(62) n'est formé que d'un seul doublet

^{*} Ce spectre est un mélange de deux sous-spectres : un du type ABXY, l'autre du type AA'BB'XY.

FIGURE 2 Les deux mélanges racémiques diastéréoisomères

alors que dans les deux dérivés précédents il en comportait deux. De même en RMN ¹³C, le carbone C(6) donne naissance à un seul doublet dans **4=S** et **5=S**, alors qu'il lui en correspond deux dans **3=S**. Mais avec **6=S**, où les deux atomes de phosphore sont séparés par 13 atomes, tout se passe comme s'il n'y avait qu'un seul diastéréoisomère. En RMN ¹H, les groupements CH_3 donnent naissance à 4 singulets d'égale intensité, les signaux des protons *N*-*CH*₂ visibles sont simples tandis que ceux des protons *P*-*OCH*₂ s'analysent simplement comme la partie AB d'un seul système ABXYZ (X,Y = CH₂(15), Z = P). La même simplification est observée dans le spectre de RMN ¹³C.

II.2.2 – Les bis(thio -oxazaphospholidines) 7=S et 8=S

Comme attendu, les spectres de ces composés s'analysent comme si chacun d'eux ne comportait qu'un seul atome de phosphore chiral. Toutefois un examen attentif de ces spectres révèle des différences significatives entre les deux.

N	Me, Me			
H ₄₁			3=S	n = 0
H ₄₂			/** 4=S	n = 1
H ₆₁	$2 \frac{6}{2} \frac{1}{Me_{11}} \frac{S}{Me_{11}}$	S [*] Me	× 5=S	n = 2
		Mc	OH 6=S	n = 3
	3=5	4=S	5=S	6=S
CH ₃ (9,10,11,12)	10 S δ 1,13-1,25	8s δ 1,13–1,21	6s δ 1,15–1,22	4s δ 1,17,1,18 1,24, 1,27
H(61)	dd δ =2,70 ² J _{H-H} =-14,5 ³ J _{HP} = 13,8 ³ J _{H-P} = 13,1 dd δ = 2,71 ² J _{H-H} = -14,6 ³ J _{H-P} = 13,6	$\begin{array}{l} \text{dd } \delta {=}2,69 \\ {}^2J_{H,H}{=}{-}14,5 \\ {}^3J_{H,P}{=}13,1 \\ \text{dd } \delta {=}2,70 \\ {}^2J_{H-H}{=}{-}14,6 \\ {}^3J_{H,P}{=}13,1 \end{array}$	dd δ =2,73 ² J _{H-H} = -14,5 ³ J _{H-P} = 13,1	dd δ =2,72 ${}^{2}J_{H-H}$ = -14,3 ${}^{3}J_{H-P}$ = 13,1
H(41)	$\begin{array}{l} \text{dd} \; \delta {=} 2,89 \\ {}^2J_{H-H} {=} -9,3 \\ {}^3J_{H-P} {=} 13,3 \\ \text{dd} \; \delta {=} 2,91 \\ {}^2J_{H-H} {=} -9,3 \\ {}^3J_{H-P} {=} 13,3 \end{array}$		$\begin{array}{l} \text{dd } \delta = 2,90 \\ {}^{2}J_{H-H} = -9,3 \\ {}^{3}J_{H-P} = 13,3 \\ \text{dd } \delta = 2,91 \\ {}^{2}J_{H-H} = -9,3 \\ {}^{3}J_{H-P} = 13,4 \end{array}$	dd δ =2,93 ² J _{H-H} = -9,2 ³ J _{H-P} = 13,5
H(42)	dd δ =3,21 ${}^{3}J_{H-P} = 9,7$ dd δ = 3,21 ${}^{3}J_{H-P} = 9,7$	dd δ =3,14 ${}^{3}J_{H-P} = 10,4$ dd δ = 3,15 ${}^{3}J_{H-P} = 10,1$	dd δ =3,18 ³ J _{H-P} = 10,6 dd δ = 3,19 ³ J _{H-P} = 8,9 Hz	dd δ =3,19 ³ J _{H-P} = 10,4 ⁴ J _{H-H} = 1,8
H(62)	dd $\delta = 3,36$ ${}^{3}J_{H-P} = 11,5$ dd $\delta = 3,37$ ${}^{3}J_{H-P} = 11,5$	confondu avec H(151) et H(152)	confondu avec H(151) et H(15	confondu avec 52) H(151) et H(152)
H(151), H(152) H(171), H(172), H(181), H(182)		m δ 3,3 – 3,7	m δ 3,3–3,5	m ð 3,3–3,5
H(141), H(142)	m ₁ δ 3,9-4,1 m ₂ δ 4,1-4,3	m ₁ δ 4,03–4,08 m ₂ δ 4,16–4,2	m ₁ δ 4,06–4,11 m ₂ δ 4,16–4,23	$ \begin{split} \delta &= 4,26 \\ {}^{2}J_{H-H} = -11,3 \\ {}^{3}J_{H-H trans} = 3,8 \\ {}^{3}J_{H-Hcis} = 5,2 \\ {}^{3}J_{H-P} = 9,4 \\ \delta &= 4,12 \\ {}^{3}J_{H-H trans} = 3,8 \\ {}^{3}J_{H-H trans} = 6,2 \\ {}^{3}J_{H-P} = 11,8 z \end{split} $

TABLEAU IV Paramètres de RMN ¹H des composés 3=S-6=S (δ , J en Hz)

$\begin{array}{c} Mc_{9} \\ H_{41} \\ H_{42} \\ H_{42} \\ H_{61} \\ H_{61} \\ H_{62} \\ HO_{8} \end{array}$	$ \begin{array}{c} \mathbf{k}_{10} \\ \mathbf{k}_{10} \\ \mathbf{k}_{10} \\ \mathbf{k}_{10} \\ \mathbf{k}_{11} \\ \mathbf{k}_{11} \\ \mathbf{k}_{12} \\ \mathbf{k}_{12} \\ \mathbf{k}_{11} \\ \mathbf{k}_{12} \\ \mathbf{k}_{12} \\ \mathbf{k}_{11} \\ \mathbf{k}_{12} \\ \mathbf{k}_{12} \\ \mathbf{k}_{11} \\ \mathbf{k}_{12} $			S = n = 0 $S = n = 1$ $S = n = 2$ $S = n = 3$
	3=5	4=S	5=S	6=5
C(9,10,11,12)	7s ^c δ 27,4–27,9	3s ^c δ 27,5–27,9	3s ^c δ 27,5–27,9	3s ^c δ 27,4–28,0
C(6)	d $\delta = 58,2$ ${}^{2}J_{C-P} = 5,2$ d $\delta = 58,5$ ${}^{2}J_{C-P} = 5,2$	d $\delta = 58.2$ ${}^{2}J_{C-P} = 5.2$	$d \delta = 58,2$ ${}^{2}J_{C-P} = 4,5$	$d \delta = 58,1$ ${}^{2}J_{C-P} = 2,5$
C(4)	$d \delta = 61,7$ $J^{a}_{C-P} = 7,2$ $J^{a} d \delta = 62,4$ $C-P = 11,1$ $d \delta = 62,8$ $J^{a}_{C-P} = 11,6$	m δ = 62,4	m δ = 62,4	m $\delta = 62.4$ J ^a _{C-P} = 11.2
C(14)	m $\delta = 67,1$	$d \delta = 67,2$ ${}^{2}J_{C-P} = 5,6$	$d \delta = 67.4$ ${}^{2}J_{C-P} = 5.0$	d $\delta = 67.3$ ${}^{2}J_{C-P} = 5.6$
C(15)	$d \delta = 70.0$ ${}^{3}J_{C-P} = 6.7$	$d \delta = 70,1$ ${}^{3}J_{C-P} = 6,4$	$d \delta = 70,3$ ${}^{3}J_{C-P} = 7,2$	$d \delta = 70.4$ ${}^{3}J_{C-P} = 7.3$
C(17)			s δ=70,6	s $\delta = 70,7$
C(18)				s $\delta = 70,9$
C(3)	$d \delta = 71,7$ $J^{b}_{C-P} = 3,6$	$d \delta = 71.6$ $J^{b}_{C-P} = 3.8$	$d \delta = 71,6$ $J^{b}_{C-P} = 3,0$	$d \delta = 71.5$ $J^{b}_{C-P} = 3.3$
C(7)	s $\delta = 82,8$ S $\delta = 82,9$	s δ = 82,6	s δ = 82,7	s δ = 82,4

TABLEAU V Paramètres de RMN ¹³C des composés $3=S - 6=S(\delta, J en Hz)$

(a) $J_{CP} = 1/2(^{2}J_{C.N.P} + ^{3}J_{C.C.O.P})$. (b) $J_{CP} = 1/2(^{2}J_{C.O.P} + ^{3}J_{C.C.N.P})$ (c) dans ce cas la lettre "s" ne signifie pas singulet mais signal.

-

¹⁰ 9 ³ 2 ¹⁰ 14 ¹⁰ 1	2 3 19 17 17 7=S		N = P 40 10 320 14 14 14 14 14 14 14 14 14 14	20' 18 20 H H 8=S	SEP-N OH
	7=S			8=S	
	δ	J		δ	J
CH ₃ (9,10,11,12)	4s : 1,3 ; 1,31 1,38 ; 1,40		CH ₃ (9,10,11 ,12)	3s :1,2 1,21 1,45	
			CH ₂ (15)	q 1,90	${}^{3}J_{HH} = 5,7$
H(61)	dd 2,82	${}^{2}J_{HH} = -14.1$ ${}^{3}J_{HP} = 13.3$	H(61)	dd 2,82	${}^{2}J_{HH} = -14,2$ ${}^{3}J_{HP} = 14,2$
H(41)	dd 3,04	${}^{2}J_{HH} = -9,3$ ${}^{3}J_{HP} = 13,4$	H(41)	dd 3,23	${}^{2}J_{HH} = -9,1$ ${}^{3}JHP = 12,4$
H(42)	dd 3,32	${}^{3}J_{HP} = 9,7$	H(62)	dd 3,27	${}^{3}J_{HP} = 12,4$
H(62)	dd 3,5	${}^{3}J_{HP} = 11,5$	H(42)	dd 3,44	${}^{3}J_{HP} = 11,2$
H(151)	ddd ^a 3,5	${}^{2}J_{HH} = -14,3$ ${}^{3}J_{HH} = 5,4$ ${}^{3}J_{HH} = 5,5$	CH ₂ (16)	qd 3,52	${}^{3}J_{HH} = 5.3$ ${}^{3}J_{HCNH} = 5.5$
H(152)	ddd ^a 4,23				
H(141)	m 4,33– 4,39		CH ₂ (14)	td 4,14	${}^{3}J_{HH} = 5.7$ ${}^{3}J_{HP} = 9.9$
H(142)	m 4,49– 4,54				
H aromatiques	m 6,9–7,4		H aroma- tiques	m 6,9–7,4	

TABLEAU VI Paramètres de RMN ¹H des composés 7=S et 8=S (δ , J en Hz)

(a) H(151) et H(152) constituent la partie XY d'un système ABXYZ : A,B =H(141), H(142) Z = P.

¹⁰ 9 3 20 N - P K - 12 HQ 10 14 1 10 14 10 10 10 10 10 10 10 10 10 10	0 19 17 7=S	S P N OH	¹⁰ , ⁹ ⁴ , ⁵ ¹⁰ , ¹⁰ ¹⁰ , ¹⁰ , ¹⁰ ¹⁰ , ¹⁰	19 ^{20′} ∧18 20 H H 8=S	
	7= <i>S</i>			8=S	
	δ	J	_	δ	J
CH ₃ (9,10,11,12)	d 27,6 s 27,8 d 27,9 s 28,0	${}^{3}J_{CP} = 3,$ ${}^{3}J_{CP} = 4,$ 2	CH ₃ (9,10,11,12)	s 27,5 s 27,6 s 27,8 d 28,0	${}^{3}J_{CP} = 3,7$
C(15)	d 50,6	${}^{3}J_{CP} = 8,$	C(15)	d 29,8	${}^{3}J_{CP} = 6,8$
		-	C(16)	s 36,1	
C(6)	d 58,5	${}^{2}J_{CP} = 5,$	C(6)	s 58,3	
C(4)	d 62,8	J ^a _{CP} =11,4	C(4)	d 62,9	$J^{a}_{CP} = 11,4$
C(14)	d 65,4	${}^{2}J_{CP} = 6,$	C(14)	d 66,0	${}^{2}J_{CP} = 3,2$
C(3)	d 71,7	$J^{b}_{CP} = 4,$	C(3)	s 72,1	
C(7)	d 82.8	${}^{3}J_{CP} = 2,$ 7	C(7)	s 83,6	
C aromatiques	m 125,2- 129,4		C aromatiques	s 127,5	
C(19)	s 137,8		C(19)	s 137,1	
C(17)	s 144,3				
C(18)	s 169,7		C(18)	s 166,9	

TABLEAU VII Paramètres de RMN ¹³C des composés 7=S et 8=S (δ, J en Hz)

(a) $J_{CP} = 1/2({}^{2}J_{C-N-P} + {}^{3}J_{C-C-O-P})$ (b) $J_{CP} = 1/2({}^{2}J_{C-O-P} + {}^{3}J_{C-C-N-P})$.

La première concerne la position des signaux des protons H(61), H(62), H(41) et H(42). Dans **7=S** les signaux de ces protons se succèdent dans le spectre de la même manière qu'avec les dérivés **3=S** – **6=S**, à savoir que ceux de H(61) ($\delta = 2,82$) et H(62) ($\delta \approx 3,5$) encadrent ceux de H(41)($\delta = 3,04$) et H(42) ($\delta = 3,32$). Dans **8=S**, la succession des mêmes signaux est différente : le pic de H(62) ($\delta = 3,27$) se place entre celui de H(41) $(\delta = 3,23)$ et celui de H(42) ($\delta = 3,44$), le signal de H(61) ($\delta = 2,82$) restant toujours à la même place. Si l'on examine les écarts entre les déplacements chimiques $\Delta\delta_1 = \delta H(42) - \delta H(41)$, d'une part, et $\Delta\delta_2 = \delta H(62) - \delta H(61)$, d'autre part, on constate que, dans **7=S**, le premier a une valeur, 0,28, qui est du même ordre que ce qui est observé dans le composé comparable **6=S** et légèrement supérieure à sa valeur, 0,21, dans **8=S**. En revanche la valeur de $\Delta\delta_2$ dans **7=S**, 0,68, est significativement supérieure à celle, 0,45, observée dans **8=S**. Comme ce dernier composé se différencie de tous les autres par la présence du groupe N-H nous serions tentés d'attribuer la diminution sensible de $\Delta\delta_2$ à une interaction entre N-H et la double liaison P=S qui modifierait les caractéristiques du cône d'anisotropie de cette dernière responsable des grands écarts observés entre les déplacements chimiques de ces protons.

La deuxième concerne la chiralité de l'atome de phosphore vue à travers les protons CH_2 de la chaîne reliant les deux cycles pentagonaux. Dans 7=S les protons H(141) et H(142), d'une part, H(151) et H(152), d'autre part, sont, comme attendu, parfaitement inéquivalents : ils donnent naissance à quatre massifs bien distincts. Il n'en est pas de même dans 8=S où les mêmes protons sont, d'une façon surprenante, parfaitement équivalents : le signal dû au groupe $CH_2(14)$ est un triplet dédoublé, et celui du groupe $CH_2(15)$ est un quintuplet dédoublé. Cette équivalence se retrouve également avec le groupe $CH_2(16)$ (Tableau 6). En d'autres termes pour ces sites magnétiques l'atome de phosphore de 8=S apparaît comme achiral. alors que sa chiralité intrinsèque est bien mise en évidence par l'inéquivalence des protons H(61) et H(62). Faut-il voir dans ces deux perceptions contradictoires un lien avec la modificatioin des caractéristiques du cône d'anisotropie de la double liaison P=S évoquée ci-dessus ? Pour le moment nous n'avons pas suffisamment d'arguments pour étayer une telle explication.

III CONCLUSION

Au cours de ce travail nous avons confirmé les résultats précédemment obtenus^[6], à savoir l'accès facile aux thio-oxazaphospholidines **II=S** par simple sulfuration des hydridobicyclophosphoranes du type **II**. L'extension de cette réaction aux bis(hydridobicyclophosphoranes) **3–8** a permis d'obtenir les bis(thio-oxazaphospholidines) 3=S - 8=S. L'étude stéréochimique de ces derniers a mis en évidence deux particularités intéressantes:

- La première est une confirmation d'une observation connue dans la littérature à savoir la disparition de l'effet dû à la présence de deux centres chiraux quand le nombre d'atomes qui les sépare dépasse 10. C'est ainsi que les dérivés 6=S, 7=S et 8=S, dont les deux atomes de phosphore chiraux sont séparés respectivement par 13, 14 et 16 atomes, se présentent chacun comme un seul mélange racémique diastéréoisomère.
- La deuxième concerne le comportement singulier du bis(thio-oxazaphospholidine) 8=S qui se distingue de tous les autres par la présence du groupe N-H. La manifestation la plus significative de cette singularité réside dans le fait que l'atome de phosphore, vu du niveau de la chaîne qui relie les deux groupes thio-oxazaphospholidines, apparaît comme achiral alors que sa chiralité est bien mise en évidence par les autres sites magnétiques de la molécule.

IV- PARTIE EXPERIMENTALE

IV.1 Appareillage

Les spectres de RMN ³¹P, ¹H et ¹³C ont été enregistrés avec différents spectromètres Bruker: AC 80, AC 200, AC 250 et 400. Les déplacements chimiques, exprimés en parties par million du champ inducteur, sont mesurés avec une précision de \pm 0,03 pour ³¹P et ¹³C et de \pm 0,005 pour ¹H (références : tétraméthylsilane, TMS, pour ¹H et ¹³C, H₃PO₄ à 85% pour ³¹P). Les constantes couplage, exprimées en Hz, sont mesurées avec une précision de \pm 0,2 Hz pour ¹H et de \pm 0,5 Hz pour ³¹P et ¹³C. La résolution complète des spectres a été parechevée par des expériences de découplage hétéronucléaire carbone-phosphore.

IV.2 Synthèse

IV.2.1 Les produits de départ

Le bicyclophosphane **BCP** est un produit couramment utilisé au laboratoire^[6]. L'éther méthylique du diéthylèneglycol **a** est un produit commercial que nous avons redistillé avant usage. Le N,N'-bis(3-hydroxypropyl) téréphthalamide c est signalé dans un brevet qui date de $1940^{[19]}$ où il aurait été préparé par action de la propanolamine en solution aqueuse sur le dichlorure de téréphthalyle alors que le N,N'-bis(2-hydroxy-éthyl-N-phényl)téréphthalamide b est un produit original.

▷ LE N,N'-BIS(2-HYDROXYÉTHYL-N-PHÉNYL)TÉRÉPHTHALAMIDE

*HOCH*₂-*CH*₂-*N*(*Ph*)-*C*(*O*)-*C*₆*H*₄-*C*(*O*)-*N*(*Ph*)-*CH*₂-*CH*₂*OH* **b**. A une solution de 0,68 g (5 mmol) de N-phényléthanolamine dans 10 mL de THF anhydre maintenue sous atmosphère inerte, on ajoute goutte à goutte 0,503 g (2,5 mmol) de dichlorure de téréphthalyle dissous dans 10 mL du même solvant. Après agitation pendant 3 heures à la température ambiante, on filtre le précipité formé et on le recristallise dans l'éthanol anhydre. Quantité obtenue : 0,22 g. Rdt : 22%. F 224–227°C. RMN ¹H (250,13 MHz, DMSO δ, *J en Hz*) : 3,53 (td, 4H, *OCH*₂, ³J_{HH} = 6,1, ³J_{H-C-O-H} = 5,6); 3,80 (t, 4H, NCH₂, ³J_{HH} = 6,1); 4,84 (t, 2H, *OH*³J_{HH} = 5,6); 7,13 (m, 10H, *protons aromatiques*). RMN ¹³C (62,89 MHz, DMSO δ, *J en Hz*) : 52,2 (s, *NCH*₂); 57,6 (s, *OCH*₂); 126,5–128,8 (4s, *carbones aromatiques*); 137,0 (s, *C ipso C*); 143,2 (s, *C ipso N*); 168,8 (s, *C(O)*).

▷ LE N,N'-BIS(3-HYDROXYPROPYL)TÉRÉPHTHALAMIDE

*HOCH*₂-*CH*₂-*N*(*H*)-*C*(*O*)-*C*₆*H*₄-*C*(*O*)-*N*(*H*)-*CH*₂-*CH*₂-*CH*₂*OH* **c**. Le même protocole expérimental a été appliqué à la préparation de **c** à partir de 0,37 g (5 mmol) d'aminopropanol dissous dans 4 mL de THF anhydre et 0,503 g (2,5 mmol) de dicholrure de téréphthalyle dissous dans 6 mL du même solvant. Après recristallisation dans l'éthanol anhydre on obtient 0,150 g de produit pur. Rdt : 21,6%. F 145–152°C. RMN ¹H (250,13 MHz, DMSO δ, *J* en Hz) : 1,68 (q, 4H, C-*CH*₂-C, ³J_{HH} = 7); 3,32 (td, 4H, *N*-*CH*₂, ³J_{HH}= 6,5, ³J_{H-C-O-H} = 6,1); 4,5 (t, 2H, *OH*³J_{HH} =6,1); 7,9 (s, 4H, *protons aromatiques*); 8,6 (t, 2H, *NH*, ³J_{HH} = 6,5). RMN ¹³C (62,89 MHz, DMSO δ, *J* en Hz): 32,2 (*s*, C-*CH*₂-C); 36,5 (s, *NCH*₂); 58,5 (s, *OCH*₂); 127 (s,*carbones aromatiques équivalents*); 136,6 (s,*C ipso*); 165,4 (s, *C(O)*)

IV.2.2 Les précurseurs

D'L'HYDRIDOBICYCLOPHOSPHORANE 1. Une solution de 0.54 g (4.5 mmol) d'éther méthylique du diéthylèneglycol HO-(CH₂-CH₂O)₂CH₃ a

dans 2,5 mL de CH₃CN est additionnée, à la température ambiante, à une solution de 0,851 g (4,5 mmol) du "bicyclophosphane" BCP dans 2,5 mL du même solvant. La réaction, suivie par RMN ³¹P, est instantanée, exothermique et quantitative. Après enlèvement du sovant, le précurseur 1 se présente comme une huile incolore indistillable qui a été caractérisée par RMN. RMN ³¹P (32,44 MHz, C₆D₆, δ , J en Hz) : -36,1 (d, ¹J_{PH} = 801,6). RMN ¹H (250,13 MHz, C₆D₆, δ , J en Hz): 1,21 (s, 6H, CH₃(9+11) ou (10+12)); 1,29 (s, 6H, CH₃(10+12) ou (9+11)); 2,47 et 2,53 (partie AB d'un système ABX (X = P), 4H, $CH_2(4+6)$, ${}^2J_{HH} = -8$, ${}^3J_{HP} = 14, 6$, ${}^{3}J_{HP} = 12,8$); 3,12 (s, 3H, *OCH*₃); 3,31–3,52 (m, 4H, *CH*₂(16+17); 3,48 (t, 2H, $CH_2(15)$, ${}^{3}J_{HH} = 5,1$); 4,07 (td, 2H, $CH_2(14)$, ${}^{3}J_{HP} = 5,2$); 7,19 (d, 1H, *H-P*, ${}^{1}J_{HP} = 799,4$). RMN ${}^{13}C$ (62,89 MHz, C_6D_6 , δ , J en Hz) : 29,1 (s, C(9+11) ou (10+12)); 29,6 (d, C(10+12) ou (9+11), ${}^{3}J_{CP} = 5,2$); 55,3 (d, $C(4+6) \ 1/2(^2J_{C-N-P} + ^3J_{C-C-O-P}) = 19,1)$; 58,7 (s,C(20); 65,7 (d, C(14), ${}^{2}J_{CP} = 6,6$; 70,3 (d, C(3+7), $1/2({}^{2}J_{C-O-P} + {}^{3}J_{C-C-N-P}) = 5,7$); 70,9 (s, C(17)); 71,4 (d,C(15), ${}^{3}J_{CP} = 9,2$); 72,4 (s, C(18)).

 \triangleright LE BIS(HYDRIDOBICYCLOPHOSPHORANE) 7. Une solution de 0,65 g (3,43 mmol) du bicyclophosphane BCP dans 5 mL de CH₃CN est ajoutée en une fois à 0,64 g (1,71 mmol) du bis(hydroxy)téréphthalamide b en suspension dans 5 mL du même solvant. La réaction ne démarre qu'à chaud (50°C). Nous assistons, dans une première phase à la solubilisation du bis(hydroxy)téréphthalamide, puis au fur et à mesure de l'avancement de la réaction, à la formation d'un précipité blanc. Le suivi de la réaction par RMN ³¹P montre la disparition progressive du signal dû au bicyclophosphane et la formation concomittante d'un signal dans le domaine de résonance des phosphoranes, accompagné de signaux minoritaires correspondant à des dérivés du phosphore tétracoordonné (impuretés). Le solide séparé en fin de réaction est lavé deux fois à l'heptane et séché sous vide. Quantité obtenue : 0,58 g Rdt. 45%. RMN ³¹P (32,44 MHz, CDCl₃, δ, J en Hz) : -38,1 (d, ${}^{1}J_{PH} = 794$ Hz). RMN ${}^{1}H$ (400,14 MHz, C₆D₆, δ, J en Hz): 1,32 (s, 12H, CH₃(9+11) ou (10+12)); 1,36(s, 12H, CH₃(10+12) ou (9+11)) ; 2,57 et 2,62(partie AB d'un système ABX (X = P), 8H, $CH_2(4+6)$, ${}^2J_{HH} = -8$, ${}^3J_{HP} = 13,1$, ${}^3J_{HP} = 14,1$); 4,09 (t, 4H, $CH_2(15)$, ${}^{3}J_{HH} = 5,4$; 4,37(dt, 4H, $CH_{2}(14)$, ${}^{3}J_{HH} = 5,4$; ${}^{3}J_{HP} = 8$); 6,98–7,4 (m, 14 H protons aromatiques) ; 7,31 (d, 2H, H-P, ${}^{1}J_{HP} = 798,6$). RMN ${}^{13}C$ (100,62MHz, C₆D₆, δ , J en Hz): 29,5 (s, C(9+11) ou (10+12)); 29,9(d, C(10+12) ou (9+11), ${}^{3}J_{CP} = 4,9)$; 52,5 (d, C(15), ${}^{3}J_{CP} = 9,6)$; 55,5(d, C(4+6), $1/2({}^{2}J_{C-N-P} + {}^{3}J_{C-C-O-P}) = 19)$; 64 (d, C(14), ${}^{3}J_{CP} = 6,8)$; 70,8 (d, C(3+7), $1/2({}^{2}J_{C-O-P} + {}^{3}J_{C-C-N-P}) = 5,3)$; 126 – 129 (m, carbones aromatiques ; 138,4 (s, C(19)); 145,2 (s, C(17)); 169,6 (s, C(18)).

▷ LE BIS(HYDRIDOBICYCLOPHOSPHORANE) 8. Contrairement à la réaction précédente, la synthèse de 8 a été réalisée en milieu homogène ce qui a nécessité 100 mL de CH₃CN pour 0,65 g (3,43 mmol) de BCP et 0,426 g (1,71 mmol) du bis(hydroxamide) c. 8 se présente comme une huile faiblement jaunâtre. Quantité obtenue : 0,59 g. Rdt.: 55%. RMN ³¹P $(32,44 \text{ MHz}, \text{ CDCl}_3, \delta, \text{ J en Hz}): -39,3 \text{ (d }^{1}\text{J}_{\text{PH}} = 797 \text{ Hz}), \text{ RMN }^{1}\text{H}$ $(250,13 \text{ MHz}, \text{CDCl}_3, \delta, \text{J en Hz}) : 1,22 \text{ (s, 12H, } CH_3(9+11)\text{ou} (10+12));$ 1,24 (s, 12H, $CH_3(10+12)$ ou (9+11)); 1,85 (q, 4H, $CH_2(15)$, ${}^{3}J_{HH} = 5,7$); 2,76 et 2,80 (partie AB d'un système ABX (X= P), 8H, CH₂(4+6), $^{2}J_{HH} = -8.1$, $^{3}J_{HP} = 12.7$, $^{3}J_{HP} = 13.9$); 3.59 (dt, 4H, $CH_{2}(16)$, ${}^{3}J_{HH} = {}^{3}J_{H-C-N-H} = 5,7)$; 4,04 (dt, 4H, $CH_{2}(14)$, ${}^{3}J_{HH} = 5,6$, ${}^{3}J_{HP} = 8,3)$; 6,86 (d, 2H, *H-P*, ¹J_{HP} = 798,5); 7,88 (s, 4H, protons aromatiques). RMN ¹³C (100,62 MHz, CDCl₃ δ , J en Hz) : 29,0 (s, C(9+11) ou (10+12)) ; 29,3 (d, C(10+12) ou (9+11), ${}^{3}J_{CP} = 3$); 30,0 (d, C(15), ${}^{3}J_{CP} = 8,1$); 38,6 (s, C(16); 55,2 (d, C(4+6), $1/2({}^{2}J_{C-N-P} + {}^{3}J_{C-C-O-P}) = 18,7$); 65,8 (d, C(14), ${}^{2}J_{CP} = 7,1$; 71,0 (s, C(3+7)); 127,5 (s, C(20 ou 20')); 128,5 (s, C(20' ou20));137,2 (s, C(19)); 166,8 (s, C(18).

IV.2.3 Les thio-oxazaphospholidiness

▷ LE THIO-OXAZAPHOSPHOLIDINE **1=S.** 0,516 g (4,3 mmol) d'éther méthylique du diéthylèneglycol HO-(CH₂-CH₂O)₂CH₃ sont ajoutés à 0,813 g (4,3 mmol) de bicyclophosphane **BCP** dans 5 mL de toluène. La réaction terminée on ajoute 0,138 g (4,3 mmol) de soufre. Au bout de 30 mn la dissolution du soufre est totale et le spectre de RMN ³¹P montre la disparition du signal dû à l'hydridobicyclophosphorane et son remplacement par deux signaux : un très largement majoritaire à δ ³¹P = 84,6 attribuable à **1=S** et l'autre à δ ³¹P = 52,3 attribuable à la forme tautomère **1=S^{*}**. Au bout de 24 heures ce dernier signal disparaît complètement. L'enlèvement du solvant laisse une huile brun jaune dont la pureté a été contrôlée par RMN ¹H et ¹³C (Tableaux 1 et 2).

DLE THIO-OXAZAPHOSPHOLIDINE **2=S.** Ce composé a été préparé dans les mêmes conditions que celles décrites ci-dessus à partir de 0,605 g (3,2 mmol) de **BCP**, 0,525 g (3,2 mmol) de l'éther méthylique du triéthylène-

glycol HO-(CH₂-CH₂O)₃CH₃ et 0,102 g (3,2 mmol) de soufre dans 5 mL de toluène. **2=S** se présente comme une huile brun rouge, $\delta^{31}P = 86,3$ que nous avons caractérisée par RMN ¹H et ¹³C (Tableaux 1 et 2).

IV.2.4. Les bis (thio-oxazaphospholidines)

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **3=S.** A été préparé à partir de 0,794 g (4,2 mmol) de *BCP*, 0,130 g (2,1 mmol) d'éthylèneglycol HO-CH₂-CH₂-OH et de 0,135 g (4,2 mmol) de soufre. Solvant : toluène 5 mL. **3=S** se présente comme une huile jaunâtre. RMN ³¹P 2 signaux à δ = 85,3 et 85,1. RMN ¹H et ¹³C : Tab leaux 4 et 5.

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **4=S.** A été obtenu à partir de 0,850 g (4,5 mmol) de **BCP**, 0,238 g (2,25 mmol) de diéthylèneglycol HO-(CH₂)₂-O-(CH₂)₂-OH, 0144 g (4,5 mmol) de soufre. Solvant : toluène 5 mL. Huile jaune brun. RMN ³¹P : δ = 84,3. RMN ¹H et ¹³C : Tableaux 4 et 5.

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **5=S.** Quantités de réactifs. **BCP** : 0,870 g (4,6 mmol), triéthylèneglycol HO-[(CH₂)₂-O]₂-(CH₂)₂-OH : 0,345 g (2,3 mmol), soufre : 0,147 g (4,6 mmol),Toluène : 5 mL. Huile jaune RMN ³¹P : δ = 84,6. RMN ¹H et ¹³C : Tableaux 4 et 5.

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **6=S.** Quantités de réactifs. **BCP** : 0,775 g (4,1mmol), tétraéthylèneglycol HO-[(CH₂)₂-O]₃-(CH₂)₂-OH : 0,398 g (2,05 mmol), soufre : 0,131 g (4,1 mmol), Toluène : 5 mL. Huile jaune foncé. RMN ³¹P : δ = 84,6. RMN ¹H et ¹³C : Tableaux 4 et 5.

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **7=S.** Quantités de réactifs. **BCP** : 0,605 g (3,2 mmol), bis(hydroxy)téréphthalamide **b** : 0,646 g (1,6 mmol), soufre: 0,103 g (3,2 mmol),. Solvant CH₃CN : 10 mLSolide blanc. RMN ³¹P : δ = 84,4. RMN ¹H et ¹³C : Tableaux 6 et 7.

▷LE BIS (THIO-OXAZAPHOSPHOLIDINE) **8=S.** Quantités de réactifs. **BCP** : 0,832 g (4,4 mmol), bis(hydroxy)téréphthalamide c : 0,616 g (2,2 mmol), soufre 0,141 g (4,4 mmol). Solvant CH₃CN : 10 mL Huile jaunâtre. RMN ³¹P : δ = 84,7. RMN ¹H et ¹³C : Tableaux 6 et 7.

References

- [1] M. Eto, J. Environ. Sci. Health, B18 (1), 119 (1983).
- [2] W. Shao-Yong, R. Takeya, M. Eto, C. Tomizawa, J. Pesticide Sci. 12, 221 (1987).
- [3] W. Shao-Yong, A. Hirashima, R. Takeya, M. Eto, Agric. Biol. Chem., 52 (11) 2911 (1988).
- [4] M. Eto, Pesticides and alternatives : innovative chemical and biological approaches to pest control. Proceedings of an International Conference. Orthodox Academy of Crete.Kolymbari, Crete Greece 1990 pp. 33–44.
- [5] M. Eto, S. Go, Jpn. Kokai Tokyo Koho JP 01, 199, 186 ; Chem. Abstr. 112, 56290 (1990).
- [6] Z. Bounja, D. Houalla, M. Revel, R. Wolf, Can. J. Chem., 70, 1105 (1992).
- [7] En fait la composition à l'équilibre du mélange réactionnel dépend des substituants portés par le bicyclophosphane de départ. Dans le cas du dérivé tétraméthylé le pourcentage de la forme II=S atteint 100% alors qu'avec d'autres substituants les deux formes II=S et II=S* sont présentes avec des pourcentages variables⁸ A l'inverse dans le cas du bicyclophosphane non substitué c'est la forme II=S*qui est seule présente dans le milieu⁹.
- [8] Z. Bounja, Thèse de l'Université Paul Sabatier (Toulouse III) n° 1444 Avril 1993.
- [9] J.M. Grévy, Thèse de l'Université Paul Sabatier (Toulouse III) Janvier 1997.
- [10] B. Duthu, D. Houalla, R. Wolf, Can. J. Chem., 66, 2965 (1988) et références citées.
- [11] Nomenclature correcte : 3,3,7,7 tétraméthyl-2,8-dioxa-1 λ^3 -phosphabicyclo(3,3,0) octane.
- [12] D. Houalla, L. Moureau, Phosphorus, Sulfur and Silicon, 114, 51 (1996).
- [13] D. Houalla, A. Munoz, H. Ramdane, R. Wolf, Tetrahedron Lett., 26, 2003 (1985).
- [14] D. Houalla, Z. Bounja, S. Skouta, R. Wolf, J. Jaud, *Heteroatom. Chem.*, 5 (2), 175 (1994).
- [15] D. Houalla, L. Moureau, S. Skouta, M.R. Mazières, *Phosphorus, Sulfur and Silicon*, 103, 199 (1995).
- [16] B. Duthu, K. El Abed, D. Houalla, R. Wolf, J. Jaud, Can. J. Chem. 70, 809 (1992).
- [17] D.G. Gorenstein. 31 NMR Principle and Applications. Academic Press, New York. 1984. pp 43–51.
- [18] D. Grec, L.G. Hubert-Pfalzgraf, J.G. Riess, A. Grand, J. Am. Chem. Soc. 102, 7133 (1980).
- [19] P. Schlack, US patent 2343808 (1940).