Palladium-Catalyzed Direct Arylations of 1,2,3-Triazoles with Aryl Chlorides using Conventional Heating

Lutz Ackermann,^{a,*} Rubén Vicente,^a and Robert Born^a

^a Institut für Organische und Biomolekulare Chemie, Georg-August-Universitaet, Tammannstrasse 2, 37077 Goettingen, Germany

Fax: (+49)-551-39-6777; e-mail: Lutz.Ackermann@chemie.uni-goettingen.de

Received: January 10, 2008; Published online: March 12, 2008

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

Abstract: Generally applicable, palladium-catalyzed direct arylations of 1,2,3-triazoles with aryl chlorides were accomplished through conventional heating at reaction temperatures of 105–120 °C. Thereby, intraand intermolecular C–H bond functionalizations were achieved with a variety of differently substitut-

ed chlorides as electrophiles, bearing numerous valuable functional groups.

Keywords: arylation; C–C coupling; C–H activation; palladium; triazoles

Introduction

1,2,3-Triazoles are important substructures of various compounds with biological activities of relevance to medicinal chemistry. Thus, various strategies for their synthesis have been devised, with Huisgen's 1,3-dipolar [3+2] cycloadditions of azides and alkynes^[1] being the most commonly used approach.^[2] The efficient rate enhancement and excellent regioselectivity achieved with either copper^[3,4] or ruthenium catalysts,^[5] allowed more recently for their widespread applications in diverse research areas, ranging from bioorganic chemistry to material sciences.^[6] While these catalytic [3+2] cycloadditions proceeded efficiently and highly regioselectively with terminal alkynes, the corresponding transformations of internal alkynes to fully substituted 1,2,3-triazoles were found to be either not generally applicable or gave rise to mix-tures of regioisomers.^[5,7–9] Alternative methodologies for their syntheses, such as metalations of disubstituted triazoles, or cycloadditions with either deprotonated C-H acidic compounds or magnesiated terminal alkynes,^[2] often rely on stoichiometric amounts of highly reactive organometallic reagents, and therefore show significant limitations in scope.

The direct functionalization of C–H bonds^[10–14] in 1,2,3-triazoles could constitute an attractive alternative to traditional cross-couplings with organometallic reagents because of its ecologically and economically benign nature. Among the known direct arylations of electron-rich heteroarenes, the majority has been accomplished under rhodium or palladium catalyses, applying aryl iodides, bromides, or triflates as electrophiles.^[15-17] Thus, Gevorgyan and co-workers communicated recently on direct arylations of 1,2,3-triazoles with aryl bromides.^[18] However, aryl chlorides are arguably the most useful single class of halides due to their lower cost and the wider diversity of (commercially) available compounds.^[19,20] As part of our program on the use of more easily accessible and less expensive electrophiles, such as chlorides^[21-23] and tosylates,^[24] in direct arylation reactions,^[25,26] we became interested in probing palladium-catalyzed direct arylations of 1,2,3-triazoles with arvl chlorides.^[27] A very recent report by Oshima and co-workers on a nonthermal microwave effect on palladium-catalyzed direct arylations of 1,2,3-triazoles with aryl chlorides,^[28] prompted us to disclose our own results on the direct arylations of 1,2,3-triazoles with aryl chlorides through conventional heating.^[27] Importantly, these studies highlight that microwave heating and a reaction temperature of 250 °C are not mandatory for efficient catalysis to proceed. Instead, C-H bond functionalizations of 1,2,3-triazoles with aryl chlorides can be conveniently achieved through conventional heating at significantly milder reaction temperatures of 105-120°C.

Results and Discussion

At the outset of our studies, we optimized reaction conditions for the challenging palladium-catalyzed direct arylation of triazole 1a with the electron-rich, thus for an oxidative addition electronically-deactivated, aryl chloride 2a employing conventional thermal heating. Interestingly, our studies showed that polar aprotic solvents, such as NMP, DMF, or DMA, were found to provide less satisfactory results, while 1,4-dioxane and toluene as solvents along with K₂CO₃ as base allowed for efficient catalysis. Subsequently, we probed the effect of various phosphine and carbene ligands in the palladium-catalyzed direct arylation, employing economical $Pd(OAc)_2$ as palladium source and the challenging chloride 2a as electrophile (Table 1). Notably, a thermal reaction did not occur under phosphine ligand-free reaction conditions

Table 1. Optimization studies for the palladium-catalyzed direct arylation of triazole 1a with electron-rich chloride 2a.^[a]

Entry	Ligand	Yield
1	-	-
2	PPh_3 (4)	-
3	$P(o-Tol)_{3}(5)$	-
4	$P(p-Tol)_3$ (6)	-
5	BINAP (7)	-
6	dppf (8)	-
7	Me Me Me Cl N Me Me 9 Me	-
8	$(t-Bu)_{3}PHBF_{4}$ (10)	10%
9	11a	10%
10	11b	47%
11	11c	48%
12	PCy ₃ (12)	53%
13	12	96% ^[b]
14	12	92% ^[c]
15	12	84% ^[d]

 [a] Reaction conditions: 1a (1.0 mmol), 2a (1.5 mmol), Pd(OAc)₂ (4.0 mol%), ligand (8.0 mol%), K₂CO₃ (2.0 mmol), PhMe (2 mL), 120 °C, 7 h. GC yields using *n*-heptadecane as internal standard.

Figure 1. General structure of monophosphine biaryl ligands 11.

(entry 1). Aryl-substituted tertiary monophosphine ligands **4–6** gave also no conversion of the starting materials using conventional heating (entries 2–4). Similarly, commonly used bidentate phosphine ligands **7** and **8** (entries 5, and 6) or N-heterocyclic carbene precursors, like imidazolium salt **9** (entry 7), were found ineffective.

However, more electron-rich, alkyl-substituted tertiary phosphines enabled palladium-catalyzed direct arylations with the electron-rich chloride 2a (entries 8–12). While phosphonium salt 10 (entry 8) and monophosphine biaryl ligands 11a-c (entries 9–11, and Figure 1) gave rather unsatisfactory yields, commercially available phosphine 12 proved superior in the thermal palladium-catalyzed direct arylation of triazole 1a (entries 12, and 13). This highly active catalytic system enabled even an efficient direct arylation to occur at a reaction temperature of 105 °C (entries 14 and 15).

With this optimized catalytic system in hand, we probed its scope in the direct arylation of N-alkyl-substituted 1,2,3-triazoles 1 with various aryl chlorides 2 (Table 2). 1,2,3-Triazoles with substituents on either aromatic group of 1a were efficiently converted, and the corresponding products 3ab and 3ac could be isolated in high yields (entries 1, and 2). Simple N-(nalkyl)-substituted triazoles were efficiently arylated as well with conventional heating (entry 3). However, 1,2,3-triazoles with two n-alkyl-substituents reacted rather sluggishly under our reaction conditions. Here, a significant rate-acceleration was accomplished with catalytic amounts of pivalic acid^[29-31] as additive (entries 4 and 5). With respect to the electrophile, electron-rich aryl chlorides could generally be employed (entries 1-5), even when being more sterically hindered through ortho-substitution (entry 6). Importantly, a variety of valuable functional groups was tolerated by the catalytic system. Thus, aryl chlorides displaying an ester substituent were efficiently converted (entries 7 and 8). Remarkable, a chloride with an enolizable ketone gave rise chemoselectively to the desired product 3aj in high yields of isolated product (entries 9-11). Here, as in the palladium-catalyzed direct arylation with chloride 2f bearing a cyano group (entries 12 and 13), substoichiometric amounts of pivalic acid proved to generate a more effective catalyst. A comparable isolated yield was obtained in 1,4-dioxane as solvent at 105°C (entry 10). Finally, we

^[b] 20 h at 120 °C.

^[c] 1,4-Dioxane (2 mL), 24 h at 105 °C; isolated yield.

^[d] 22 h at 105 °C.

		Alk~N ^N N	+	Pd(O PCy ₃	Ac) ₂ (4 m (12) (8 m	nol%) nol%)	Alk~N´ ^N `N		
		F	२	K ₂ CO ₃ , PhMe,	105 – 120	0 °C, 18 – 24 h	Ar R		
Entry	Alk	R		Ar		Product			Isolated Yield
1	Bn	4-MeOC ₆ H ₄	1b	4-MeC ₆ H ₄	2b	Bn~ _N , ^N , _N Me	OMe	3ab	74%
2	PMB	Ph	1c	4-MeC ₆ H ₄	2b		'n	3ac	80%
3	Oct	Ph	1d	$4-MeC_6H_4$	2b	Oct-N ^{/N} N Me	'n	3ad	70%
4	Bn	Pent	1e	4-MeC ₆ H ₄	2b		Pent	3ae	66% ^[b]
5	Oct	Hex	1f	$4-MeC_6H_4$	2b	Oct-N ^{-NS} N Me	lex	3af	68% ^[b]
6	Bn	Ph	1a	2-MeOC ₆ H ₄	2c		I Ph	3ag	95%
7	Bn	Ph	1a	4-EtO ₂ CC ₆ H ₄	2d	EtO ₂ C	™N =↓ Ph	3ah	70%
8	Oct	Ph	1d	4-EtO ₂ CC ₆ H ₄	2d	FtO ₂ C	ŶN =√ Ph	3ai	63%
9 10 11	Bn	Ph	1a	4-Me(O)CC ₆ H ₄	2e	Bn-N'N	Ph	3aj	(37%) ^[c] 63% ^[d] 67% ^[b]

Table 2. Palladium-catalyzed direct arylations of N-alkyl-substituted triazoles 1 with aryl chlorides 2.^[a]

Adv. Synth. Catal. 2008, 350, 741-748

Table 2. (Continued)

Entry	Alk	R		Ar		Product		Isolated Yield
12 13	Bn	Ph	1a	4-NCC ₆ H ₄	2f		3ak	(41%) ^[c] 71% ^[b]
14	Bn	Ph	1a	3-ру	2g	Bn~N ^N N Ph	3al	58%
15	Bn	Ph	1 a	2-ру	2h	Bn~N ^{/N} ~N N= Ph	3am	82%

^[a] Reaction conditions: **1** (0.50–1.00 mmol), **2** (0.75–1.50 mmol), $Pd(OAc)_2$ (4.0 mol%), **12** (8.0 mol%), K_2CO_3 (1.00–2.00 mmol), PhMe (2 mL), 120 °C, 18–24 h; PMB = 4-MeOC₆H₄CH₂.

^[b] t-BuCO₂H (30 mol%).

^[c] GC conversion.

^[d] *t*-BuCO₂H (30 mol%), 1,4-dioxane (2 mL), 105 °C, 18 h.

found that heteroaromatic chlorides could be employed in these thermal direct arylation reactions as well. Thus, 3- and even 2-chloropyridine (**2g**, and **2h**) gave rise to triazoles **3al** and **3am**, respectively, in good yields (entries 14 and 15).

Regioselective palladium-catalyzed direct arylations of arenes bearing Lewis-basic N-containing directing groups are well established.^[14,15,32] With respect to Naryl-substituted 1,2,3-triazoles 1 this might result in a competitive arylation of the carbo- and heterocyclic moieties. Therefore, we tested the regioselectivity of thermal palladium-catalyzed direct arylations with Naryl-substituted 1,2,3-triazoles 1 (Table 3). Notably, 1,2,3-triazoles 1 with N-aryl groups being either unsubstituted (entry 1), or meta- (entries 2-4) as well as ortho-substituted (entries 5-14) were converted to single regioisomers with excellent selectivities through arylations of the electron-rich heterocycles. Thereby, a variety of important functional groups, such as ester (entries 1-3, and 5-8), ketones (entries 9-11), or a silyl substituent (entry 8), was tolerated. Also the challenging electron-rich aryl chlorides were efficiently transformed into the desired fully substituted 1,2,3triazoles in high yields (entries 4 and 12–14).

Subsequently, we tested the chemoselectivity of thermal palladium-catalyzed direct arylations of 1,2,3-triazoles within competition experiments. Thus, bro-mochlorobenzene **20** reacted highly selectively, giving rise to 1,2,3-triazole **3bb** in good isolated yield through coupling of the aryl bromide functionality (Scheme 1).

However, the chloride was found to be a significantly better leaving group when compared with a tosylate, as illustrated by the highly selective coupling of electrophile **2p** to afford triazole **3bc** (Scheme 2). Thus, these experiments suggest the following order in reactivity of leaving groups in the electrophile: Br > Cl > OTs.

In agreement with this reactivity trend, the direct arylation of 1,2,3-triazole **1a** proceeded highly efficiently with bromide **13** and chloride **2b** as electro-

Scheme 1. Chemoselective catalytic direct arylation with electrophile 20.

Scheme 2. Chemoselective catalytic direct arylation with electrophile 2p.

		Ar~N ^N N		Pd(OA PCy ₃	Ac) ₂ (4 mol ^o (12) (8 mol ^o	%) Ar~N´ ^N `N		
		(+ R ¹	R ²	K ₂ CO ₃ , PhN	<i>l</i> le, 120 °C,	$18 - 24 h$ R^1		
Entry	Ar	1 R ¹	2	R ²		Product		Isolated Yield
1	Ph	Bu	1g	4-CO ₂ Et	2d	Ph~N ^N N Bu EtO ₂ C	3an	65%
2	3-MeC ₆ H ₄	Bu	1h	4-CO ₂ Et	2d	Me Bu EtO ₂ C	3ao	65%
3	3-MeC ₆ H ₄	Bu	1h	3-CO ₂ Me	2i	Me V N N Bu CO ₂ Me	3ap	69%
4	3-MeC ₆ H ₄	Bu	1h	3-OMe	2j	Me Me Me	3aq	60%
5	2-MeC ₆ H ₄	Bu	1i	4-CO ₂ Et	2d	Bu EtO ₂ C	3ar	68%
6	2-MeOC ₆ H ₄	Bu	1j	4-CO ₂ Et	2d	OMe N ^N N Bu EtO ₂ C	3as	62%
7	2-MeC ₆ H ₄	Bu	1i	3-CO ₂ Me	2i	Me N ^N N MeO ₂ C	3at	96%
8	2-MeC ₆ H ₄	CH ₂ TMS	1k	4-CO ₂ Et	2d	Me NNN TMS EtO ₂ C	3au	47%

Table 3. Palladium-catalyzed direct arylations of N-aryl-substituted triazoles 1 with aryl chlorides 2.^[a]

Adv. Synth. Catal. 2008, 350, 741-748

Table 3. (Continued)

Entry	Ar	\mathbf{R}^1		\mathbb{R}^2		Product		Isolated Yield
9	2-MeC ₆ H ₄	Bu	1i	4-C(O)Ph	2k	Me N ^N N Bu Ph(O)C	3av	95%
10	$2-MeC_6H_4$	Bu	1i	3-C(O)Ph	21	Ph(O)C	3aw	80%
11	2-MeC ₆ H ₄	Bu	li	4-C(O)- <i>t</i> -Bu	2m	Me N ^N N Bu O t-Bu	3ax	95%
12	2-MeC ₆ H ₄	Bu	1i	4-Me	2b	Me N.N.N Bu Me	3ay	70%
13	2-MeC ₆ H ₄	Bu	1i	4-OMe	2a	Me N ^N N Bu MeO	3az	87%
14	2-MeC ₆ H ₄	Bu	li	3,5-(OMe) ₂	2n	Me MeO OMe	3ba	90%

^[a] *Reaction conditions:* **1** (0.50–1.00 mmol), **2** (0.75–1.50 mmol), Pd(OAc)₂ (4.0 mol%), **12** (8.0 mol%), K₂CO₃ (1.00-2.00 mmol), PhMe (2 mL), 120 °C, 18–24 h.

philes (Scheme 3). On the contrary, the corresponding aryl iodide gave under these reaction conditions no conversion to the desired triazole **3bd**.

1,5-Disubstituted 1,2,3-triazoles can be prepared highly regioselectively through ruthenium-catalyzed 1,3-dipolar cycloadditions of azides and terminal alkynes.^[5] Therefore, we probed our catalytic system in the thermal catalytic direct arylation of triazole **11** (Scheme 4). This C–H bond functionalization pro-

Scheme 3. Catalytic direct arlyation with different halides as electrophiles.

Scheme 4. Palladium-catalyzed direct arylation of 1,5-disubstituted triazole **11**.

ceeded only sluggishly, which can be explained with a electrophilic substitution-type mechanism.^[18a]

This reactivity pattern was reflected by the palladium-catalyzed direct arylation of mono-substituted triazole **1m** (Scheme 5). Hence, 1,5-disubstituted triazole **3bf** was isolated as the major product, along with only small amounts of the fully substituted triazole **3bg**. Furthermore, there was no indication for the formation of the corresponding 1,4-disubstituted triazole by GC/MS analysis of the crude reaction mixture.

Finally, we probed our protocol in a thermal intramolecular direct arylation of a 1,2,3-triazole with a chloride^[33] as leaving group (Scheme 6). The excellent catalytic efficacy allowed for an efficient cyclization of substrate **1n**, providing annulated triazole **3bh** in 83% isolated yield.

Conclusions

We have developed a highly active catalyst for *thermal* intermolecular palladium-catalyzed direct arylations of 1,2,3-triazoles with inexpensive aryl *chlorides*. Both *N*-aryl- as well as *N*-alkyl-substituted 1,4-disubstituted 1,2,3-triazoles were converted with high catalytic efficacy to the fully substituted triazoles. Importantly, the catalyst proved broadly applicable, thus, tolerating a variety of important functional groups. Also more challenging electron-rich aryl chlorides were converted efficiently, and an intramolecular direct arylation allowed for the preparation of an annulated triazole. Hence, we have shown that generally applicable direct arylations of 1,2,3-triazoles with aryl chlorides do not require microwave heating and a re-

Scheme 6. Intramolecular palladium-catalyzed direct arylation.

action temperature of 250 °C, but can be achieved at significantly milder reaction temperatures of 105-120 °C.

Experimental Section

General Remarks

Catalytic reactions were carried out under an N₂ atmosphere using pre-dried glassware. Triazoles **1** were prepared in analogy to previously described methodologies.^[5,34-36] Additional starting materials were obtained from commercial sources, and were used without further purification. Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H NMR and GC. Flash chromatography: Macherey–Nagel silica gel 60 (70–230 mesh). NMR: spectra were recorded on Varian-NMR 300, 500 or 600 instruments in the solvent indicated; chemical shifts (δ) are given in ppm.

Representative Procedure for Palladium-Catalyzed Direct Arylations: Preparation of Triazole 3av (Table 3, entry 9).

A suspension of Pd(OAc)₂ (9.0 mg, 4.0 mol%), PCy₃ (22 mg, 8.0 mol%), K₂CO₃ (276 mg, 2.00 mmol), **1i** (215 mg, 1.00 mmol) and **2k** (325 mg, 1.50 mmol) in PhMe (2 mL) was stirred under N₂ for 22 h at 120 °C. Et₂O (75 mL) and H₂O (75 mL) were added to the cold reaction mixture. The separated aqueous phase was extracted with Et₂O (2× 75 mL). The combined organic layers were washed with aqueous NH₄Cl (50 mL), H₂O (50 mL) and brine (50 mL), dried over Na₂SO₄ and concentrated in vacuum. The remaining residue was purified by column chromatography on silica gel (*n*-hexane/EtOAc, 5:1) to afford **3av** as a colourless oil; yield: 382 mg (95%). ¹H NMR (300 MHz, CDCl₃): δ = 7.76–7.69 (m, 4H), 7.60–7.53 (m, 1H), 7.48–7.42 (m, 2H), 7.36–7.29 (m, 1H), 7.24–7.17 (m, 5H), 2.82 (t, *J*=8.0 Hz,

Scheme 5. Palladium-catalyzed direct arylation of mono-substituted triazole 1m.

Adv. Synth. Catal. 2008, 350, 741-748

2 H), 1.95 (s, 3 H), 1.77 (quint, J = 7.9 Hz, 2 H), 1.39 (tq, J = 7.5, 7.5 Hz, 2 H), 0.91 (t, J = 7.3 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 195.8$ (C_q), 145.8 (C_q), 137.4 (C_q), 137.0 (C_q), 135.8 (C_q), 135.0 (C_q), 133.9 (C_q), 132.7 (CH), 131.5 (C_q), 131.2 (CH), 130.3 (CH), 130.0 (CH), 129.9 (CH), 128.8 (CH), 128.4 (CH), 127.6 (CH), 126.8 (CH), 31.7 (CH₂), 25.1 (CH₂), 22.5 (CH₂), 17.6 (CH₃), 13.8 (CH₃); IR (NaCl): v = 2957, 2860, 1660, 1610, 1498, 1447, 1317, 1177, 996, 939, 924, 857, 766, 668 cm⁻¹; MS (EI): m/z (relative intensity) = 395 (3) [M⁺], 367 (65), 324 (100), 207 (31), 179 (8), 158 (8), 118 (9), 105 (29), 91 (15), 77 (12), 65 (8); HR-MS (ESI): m/z = 396.2072, calcd. for C₂₆H₂₆N₃O: 396.2070.

Acknowledgements

Support by the DFG, the Spanish Ministerio de Educación y Ciencia (fellowship to RV), the Fonds der Chemische Industrie, the Römer-foundation, and Sanofi-Aventis (Frankfurt) is most gratefully acknowledged.

References

- [1] R. Huisgen, Angew. Chem. 1963, 75, 604-637.
- [2] a) A. C. Tomé, Science of Synthesis Vol. 13, Thieme, Stuttgart, New York, 2004, pp. 415-601; b) T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, Wiley-VCH, Weinheim, 2003, and references cited therein.
- [3] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. 2002, 114, 2708–2711; Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
- [4] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064.
- [5] L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, *J. Am. Chem. Soc.* 2005, *127*, 15998–15999.
- [6] Selected recent reviews: a) H. Nandivada, X. Jiang, J. Lahann, Adv. Mater. 2007, 19, 2197–2208; b) Y. L. Angell, K. Burgess, Chem. Soc. Rev. 2007, 36, 1674–1689; c) D. Fournier, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1369–1380; d) J. E. Moses, A. D. Moorhouse, Chem. Soc. Rev. 2007, 36, 1249–1262; e) J.-F. Lutz, Angew. Chem. 2007, 119, 1036–1043; Angew. Chem. Int. Ed. 2007, 46, 1018–1025.
- [7] S. Diez-Gonzalez, S. P. Nolan, Synlett 2007, 2158–2167.
- [8] S. Diez-Gonzalez, A. Correa, L. Cavallo, S. P. Nolan, *Chem. Eur. J.* 2006, 12, 7558–7564.
- [9] M. M. Majireck, S. M. Weinreb, J. Org. Chem. 2006, 71, 8680–8683.
- [10] G. Dyker (Ed.), Handbook of C-H Transformations, Wiley-VCH, Weinheim, 2005.
- [11] K. Godula, D. Sames, Science 2006, 312, 67–72.
- [12] R. G. Bergman, Nature 2007, 446, 391–393.
- [13] a) L.-C. Campeau, D. R. Stuart, K. Fagnou, *Aldrichimica Acta* 2007, 40, 35–41; b) T. Satoh, M. Miura, *Top. Organomet. Chem.* 2007, 24, 61–84; c) D. D. Kalyani, A. R. Dick, W. Q. Anani, M. S. Sanford, *Tetrahedron*

2006, *62*, 11483–11498; d) O. Daugulis, V. G. Zaitsev, D. Shabashov, Q.-N. Pham, A. Lazareva, *Synlett* **2006**, 3382–3388; e) J.-Q. Yu, R. Giri, X. Chen, *Org. Biomol. Chem.* **2006**, *4*, 4041–4047, and references cited therein.

- [14] L. Ackermann, Top. Organomet. Chem. 2007, 24, 35– 60.
- [15] D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174–238, and references cited therein.
- [16] T. Satoh, M. Miura, Chem. Lett. 2007, 36, 200-205.
- [17] I. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193.
- [18] a) S. Chuprakov, N. Chernyak, A. S. Dudnik, V. Gevorgyan, Org. Lett. 2007, 9, 2333–2336; independently of our studies, a single example of direct arylation of *1methyl-1,2,4-triazole* with one aryl chloride was reported by Daugulis and co-workers: b) H. A. Chiong, O. Daugulis, Org. Lett. 2007, 9, 1449–1451.
- [19] A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114, 4350– 4386; Angew. Chem. Int. Ed. 2002, 41, 4176–4211.
- [20] R. B. Bedford, C. S. J. Cazin, D. Holder, *Coord. Chem. Rev.* 2004, 248, 2283–2321.
- [21] L. Ackermann, Org. Lett. 2005, 7, 3123–3125.
- [22] L. Ackermann, A. Althammer, Angew. Chem. 2007, 119, 1652–1654; Angew. Chem. Int. Ed. 2007, 46, 1627– 1629.
- [23] L. Ackermann, R. Born, P. Álvarez-Bercedo, Angew. Chem. 2007, 119, 6482–6485; Angew. Chem. Int. Ed. 2007, 46, 6364–6367.
- [24] L. Ackermann, A. Althammer, R. Born, Angew. Chem.
 2006, 118, 2681–2685; Angew. Chem. Int. Ed. 2006, 45, 2619–2622.
- [25] L. Ackermann, Synthesis 2006, 1557–1571.
- [26] L. Ackermann, Synlett 2007, 507–526.
- [27] This work was previously presented in part: R. Vicente, R. Born, L. Ackermann, *Heidelberg Forum of Molecular Catalysis*, 22.06.2007.
- [28] M. Iwasaki, H. Yorimitsu, K. Oshima, *Chem. Asian J.* 2007, 2, 1430–1435.
- [29] D. Garcia-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2006, 128, 1066–1067.
- [30] D. Garcia-Cuadrado, P. de Mendoza, A. A. C. Braga, F. Maseras, A. M. Echavarren, J. Am. Chem. Soc. 2007, 129, 6880–6886.
- [31] M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496–16497.
- [32] M. Miura, T. Satoh, in *Handbook of C-H Transformations*, (Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005, pp 223–229.
- [33] For a recent intramolecular direct alkenylation with an iodide as leaving group, see: W.-l. Chen, C.-l. Su, X. Huang, Synlett 2006, 1446–1448.
- [34] P. Appukkuttan, W. Dehaen, V. V. Fokin, E. Van der Eycken, Org. Lett. 2004, 6, 4223–4225.
- [35] K. Kacprzak, Synlett 2005, 943-946.
- [36] J. Andersen, S. Bolving, X. Liang, Synlett 2005, 2941– 2947.

748