Influence of β -Silyl Groups in Cycloalkanones on the Norrish Type I and Type II Cleavages

Jih Ru Hwu,*^{a,b} Buh-Luen Chen,^a Li Wen Huang^{a,c} and Tu-Hsin Yang^c

^a Organosilicon and Synthesis Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China

^b Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China ^c Department of Chemistry, National Chung-Hsing University, Taichung, Taiwan 40214, Republic of China

The Norrish type I cleavage overwhelms the type II cleavage in the photolysis of α -alkylcycloalkanones bearing an SiMe₃, SiMe₂Ph, SiMePh₂, or SiPh₃ group at the β position, of which the quantum yields are often greater than those of the non-silylated cycloalkanones.

The Norrish type I cleavage provides a valuable tool in organic synthesis¹ and a photochemical pathway to degrade carbonyl compounds.² The Norrish type II cleavage usually prevails over the type I cleavage during the photolysis of cycloalkanones bearing a γ hydrogen on an α side chain. Examples include the photolysis of α -alkylcyclohexanones **1–3**,³ from which the ratios of products are 0.3–1. for type I/type II. To intensify the type I cleavage and ultimately to force it to be the major pathway, we searched for a special moiety that can stabilize the radical intermediate generated in the type I process.

Use of a β -SiMe₃ group to direct the Norrish type I cleavage of cycloalkanones was first reported in early 1990.⁴ This new reaction was soon applied in organic synthesis.^{5–8} Herein we report our new findings that various organosilyl groups can promote Norrish type I cleavage to occur as the major pathway in cycloalkanones bearing a γ hydrogen on an α side chain.

α-Alkyl-β-(trimethylsilyl)cyclohexanones **4a–6a** (*cf.* the corresponding non-silylated cycloalkanones **1–3**³) possess a primary, secondary, and tertiary γ hydrogen, respectively. We irradiated these cycloalkanones in anhydrous methanol containing 1.3 equiv. of NaHCO₃ with UV light ($\lambda > 3000$ Å). Distribution of the type I products, including aldehydes **4b–6b** and esters **4c–6c**, and the type II product **16** is summarized in Scheme 1 and Table 1 (entries 4–6). In all of these reactions, the major products came from type I cleavage (type I/type II = 2.1–4.9). We also found that the quantum yields⁹ for β-silylated cycloalkanones were always greater than those of the corresponding non-silylated cycloalkanones (see Table 1). We then

attached various silyl groups, including SiMe₂Ph, SiMePh₂, and SiPh₃, onto α -alkylcycloalkanones. The major products obtained by irradiation of those silylcycloalkanones **7a–15a** came from type I cleavage (Table 1).

Our results indicate that organosilyl groups presented a different influence on the product distribution from type I and type II cleavages. All of the four groups, SiMe₃, SiMe₂Ph, SiMePh₂ and SiPh₃, at the β position in α -alkylcycloalkanones were able to force type I cleavage to be the major photolytic pathway regardless of the γ hydrogen on the α side chain being primary, secondary, or tertiary (Table 1, third column, entries 4–15). The highest ratio for type I/type II was 9.7, which was obtained by use of the SiMePh₂ group (entry 11). In comparison with the ratio of 0.5 in the photolysis of the corresponding non-silylated cyclohexanone **2** (entry 2), the influence from the SiMePh₂ group was ≈ 20 fold.

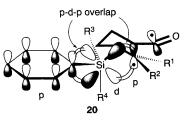

We found that the quantum yields for cyclohexanones bearing a β -SiMe₃, -SiMe₂Ph, or -SiMePh₂ group were 1.3–8.9 times higher than those of the non-silylated cycloalkanones (Table 1, entries 4–12). Among those silyl groups, SiMe₂Ph showed the most remarkable effect (entry 8). Our results in Table 1 revealed that, in comparison with the SiMe₃ group, a silicon atom attached with a phenyl group often exhibited greater influence on quantum yields of Norrish type cleavages.

Table 1 Comparison of the product distributions and quantum yields (Φ) in the photolysis of β -silylated and non-silylated cyclohexanones through the Norrish type I and type II cleavages

$\left(\right)$	R ¹ _(<i>h</i> ν λ > 3000 Å) NaHCO ₃ MeOH	СНС	C, R ¹ + R ²		Me -R ¹ + R ²	o	R ²
1	R ¹ Bu ^t	R ² H		•				
2	Pr ⁿ	н			oducts 6 yield)	Type II products (isolated % vield)		
3	Bu ⁱ	н	(1001)	alou /	o yiola)	(10010		, (0, 0)
4a	Bu ^t	SiMe ₃	4b	(10)	4c	(62)	16	(23)
5 a	Pr ⁿ	SiMe ₃	5b	(30)	5c	(50)	16	(17)
6a	Bu ⁱ	SiMe ₃	6b	(30)	6c	(32)	16	(29)
7a	But	SiMe ₂ Ph	7b	(5)	7c	(49)	17	(15)
8a	Pr ⁿ	SiMe ₂ Ph	8b	(20)	8c	(39)	17	(13)
9a	Bu ⁱ	SiMe ₂ Ph	9b	(18)	9c	(29)	17	(29)
10a	Bu ^t	SiMePh ₂	1 0 b	(9)	1 0 c	(47)	18	(26)
11a	Pr ⁿ	SiMePh ₂	11b	(18)	11c	(50)	18	(7)
12a	Bu ⁱ	SiMePh ₂	12b	(19)	12c	(34)	18	(25)
13a	But	SiPh ₃	13b	(0)	13c	(70)	19	(20)
14a	Pr ⁿ	SiPh ₃	14b	(0)	14c	(55)	19	(16)
15a	Bu ⁱ	SiPh ₃	15b	(8)	15 c	(22)	19	(27)

Scheme 1 Photolysis of β -silylcyclohexanones to give a mixture of products from the Norrish type I and type II processes

Entry	Cycloalkanone	Product ratio Type I/Type II	Quantum yield (Φ)	$\Phi_{ m Si}/\Phi_{ m parent}$
1	1	1.0	0.120	_
2	2	0.5	0.082	_
3	3	0.3	0.070	_
4	4a	3.1	0.151	1.3
5	5a	4.9	0.124	1.5
6	6a	2.1	0.106	1.5
7	7a	3.6	0.464	3.9
8	8a	4.5	0.728	8.9
9	9a	1.6	0.390	5.6
10	10a	2.2	0.258	2.2
11	11a	9.7	0.246	3.0
12	12a	2.1	0.118	1.7
13	13a	3.6	0.041	0.34
14	14a	3.7	0.068	0.83
15	15a	1.1	0.165	2.4

A silvl group can stabilize a β -carboradical through ' σ - π hyperconjugation'¹⁰⁻¹³ or 'p-d homoconjugation'^{14,15} or both. We believe that the p orbitals in the phenyl group could enhance 'p-d homoconjugation' resulting from the silicon atom by offering 'p-d-p homoconjugation' to stabilize the β - carboradical. Structure **20** depicts the 'p-d-p' orbital overlap among a phenyl ring, a silicon atom, and a carboradical.

This work was supported by the National Science Council of Republic of China (Grant NSC 84-2113-M007-004) and Academia Sinica.

Received, 8th November 1994; Com. 4/06808D

References

- 1 W. M. Horspool, Specialist Periodical Report, Photochemistry, eds. D. Bryce-Smith and A. Gilbert, RSC, London, 1988-91, vols. 19-23; W. M. Horspool Specialist Periodical Report, Photochemistry, ed. D. Bryce-Smith, RSC, London, 1970-1987, vols. 1-18; R. F. Newton, Photochemistry in Organic Synthesis, ed. J. D. Coyle, RSC, London, 1986, ch. 3, p. 39.
- 2 W. M. Horspool and D. Armesto, Organic Photochemistry: A Comprehensive Treatment, Ellis Horwood, London, 1992, ch. 3, p. 142; Introduction to Organic Photochemistry, ed. J. D. Coyle, Wiley, New York, 1986, ch. 4, p. 106; D. S. Weiss, Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1981, vol. 5, p. 347; W. G. Dauben,

J. CHEM. SOC., CHEM. COMMUN., 1995

L. Salem and N. J. Turro, Acc. Chem. Res., 1975, 8, 41; O. L. Chapman and D. S. Weiss, Organic Photochemistry, ed. O. L. Chapman, Marcel Dekker, New York, 1973, vol. 3, p. 197; N. J. Turro, J. C. Dalton, K. Dawes, G. Farrington, R. Hautala, D. Morton, M. Niemczyk and N.

- Schore, Acc. Chem. Res., 1972, 5, 92.
 J. C. Dalton, K. Dawes, N. J. Turro, D. S. Weiss, J. A. Barltrop and J. D. Coyle, J. Am. Chem. Soc., 1971, 93, 7213.
- 4 J. R. Hwu, B. A. Gilbert, L. C. Lin and B. R. Liaw, J. Chem. Soc., Chem. Commun., 1990, 161.
- 5 L. F. Tietze and J. R. Wünsch, Synthesis, 1990, 985.
- 6 T. K. Sarkar, Synthesis, 1990, 1101.
 7 J. R. Hwu and B. A. Gilbert, J. Am. Chem. Soc., 1991, 113, 5917.
- 8 L. F. Tietze and U. Beifuss, Angew. Chem., Int. Ed. Engl., 1993, 32,
- 131. 9 By use of the method developed by P. J. Wagner and R. W. Spoerke, J. Am. Chem. Soc., 1969, 91, 4437.
- 10 A. R. Bassindale and P. G. Taylor, The Chemistry of Organic Silicon Compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1989, ch. 14, p. 893.
- 11 E. W. Colvin, Silicon in Organic Synthesis, Butterworth, London, 1981, ch. 3, p. 15.
- 12 A. Pross, L. Radom and N. V. Riggs, J. Am. Chem. Soc., 1980, 102, 2253
- 13 A. R. Lyons and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 2, 1972, 68, 622.
- 14 D. Griller and K. U. Ingold, J. Am. Chem. Soc., 1974, 96, 6715.
- 15 P. J. Krusic and J. K. Kochi, J. Am. Chem. Soc., 1971, 93, 846.