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Abstract The concepts of complex locally uniform rotundity and complex locally uniformly rotund 
point are introduced. The sufficient and necessary conditions of them are given in complex Musielak- 
Orlicz spaces. 
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In recent years many have devoted to the geometric theory of complex 
Banach spaces, because its applications in harmonic analysis, operator theory, Banach algebra, 
C * algebra, differential equation, quantum mechanics, liquid mechanics and so on are irre- 
placeable by the geometric theory of real Banach spaces. For a comprehensive description one 
may refer to ref. [ 11 . In 1994 Thorp and Whielely introduced the concept of complex extreme 
point. In 1975 ~lobevnic '~ '  introduced the concepts of complex strict rotundity and complex uni- 
form rotundity. 

Let [ X  , 1 1  . 1 1  1 be a complex Banach space. A point x E S ( X )  is called a complex ex- 
tremepointof B ( x )  i f y E X ,  1 1  x + h y I I  < l ( l ~ < l I )  imply y = O .  IfeverypointinS(X) 
is a complex extreme point of B  ( X) , then X is said to be complex strict rotund. Furthermore, 
if for any E > 0 ,  there exists 6 > 0 such that 

x , y E  x ,  11 yII > E ,  1 1  X +  AyII s 1 ( 1  1 Is l ) j I I  xII s 1 -  6 ,  
then X is said to be a complex uniformly rotund space. Clearly, we can get the equivalent de- 
scriptions of complex extreme point and complex uniform rotundity as follows : A point x E S ( X) 
is called a complex extreme point provided that rnax 11 x + Ay 11 > 1 for any 0 + y € X ; X is 

I A l = l  

complex uniformly rotund provided that for any E > 0 ,  there exists 6 > 0 such that rnax 11 x + Ay 
1 A 1 = 1  

1 1  3 1 + 6 for all x ,  y € X satisfying 1 )  x  1 )  = 1 and 11 y 11 > E: . 
By such descriptions it is natural to introduce the concepts of complex locally uniformly ro- 

tund point and complex locally uniform rotundity. 
Definition 1.  A point x E S ( X )  is called a complex locally uniformly rotund point of B  

( X )  provided that for any E > 0 ,  there exists 6 = 6 ( x , ~ )  >O such that max 11 x + ,Iy 11 3 1  + 
I A I  = 1 

6 for any y € X satisfying 11 y 11 > E: . 
Definition 2. X is called a complex locally uniformly rotund space provided that every 

point in S ( X) is a complex locally uniformly rotund point of B  ( X) . 
Wu and ~ u n [ ~ - ~ I  have discussed complex extreme point, complex strict rotundity and com- 
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plex uniform rotundity of vector-valued Musielak-Orlicz function space LM ( X )  and found the suf- 
ficient and necessary conditions of them. In this paper, we will give the sufficient and necessary 
conditions of complex locally uniformly rotund point and complex locally uniform rotundity in LM 
( X ) .  

Let ( T , 2 , ,u ) be a finite nonatomic measurable space. Suppose that a function M  ( t  , u  ) : 
T x [ O  , a, )+[0,  GO ] satisfies 

( * ) for ,u-a.e, t E  T , M ( t , O )  =O; l i m M ( t , u )  = oo a n d o <  M ( t , u f )  < for some 
u- m 

u' > 0 ;  
( * *  ) for ,u-a.e. t E  T ,  ~ ( t , u )  is convex on [ o , w )  with respect to u ;  
( * * * )  foreach u € [ o , ~ , ) ,  M ( t , u )  isa2-measurablefunctionof t  on T. 
Moreover for a given complex Banach spaces ( X ,  1 1  1 )  ) , we denote by XT the set of all 

strongly 2-measurable functions from T  to X , and for each x  € XT , define the modular of x  by 

, oM(x)  = M ( t ,  I (  x ( t )  I (  ) d l .  The linear set LM = { x E X T : , o M ( ~ x )  < 00 for some A >01 
T 

endowed with norm 

is a complex Banach space. We call it vector-valued Musielak-Orlicz space and denote it by LM 
( X I .  For x €  L M ( X ) ,  write F M ( x )  = inf( c > 0 :  , o M ( x / c )  < 1.  It is proved that & ( x )  = 
lim 1 1  X I ;  1 1  u, where T.= / t E  T: 1 1  x ( t )  1 1  > n l .  .- m 

Write e ( t )  =sup lu>O:  M ( t , u )  = 0 1 ,  E ( t )  =sup{u>O:  M ( t , u )  < 00 1 .  
It is true that e (  t )  and E ( t )  are 2-measurable with respect to t (see Proposition 5.1 in 

ref. [ 6 ] ) .  
M  ( t  , u  ) is said to satisfy the A-condition on To ( M  E A( T o )  ) if there exist k  2 1 and a 

nonnegative measurable function 6 ( t  ) such that M  ( t  , G ( t  ) ) d t  < a, and M  ( t  , 2  u  ) < kM 

( t , ~ )  ( t E T o a . e . ;  u a & ( t ) ) .  From M E A ( T o ) ,  it is easy to verify that for any h > 0 ,  
there exists a nonnegative measurable integrable function aO( t ) on To, and k > 0 ,  such that 

M ( t , h u )  < k ~ ( t , u )  + a O ( t ) ,  t € Toa.e .  

If M E A ( T ) ,  we write M E A .  
Lemma 1. Let X be a complex Banach space. If 

x , y € X a n d  I \ x +  ylI + I l x -  yll + I l x + i y I I  + I I x - i y l I  

thenmax x + - y  ~ ( 1 + 1 3 . / 1 6 )  1 1  x  1 1  . 
1 A 1 + 1  R X 
Proof. Pick f € X *  such that 1 1  f 1 1  x* = 1 ,  f ( x ) =  1 1  x  1 1  . Since 

4  1 1  x  1 1  = 4 f ( x )  = 4 R e f ( x )  = R e f ( 4 x )  = x ~ e f ( x  + k y )  s l f ( x  + k y )  l 
k k 

rx 1 1  x  + kyll 4 4 ( 1  + 6 )  1 1  x  1 1  , 
k 

we have 
I I x + k y l I  - l f ( x + k Y ) l < 4 6 1 1 x I I ;  I f ( x + k y ) l - R e f ( x + k y ) < 4 6 1 1 x I l ,  

k = 1 ,  A i. 
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1 1 
Observing that 11 1 1  1 k 1 = 11 x +  ky 11 s ( I +  6 )  11 x 11 , w e c m d e -  

k k 

duce 
Ref(% + ky) s Ref(x)  + I  f ( y )  I < 11 x 11 + 11 y 11 s ( 2  + 6 )  11 x 11 < 3 1 1  x 11 . 

Combining this with Imf ( x )  = 0, we can obtain 
1 

Imkf(x> =Imf(x  + ky) < ( I  f ( x  + ky) l 2  - ~ e ~ f ( x  + ky))9 

< ( (Re f (% + ky) + 4 6  1 1  x 1 1  I2 - ~ e ~ f ( x  + ky))f 
1 

= ( 8 6  11 x 11 Ref(x + ky) + 16a2 1 1  x 1 1  2 )2  

6 (246  1 1  x 1 1  + 166' 1 1  x 1 1  ')f s 1 1  x 1 1  . 
Taking k = + 1 , + i , respectively, we obtain 

I Imf(y> 16 m l l  x 11 ,  I Ref (y)  I S  m11 x11.  
It follows that I f (  y )  I < 1 1  x 1 1  . 

Furthermore we have 
I I x + k y I I  s 1 f ( x + k y ) 1 + 4 6 1 1 x l I  s 1 f ( x ) 1 + 1 f ( ~ ) 1 + 4 6 1 l x I I  

s I I x I I  + 9 d 8 1 1 x I I  + 4 6 1 1 x I l  g ( 1 + 1 3 d 8 ) 1 1 x I I ,  k = * l , * i .  
For I A I G 1 , we may only consider the case of ReA 0, ImA 3 0. Then 

Lemma 2 .  If M E  A ,  then 1 1  x, 11 M+lepM( x n ) + l .  
Proof. If there exists E > 0 such that 1 1  x, 1 1  M s 1 - E , then we have p ~ (  x,) < 1 1  x, 

I I  M G ~  - E .  

If ,OM(%,) < 1 - E and 1 1  x, 1 1  M + l ,  combining this with suppM(2xn) < 00 , we obtain a 

contradiction 

If 1 1  x, 1 1  2 1  + E ,  then we have p M ( x n ) >  1 1  xn 1 1  M a l  + E .  

If ,oM ( X, ) 3 1 + E and 1 1  x, I (  , combining this with 

obtain a contradiction 

(Wehave knownthat theconditions M E A  and e ( t )  = O  ( a . e . )  imply p M ( x n ) + l e  11 x, 11 M 
-1 in Proposition 5 .13  of ref. [6]  . This lemma shows that the condition e ( t ) = 0 ( a .  e . ) is 
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not necessary. ) 
Theorem 1 . A point x E S ( LM ( X ) ) is a complex locally uniformly rotund point if and 

only if 

( i )  I1 x ( t )  (I = ~ ( t )  ( a . e . )  o r p M ( x )  = I ;  
(ii) II x ( t )  II > e ( t )  ( a . e . 1 ;  
(iii) for any e > 0 ,  D > 0 ,  there exist 6 > 0 such that 

(iu) 1f ~ E ( 0 , 1 ) ,  ~~c T,  I ~ ( t ,  I' X ( t )  l i  ) d t  < W ,  then M E A ( T 0 ) .  
1 - s  

Proof. Necessity 
I f ( i )  isnottrue,  t h e n p M ( x ) < l  a n d , u ( t E T :  11 x ( t )  11 < ~ ( t ) 1  >O. Take b > O  

such that To= { ~ E T :  11 x ( t )  11 + b <  E ( t ) t  isapositivemeasurableset and 

Take B E S ( X ) ,  andlet y ( t ) =  MITo .  Then y#O. But for any A , l A l g l ,  p ~ ( x + A y ) <  

1 ,  which contradicts the fact that x is a complex extreme point. 
I f ( i i )  isnottrue, t h e n p I t E T :  1 )  x ( t )  1 1  < e ( t ) \ > O .  Take b>Osuchthat  T b =  ( t  

E T :  11 x ( t )  11 + b < e ( t ) i  is apositivelymeasurable set. Take 8 E S ( X )  andlet y ( t )  = 
MITb.  Then y#O. But forany hsatisfying I h I < l ,  we have 

pM(x+ Ay) < p u ( x  I r \ T b )  + II x ( t )  II + b)d t  = ~ M ( x  I T \ r b )  < 1. 

Hence 11 x + Ay 11 6 1 ( 1 A I < 1 ) , which contradicts the fact that x is a complex extreme 
point. 

If (iii) is not true, then there exist E > 0 ,  D > 0 ,  for any n , there exists yn E LM ( X )  

E 
If 1 I 1 1  " 7 ,  by Lemma 1 ,  for t E A n ,  we have 

Furthermore, we have 



No. 2 COMPLEX LOCALLY UNIFORM ROTUNDITY OF MUSIELAK-ORLICZ SPACES 117 

E 
This shows 11 x + $ yn l 1 4 1 + 1 3  ,&I. But 1 / I/ p x, which contradicts the fact 

2 A. ,,, 
that x is a complex locally unformly rotund point. 

E E 
Jf IIynla I I M > - ,  lettingrn=ynllwehave \ I zn l lM>-- .  ButforanyA satisfying 1A1<1 3 3 

p ~ ( x  + Az,) = M ( t ,  11 x ( t )  11 ) d t  + 11 x ( t )  + Ayn(t)  11 )d t  
T \ B" 

D 
furthermore, we have 11 x + Azn 11 r < 1 + --pT+l ( n+ w ) , which contradicts the fact that x 

is a complex locally uniformly rotund point. 

If (iv) is not true, then there are s E  ( 0 , l )  and T ~ C  T such t h a t l T o ~ ( t ,  I '  '(') I '  ) d t  
1 - s  

< and M e  A on To.  By Theorem 5.5 in ref. [ 6 ] ,  we can construct y = y l T o €  L M ( X )  
satisfying pM ( y ) < 1 and EM ( Y )  = 1 . Let 

y n ( t )  = {:(I)' t~ T, = I ~ E  TO: 1 1 y ( t ) 1 1  > n t ,  
otherwise. 

Obviously ,uTn-+O, since 

P M ( ~  + Ayn) G PM(X) + M ( t ,  I I  x ( t )  + Ayn(t)  11 ) d t  

- 1. 
But 1 1  y, 1 1  M 2 s / I  y l 1 1  M a  sfM( y )  = s , which contradicts the fact that x is a complex lo- 

cally uniformly rotund point. 
Sufficiency. We shall consider the following two cases : 

I .  Il x ( t )  l l  = ~ ( t )  a . e .  
€ 11 < - for any Forany € > O r  bycondition ( i i i ) ,  thereexists 6>Osuch tha t  l ly /A(x,y ,b)  

y E L M ( X ) .  Then for ( 1  y ( 1  ~ p o ,  we have I y I T \ l ( x , y , d ) l l M > $ ~ .  For t E  T \ A ( x r y r  

a ) ,  we have 
1 C l l  ~ ( $ 1  + ky( t )  l l  > I t I = E ( t ) . a . e .  4(1 + 8 )  

Combining this with p ( T  \ A ( X , ~ , ~ ) )  > 0 ,  we have 
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Hence, m a x p ~  (*) = w .  Thisshowsmax/1 x +  ky / I  M r l + 6 .  
k 

11. p M ( x >  = 1 .  
If x  is not a complex locally uniformly rotund point, then there exist E > 0, y, E L t  ( X) 

and 11 y, I /  , > E such that 

By condition (iii) , there exists 6 E  (0,1/2)  such that for any y E L%( X) , I I  y I A ( % , ~ , G )  I I  M 
< E /3 , where 

L e t A n = { x , y n , 6 / ,  B , = T \ A , .  Then IIy,IB I I M > 2 e / 3  ( n = 1 , 2 , . . . ) .  

We shall consider the following two cases: 

For large n satisfying > 1 + 6 ,  the above inequality is true. Letting n+ w , we have 1 
1 + l / n  

2 6 
= p ~ ( x ) < 1 - 1 + 2 ~  a , a contradiction. 

By passing to a subsequence, we may assume M ( t  , ( l  + 6 )  I I  ~ ( t )  I I  ) d t  < m .  

Let B = B , .   hen we haveJ M ( t  , ( 1  + 6 )  11 ~ ( t )  11 ) d t  < w . By condition ( i v ) ,  we have 
".I B 
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M € A ( B )  . Then for 6 / e  , there exist > 0 and a measurable nonnegative function aO( t ) , 
JP , ( t )d t  < m such that 

M ( t ,  6 ~ 1 ~ )  6 D M ( ~ , u )  + a O ( t ) ,  t E B .  
1 

Take ? > o  S U C ~  t ha t j ao ( t )d t  c -when e~ B ,  ,ue < 7. For this 7 ,  take D >O such 
2 

that ,&ET: M ( t , l ) >  D I  < 7/3. By condition ( i i i ) ,  we cantake 6 ' > O s u c h  that for any 
Y E  LM(X) 11 ~1 C ( ~ , ~ , Y )  11 M < €13,  where 

C ( x , y , G t )  = i t  € T: 11 x ( t )  11 = 0, M ( t , l )  g D ,  11 y ( t )  11 c 6'1. 
Let H n =  Bn \ C ( x , y n , 6 ' ) .  Then /I y n l K  11 w > ~ / 3  ( n = 1 , 2 , . . . ) .  

(11-2- 1 )  pHn < 7 ( n  = 1,2, . . . ) .  

Since 11 $, l Ha 1 5 1 and Hn c B, c B , we have 
Y 

3 3 
1 S P M ( ~ Y I Z  I H , , )  = J H M ( t 9  T 11 ~ i ( t )  11 ) d l  4 1 ~ ( t ,  7 

+ H" 

1 
~ h e n j ~ , ~ ( t ,  I' Y"") 'I ) d t  2 E. With the same method as in the proof of (11-1), we have 

1 + l / n  

Letting n+ 00 , we have 1 1 - 6 
( + 

) D , a contradiction. 

( II -2-2)  pHn 3 7 ( n  = 1,2,...) . 
Since e ( t ) > O * M ( t , ( l +  6 ) e ( t ) )  >O;  e ( t )  = O * M ( t , 6 ' , / 2 )  > 0 ,  there exists b > O  
such that , u { t E ~ : e ( t ) > ~ a n d  M ( t , ( l + a ) e ( t ) ) <  b o r e ( t ) = O  and M ( t , 6 ' / 2 ) <  bt  
< 7/3. Combining this with ,u 1 t € T : M ( t , I  ) > D 1 < 7/3, we obtain ,dln 3 7/3, where 

an = I t  € H,: M ( t , l )  6 D ,  e ( t )  > O * M ( t , ( l  + 6 ) e ( t ) )  5 b ,  

e ( t )  = O*M(t ,a1 /2)  3 b } .  
When t E G n  and e ( t )  > o ,  we have 

1 C II ~ ( 1 )  + kyn(t) I I )  3 M ( t , ( l  + 6) II ~ ( t )  II M ( ~  ' 4 (1  + l / n )  

a M ( t , ( l  + 6 ) e ( t ) )  3 b ;  
when t e a n a n d  e ( t )  = o ,  we have 
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So we always have 
1 11 ~ ( t )  + kyn( t )  11 ) d t  3 $. Then SOM( ' 4 (  1 + l / n )  

Letting n+ 00 , we have 1 < 1 - 266rl a contradiction. 
3 ( 1 + 2 8 ) '  

Theorem 2. L~ ( x ) is complex locally uniformly rotund if and only if 
( i )  M E A k ;  (ii) e ( t )  = O ( a . e . ) ;  (iii) for x E S ( L M ( X ) )  and any E > 0 ,  there ex- 

€ I c- for any y €  L ~ ( X ) ,  where ists 6 >Ot such that ~ I Y  l * ( r . y , d )  M. 3 

Proof. Necessity. 
If ( i )  isnottrue, itisclearthatthereexists x E S ( L M ( X ) ) ,  11 x ( t )  I( < E ( t )  ( a . e . )  

and pM( X )  < 1. By condition i )  in Theorem 1 ,  x is not a complex locally uniformly rotund 
point. 

If (ii) is not true, then To = ( t € T : e ( t ) > 0 1 is a positively measurable set. Take b > 

T h e n P M ( x ) = l .  Hence 11 x [I M = l .  But , u ( t E ~ :  ( 1  x ( t )  11 < e ( t ) i 3 , u ~ ~ > O ,  which 
shows that x is not a complex locally uniformly rotund point by condition (ii) of Theorem 1. 

If ( iii) is not true, by the conditon ( iii) in Theorem 1 , x is not a complex locally uniformly 
rotund point. 

Sufficiency. Given x E LM(X) , for any y € LM( X )  satisfying 11 y 11 M 3 E , we write A = 

{ t  E T: 11 x ( t )  + k y ( t )  11 < 4(1 + 6) /I x ( r )  11 1, where 6 > O  is defined by condi- 
t 

2E 
tion(iii).  Then 11 y l T \ A I I  M>-. B y ( i ) ,  ( i i )  ofTheorem2andProposition5.13inref.  3 

2 e 
[61, 11 y l r \ r  11 M > Y  implies ~ M ( ~ I T \ A ) L E '  ( E '  only depends on E ) .  Then 

such that max 11 x + ky 11 M 3 1  + r .  

Remark. Comparing this Theorem with Theorems 5 .19 and 5 .20 in ref. [ 6 1 , we know 
that complex uniform rotundity is essentially stronger than complex locally uniform rotundity and 
the latter is essentially stronger than complex strict rotundity. In addition to conditons ( i )  and 
(ii) in Theorem 2 ,  the complex strict rotundity and complex uniform rotundity of X are added to 
the criteria of complex strict rotundity and complex uniform rotundity of LM ( X) respectively. So 
people guess that the third condition of complex locally uniform rotundity of LM(X)  is the com- 
plex locally uniform rotundity of X. But it is not true. The sense of condition (iii) in Theorem 2 
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is that, roughly speaking, for every x E S ( L~ ( X ) ) , the set x ( t ) : t € T \ To } is complex 
uniformly rotund in X , where To is a set with arbitrarily small measure. 
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