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A Sc(OTf )3-catalyzed activation of a single CF bond in a
CF3 group is described. This reaction has two interesting
features: (1) the synthesis of difluoromethylene compounds
through Lewis acid-catalyzed activation of a single CF bond in
a CF3 group, and (2) the selective formation of a seven-
membered ring over a five-membered ring.
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Recently, many organic chemists have shifted their attention
to organic fluorine compounds. The main reason for this trend is
the important effects fluorine has on pharmaceuticals, that is, the
introduction of a fluorine atom to organic molecules signifi-
cantly enhances their biological activities compared to a non-
fluorine molecule.1 Among the known organic fluorine mole-
cules, those with a difluoromethylene unit have attracted much
attention due to their prominent biological activities, such as
Tafluprost, Gemcitabine, and Docetaxel analog.2

To access the target structure, the mono functionalization of
a CF bond35 in a CF3 group would be a reliable choice because
of the high accessibility of compounds with the CF3 group. Most
of the successful methods reported so far have relied on the
cleavage of a CF bond with the aid of an adjacent activating
group, such as a carbonyl group6 or a vinyl group.7 Reports of
the single CF bond functionalization of a simple CF3 group,
particularly an aromatic CF3 group, are scarce.8 This is difficult
to achieve because the CF bond dissociation energy gradually
decreases as the number of fluorine atoms decreases, that is, the
activation of a CF bond in a CF2 group is easier than that in
a CF3 group. Leckta and co-workers, in a pioneering work in
1997,9 accomplished the synthesis of a fluorine containing
difluoromethylene unit through an intramolecular fluorine trans-
fer from a CF3 group to a vinyl cation generated from a
diazonium salt. However, the chemical yield was quite low
(20%). After almost 20 years, four research groups independ-
ently reported effective methods. The key reaction in three of the
four groups was a single-electron transfer by a transition metal
(Pd-Cu catalysis by the Lalic group)10 and a photoredox catalyst
( fac-Ir(ppy)3 by Gschwind and König groups,11a and N-phenyl-
phenothiazine by the Jui group) (Scheme 1).11b A Lewis acid
version was developed by the Yoshida and Hosoya group, in
which installation of an ortho-silyl group relative to a CF3 group
was essential.12 The achievement of a simple Lewis acid-
catalyzed single CF bond activation is not a trivial issue, and the
development of a novel and simple method is strongly desired.

Recently, our group has been interested in the hydride shift
triggered C(sp3)H bond functionalization, namely, internal
redox reaction (Scheme 2).13 In the course of development of
new transformations by way of group transfer instead of hydride

shift,13l we examined fluorine group transfer. Instead of
achieving the desired reaction, we found a Lewis acid-catalyzed
activation of a single CF bond in an aromatic CF3 group
starting from 1,3-dimethyl barbituric acid 1 having an ortho-CF3
benzyl group at 5-position. This reaction has two interesting
features: (1) the synthesis of difluoromethylene compounds
through Lewis acid-catalyzed activation of a single CF bond
in a CF3 group, and (2) the selective formation of a seven-
membered ring over a five-membered ring. We report herein the
details of this unique reaction.

Table 1 summarizes the results of screening for the reaction
conditions. When 1a was treated with 30mol% of Yb(OTf )3 in
refluxing ClCH2CH2Cl, the reaction did not proceed, and 1a was
completely recovered (Entry 1). Both Gd(OTf )3 and La(OTf )3
were also ineffective (Entries 2 and 3). Gratifyingly, Hf(OTf )4
exhibited excellent catalytic performance, and CF bond activa-
tion followed by hydrolysis occurred to give indanone derivative
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Scheme 1. Strategies for activation of single CF bond in an
aromatic CF3 group.

Our previous work (Lewis-acid catalyzed C–H bond functionalization)

This work

Benzene

Sc(OTf)3

F F

F

NN

O

O

O

O
F F

N

N
O

O N
N

O

O

O
O

+

30 mol%

[1,5]-H shiftX

EWG

H

X

EWG

R1

EWG EWG

Acid catalyst

6-endo-
cyclization X R1

EWG
EWG

EWG = CN, CO2R, etc.

H
or
Δ

X = NR2, O.

R1

H

5

1 2 3

7 5

major minor

R R R

Scheme 2. Formation of difluoromethylene-containing seven-
membered ring by single CF bond activation.
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3a in good chemical yield (66%, Entry 4). Sc(OTf )3 also
showed high catalytic ability, but a slightly different result was
observed. Not only indanone 3a (five-membered ring), but also
seven-membered ring adduct 2a with a difluoromethylene unit
was obtained, and the latter one was the major product (3a: 20%,
2a: 42%, respectively, Entry 5). The structures of 2a and 3a
were determined by X-ray analysis.14 As described above,
careful substrate design and special setting of the reaction
conditions were required to activate a single CF bond in an
aromatic CF3 group.1012 The present reaction realized this
difficult transformation without special precautions. Another
interesting feature of this reaction was the selective formation of
a seven-membered (middle-sized) ring over a five-membered
ring. To improve this abnormal product selectivity (2a/3a),
further screening for the reaction conditions was conducted.
Examination of the acid catalysts suggested that Sc(OTf )3 was
the catalyst of choice. Some strong Lewis acids, such as TiCl4,
BF3¢OEt2, B(C6F5)3, and Brønsted acid (TfOH), did not promote
the reaction at all (Entries 610). Then, solvent screening was
conducted with Sc(OTf )3 as the optimal catalyst, and it was
revealed that the choice of solvent had a significant effect on
the selectivity of the two products (2a/3a). Selectivity was
improved in benzene, and seven-membered ring 2a was obtained
in 45% yield (Entry 11). In sharp contrast, indanone 3a was
furnished exclusively in the case of toluene and C6H5CF3 (35%
and 24%, respectively, Entries 12 and 13). Polar solvents, such
as CH3CN, THF, and pyridine, completely inhibited the reaction,
and 1a was recovered (Entries 1416).

The employment of 1,3-dimethyl barbituric acid was
indispensable to achieve the reaction (CF bond activation)
(Figure 1). Various 1,3-dicarbonyl moieties, such as dimethyl
malonate, piperidine-2-6-dione, and pyrolidine-2-5-dione, and
carboxylic acid and amide moiety resulted in the recovery of the
starting materials.

The substrate scope of this seven-membered ring formation
is illustrated in Figure 2. The selective formation of seven-
membered rings was observed when substrates 1bd with
methyl and fluorine groups on the aromatic ring were used, and
corresponding difluoromethylene compounds 2bd were ob-
tained in moderate chemical yields (3447%). The construction
of a tetracyclic adduct was also attainable from a naphthyl-type
substrate (2e: 36%).

To obtain some insights into the reaction mechanism,
additional experiments were conducted (Figure 3). Exposure of
seven-membered ring adduct 2a to the optimized reaction
conditions resulted in the formation of indanone 3a (60%). This
suggests that seven-membered ring adduct 2a was the kinetic
product. Although the strengths of each peak were quite weak
due to the low solubility of Sc(OTf )3, two new peaks with 1:2
ratio were observed in the 19FNMR spectrum by mixing 1a and

Table 1. Examination of reaction conditions.a
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1 Yb(OTf )3 ClCH2CH2Cl 0 0 98
2 Gd(OTf )3 ClCH2CH2Cl 0 0 98
3 La(OTf )3 ClCH2CH2Cl 0 0 94
4 Hf(OTf )4 ClCH2CH2Cl 0 66 0
5 Sc(OTf )3 ClCH2CH2Cl 42 20 0
6 TiCl4 ClCH2CH2Cl 7 7 52
7 SnCl4 ClCH2CH2Cl 0 0 98
8 BF3¢OEt2 ClCH2CH2Cl 0 0 71
9 B(C6F5)3 ClCH2CH2Cl 0 0 94

10 TfOH ClCH2CH2Cl 0 0 94
11 Sc(OTf )3 Benzene 45 8 Trace
12 Sc(OTf )3 Toluene 0 35 0
13 Sc(OTf )3 C6H5CF3 0 24 0
14 Sc(OTf )3 CH3CN 0 0 98
15 Sc(OTf )3 THF 0 0 98
16 Sc(OTf )3 Pyridine 0 0 93

aUnless otherwise noted, all reactions were conducted with
0.10mmol of 1a in the presence of 30mol% of catalyst in
solvent (1.0mL) at refluxing temperature. bIsolated yield.
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Sc(OTf )3 in CDCl3 (1a:Sc(OTf )3 = 1:1 molar ratio), indicating
some interaction taking place between one of the fluorine atoms
and Sc(OTf )3.15 The absence of any changes of the fluorine
peaks upon mixing C6H5CF3 and Sc(OTf )3 (1:1 molar ratio)
suggests that one of the carbonyl oxygens of barbituric acid
supported the formation of a complex of 1a and Sc(OTf )3, like
A in Figure 3.

Based on the above experiments, the proposed reaction
mechanism is illustrated in Figure 4. At first, one of the fluorine
atoms in the CF3 group and a carbonyl oxygen in barbituric acid
coordinate to Sc(OTf )3, resulting in the activation of a CF
bond. The preferential formation of a seven-membered ring over
a five-membered ring could be explained on the basis of the
principle of least motion.16 From cationic intermediate B,17 the
seven-membered ring formation (red arrow) would occur in one
step while maintaining the structure of B. On the other hand, a
two-step sequence (enolization followed by intramolecular
nucleophilic addition, blue arrow) would be required for the
formation of 3. As a result, seven-membered ring adducts 2 were
obtained in a highly selective manner.

In summary, we have developed a direct route to hetero-
cycles having a difluoromethylene unit via the activation of a
single CF bond in the CF3 group. Although it is not clear why
the single CF bond activation occurred even with strong Lewis
acid catalysis, the reaction described herein offers a new entry in
the CF bond activation field. Mechanistic studies based on
theoretical calculations are under way in our laboratory, and will
be reported in due course.

Supporting Information is available on https://doi.org/
10.1246/cl.190280.
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