Tetrahedron 64 (2008) 8428-8434

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Pyrene-appended fluorescent tweezers generated via the Weak-Link Approach and their halide recognition properties

You-Moon Jeon^a, Dongwoo Kim^a, Chad A. Mirkin^{a,*}, James A. Golen^b, Arnold L. Rheingold^b

^a Department of Chemistry and the International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA ^b Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, CA 92093-0358, USA

ARTICLE INFO

Article history: Received 25 February 2008 Received in revised form 25 April 2008 Accepted 9 May 2008 Available online 14 May 2008

ABSTRACT

Through the Weak-Link Approach, fluorescent condensed and open Cu(I) tweezer complexes were prepared and characterized. These complexes exhibit fluorescence-sensitive binding properties for halide anions. The solid-state structure of a non-fluorescent Rh(I) tweezer analogue, determined by X-ray crystallography, shows that the counter anion, Cl⁻, is trapped inbetween the two amide groups of the tweezer arms through hydrogen bonds. Although the tweezer binds Cl⁻, the open complex also binds Cl⁻, showing that the main role of the metal is to increase the local concentration of the pyrenyl amide moieties so that 2:1 binding can take place.

© 2008 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Over the past decade, supramolecular cyclophanes and tweezer complexes have received a significant amount of attention due to their encapsulating properties and potential applications in catalysis, sensing, mixture separations, molecular electronics, and facilitated small molecule transport.^{1–4} Our group has shown that one can prepare fluorescent cyclophanes⁵ via the Weak-Link Approach (WLA) in high yield (Scheme 1).^{2,6} The strategically positioned weak ligand–metal interactions within these structures allow one to use small molecules and elemental anions to reversibly open and close such structures, allowing one to chemically

Scheme 1. Schematic illustration of the Weak-Link Approach.

^{*} Corresponding author. Tel.: +1 847 491 2907; fax: +1 847 495 5123. *E-mail address:* chadnano@northwestern.edu (C.A. Mirkin).

^{0040-4020/\$ –} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.05.047

trigger significant changes in their recognition and catalytic properties.²

Herein, we demonstrate how the WLA can be used to prepare a novel class of fluorescent tweezer complexes that incorporate both recognition sites and fluorophores within the framework of the ligand that makes up the tweezer arms. We compare the halide binding properties of these novel structures with the open versions of these structures.

2. Results and discussion

The pyrenyl group has been used as a signaling fluorophore, since when it dimerizes in the presence of analytes, it forms a characteristic excimer.⁷ We hypothesized that 2 equiv of such a moiety, held together in a tweezer configuration in the context of a coordination complex prepared via the WLA, could act as a characteristic signaling fluorophore for analyte recognition. The new pyrene-appended hemilabile phosphine ligand **2** was synthesized in two steps (Scheme 2) and fully characterized by ¹H, ³¹P{¹H} NMR spectroscopy, and mass spectrometry. The solid-state structure of **2** was confirmed via a single crystal X-ray diffraction study (Fig. 1).

Scheme 2. (a) K₂CO₃, 18-crown-6, CH₃CN/H₂O, reflux; (b) isobutylchloroformate/NEt₃, 2-pyrenylmethylamine ·HCl/NEt₃, CH₂Cl₂, rt.

The Rh(I) tweezer complex 3a was synthesized by the reaction of [Rh(NBD)Cl]₂ (NBD=norbornadiene) and hemilabile ligand 2 in CH₂Cl₂ at room temperature in quantitative yield (Scheme 3). It is insoluble in CH₂Cl₂ and forms as a yellow precipitate in the bottom of the reaction vessel. All data, including ¹H NMR spectroscopy in a 3:1 mixture of CD₂Cl₂ and CD₃OD, ³¹P{¹H} NMR spectroscopy in the same solvent mixture, and ESI-MS, are in full agreement with the proposed structural formulation for 3a. For example, the ³¹P{¹H} NMR spectrum of **3a** exhibits a doublet at δ 64.7 (J_{Rh-P} = 161 Hz) assigned to the equivalent phosphorous atoms. This chemical shift and coupling constant are highly diagnostic of a square-planar cis-phosphine, cis-thioether Rh(I) complex.^{2,8,9} Significantly, the amide hydrogen atoms are shifted downfield from where they would normally appear (vide infra). This is likely due to an interaction between those protons and the Cl⁻ counter ion. The ESI-MS spectrum of **3a** exhibited a peak at m/z 1261.5 corresponding to the loss of the Cl⁻ counter anion (calcd for $[M-Cl^{-}]^{+}=1261.3).$

The solid-state structure of **3a** (Fig. 2), as determined by X-ray crystallography, is consistent with its proposed solution structure.

Figure 1. ORTEP diagram for the crystal structure of **2**. Thermal ellipsoids are drawn at 60% probability. Hydrogen atoms have been omitted for clarity.

The Rh(I) metal center is coordinated by two phosphines and two thioethers in a distorted square-planar geometry with P(1)-Rh(1)-S(1) and P(1)-Rh(1)-P(1') angles of 85.21° and 98.46°, respectively. Each coordinating sulfur atom has a distorted trigonal pyramidal geometry with C(14)-S(1)-Rh(1), C(14)-S(1)-C(15), and C(15)-S(1)-Rh(1) angles of 105.7°, 102.0°, and 111.5°, respectively. Of particular interest is the chloride anion, which is trapped between the two amide groups through hydrogen bonds.¹⁰ The $N(1)\cdots Cl(1)$ distance and the N(1)-H(1A)-Cl(1) angle are 3.24 Å and 162.4°, respectively. The two bridging aromatic spacers have a twisted configuration with a torsion angle of 74.5° owing to the trigonal pyramidal configuration of the coordinating sulfur atom and the coordination of the Cl⁻ anion. Note the pyrenyl groups in **3a** exhibit intermolecular π - π stacking interactions in the solid-state (the inter-planar distance of the two pyrenyl group is 3.7 Å, Fig. S1).¹¹

Upon reaction with CO (1 atm), the tweezer complex **3a** opens to form a neutral Rh(I) complex **4a** (CD₂Cl₂/CD₃OD=3:1, Scheme 3).^{2,4,9} This reaction involves the displacement of the thioether ligands of **3a** with 1 equiv of CO and the Cl⁻ counter ion. The ³¹P{¹H} NMR spectrum of **4a** exhibits a resonance at δ 25.0 (d, *J*_{Rh-P}= 124 Hz) indicative of a complex with trans-coordination of the two phosphorous atoms.^{2,4,9} Although complex **4a** is stable under CO (1 atm) at room temperature, exposure to high vacuum results in its conversion to the cationic condensed Rh(I) tweezer **3a**. The interconversion between complex **4a** and **3a** is completely reversible as evidenced by ¹H and ³¹P{¹H} NMR spectroscopy. Note that the amide protons, which exhibit a resonance at δ 8.77 in **3a**, appear at δ 8.39 in **4a** in a 3:1 mixture of CD₂Cl₂ and CD₃OD (Fig. S2).

In an attempt to increase the solubility of the condensed Rh(I) tweezer **3a**, the anion was changed from Cl^- to BF_4^- (**3b**) and $B(C_6F_5)\overline{4}$ (**3c**), respectively (Scheme 3). These complexes were prepared by initially abstracting the Cl⁻ from the Rh(I) precursor with the appropriate reagent (AgBF₄ and LiB(C_6F_5)₄, respectively). The chemical shifts and coupling constants for the phosphorus atoms of 3b and 3c were nearly identical to those observed for 3a (**3b**: δ 64.8 (d, J_{Rh-P} =161 Hz), **3c**: δ 64.7 (d, J_{Rh-P} =162 Hz)). Although 3a and 3b are not soluble in pure dichloromethane, 3c with $B(C_6F_5)_{\overline{4}}$ as the counter anion is highly soluble at room temperature. The ability of **3c** to bind Cl⁻ was studied by ¹H NMR titration experiments in CD₂Cl₂ solution at room temperature. In all experiments, the chemical shift for the amide -NH resonance was monitored as a function of Cl⁻ concentration. As expected, the amide proton signals shift downfield, indicative of strong interactions with the Cl⁻ (Fig. 3b). The K_a of **3c** for Cl⁻ is 2.48× 10³ M⁻² as determined by EQNMR techniques.¹² The interaction between Cl⁻ and **3c** is primarily with the tweezer arms. Indeed, there is no evidence of Cl⁻ interacting with the metal center as probed by ³¹P{¹H} NMR spectroscopy. The doublet at δ 64 does not change significantly even in the presence of excess Cl⁻ without CO (Fig. 3a). Interestingly, in the solution state, 3c forms a 2:1 rather than a 1:1 complex with Cl⁻ as determined by a Job plot (Fig. 4). Similar differences in stoichiometry, depending upon the physical state, have been observed with a bicycliccyclophane complex with Cl⁻ anion (1:1 in the solution state and 1:2 in the solid state).¹³

Since Rh(I) quenches the fluorescence associated with the pyrene based ligand, we turned to Cu(I) as an alternative metal hinge. Complex **3d**, the Cu(I) analogue of the Cl⁻ free Rh(I) tweezer complexes **3b** and **3c**, can be synthesized by the reaction of [Cu(CH₃CN)₄][PF₆] and ligand **2** in CH₂Cl₂ at room temperature (Scheme 4). This methodology is similar to that used for preparing Cu(I) metallocyclophanes using the symmetrical 1,4-bis[2-(diphenylphosphino)ethylthio]benzene ligands.¹⁴ All of the spectroscopic data, including ¹H NMR spectroscopy, ³¹P{¹H} NMR spectroscopy, and ESI-MS are in full agreement with the proposed formulation for **3d**. For example, the ³¹P{¹H} NMR spectrum of **3d** exhibits a broad

Scheme 3. (a) CH₂Cl₂, rt; (b) AgBF₄ for 3b and LiB(C₆F₅)₄ for 3c; (c) CO/n-Bu₄NCl, CH₂Cl₂, rt.

singlet at δ 0.15 due to the interaction of the phosphorus atoms with the quadrupolar ⁶³Cu and ⁶⁵Cu nuclei (*I*=3/2), indicative of equivalent phosphorus atoms in the condensed Cu(I) tweezer complex.^{3,14,15} Pyridine was chosen as a suitable *N*-donor for opening the Cu(I) condensed intermediates since it works quite well in the metallocyclophane cases.^{3,14,15} Successful displacement of the Cu–S bonds in **3d** was achieved via the addition of excess pyridine, which results in the quantitative formation of the

Figure 2. ORTEP diagram for the crystal structure of **3a** with 60% probability ellipsoids. All but the amide hydrogen atoms have been omitted for clarity. Selected distances (Å) and angles (°): Rh(1)–S(1) 2.330(5), Rh(1)–P(1) 2.232(3), Cl(1)…N(1) 3.241(4), P(1)–Rh(1)–S(1) 165.92(3), P(1)–Rh(1)–P(1') 98.46(5), Rh(1)–S(1)–C(14) 105.70(11), Rh(1)–S(1)–C(15) 111.50(11), C(14)–S(1)–C(15) 102.07(17), Cl(1)–H(1a)–N(1) 162.40(4).

colorless cationic open Cu(I) tweezer **4d** (Scheme 4). The open Cu(I) tweezer **4d** was characterized by ¹H and ³¹P{¹H} NMR spectroscopy, ESI-MS, and elemental analysis. The complex exhibits a diagnostic resonance in its ³¹P{¹H} NMR spectrum at δ –3.52, which is similar to what is observed for mono and binuclear open Cu(I) complexes with two phosphines and two pyridines (shift from δ –0.05 to –4.60).^{3,14-16} Although complex **4d** is stable in CH₂Cl₂ solution as well as in solid state, under high vacuum, its ESI-MS spectrum exhibited only a single peak at *m*/*z* 1221.6 corresponding to the loss of two pyridine ligands and the PF₆ counter anion (calcd for [M–2 pyridine–PF₆]⁺=1221.3).

We investigated the absorption and emission properties of ligand 2, condensed Cu(I) tweezer 3d, and open Cu(I) tweezer 4d. The Cu(I) complexes 3d and 4d in CH₂Cl₂ (with 5% DMF) and ligand **2** show nearly identical absorption spectra with λ_{max} at 345 nm. Emission spectra of 2, 3d, and 4d with excitation at 345 nm in the same solvent system are different (Fig. 5a). The metal complexes both exhibit broad and strong excimer bands at 475 nm, while the ligand does not. Interestingly, the relative intensity of excimer to monomer emission (I_E/I_M) is slightly larger in the open complex 4d $(I_{\rm E}/I_{\rm M}=1.46)$ as compared with the condensed structure **3d** $(I_{\rm E}/I_{\rm M}=1.46)$ $I_{\rm M}$ =1.01). Presumably, the open structure provides the structural flexibility for the two pyrene moieties to interact more strongly than in the condensed structure. Open Cu(I) tweezer 4d interacts with Cl⁻ as evidenced by an increase in fluorescence intensity of the excimer as a function of added chloride anion up to 1 equiv (Fig. 5b). The data are consistent with the formation of a structure analogous to crystallographically characterized 3a where the Cl⁻ enhances the interaction between the pyrene moieties via the halide induced chelation effect of the pyrene-appended two amide groups. If the titration is continued, the excimer intensity steadily decreases after 1 equiv until it disappears at 100 equiv. The first Cl⁻ can be trapped inbetween the two amide groups but the additional anions tend to break the chelate conformation to make individual hydrogen bonding complexes for each amide group, which prohibits excimer formation. Condensed Cu(I) tweezer 3d shows a similar recognition trend to that of 4d, showing that

Figure 3. Partial (a) ³¹P{¹H} and (b) ¹H NMR spectra of 3c (5.15 mM) in the presence of *n*-Bu₄NCl in CD₂Cl₂ at rt (the signals labeled with '*' represent the amide –NH protons).

Figure 4. Job plot for 3c (3.43 mM) and n-Bu₄NCl (3.44 mM) in CD₂Cl₂ solution.

although the metal site is important for holding 2 equiv of ligand within one complex, the orientation of the pyrenes in the tweezer **3d** does not offer a significant advantage with respect to Cl⁻ recognition. Note that consistent with this conclusion the free base ligand **2** does not show any excimer formation in the presence of Cl⁻ (Fig. S3a). The condensed and open tweezers **3d** and **4d** exhibit similar recognition trends with Br⁻ and I⁻ (Figs. S3 and S4).

3. Conclusions

We have developed a method for rapidly assembling fluorescent tweezer complexes from Cu(I) metal ion and the appropriate pyrene-appended hemilabile ligands. These complexes exhibit fluorescence-dependent binding properties for halide anions. X-ray crystallography of a non-fluorescent Rh(I) analogue shows that the Cl⁻ ion interacts with the amide moieties flanking the pyrenyl groups. Surprisingly, the pocket created by the condensed tweezer **3d** does not confer significant advantages with respect to halide binding or selectivity since the open structure **4d** shows very similar trend. Indeed, the main role of the metal is to increase the local concentration of the pyrenyl amide moieties so that 2:1 binding can take place.

4. Experimental

4.1. General

All reactions were carried out under an inert atmosphere of nitrogen using standard Schlenk techniques or an inert atmosphere glove box unless otherwise noted.¹⁷ Diethyl ether, CH₂Cl₂, pentane, and hexanes were purified by published methods.¹⁸ All solvents were deoxygenated with nitrogen prior to use. 2-Chloroethyldiphenylphosphine was purchased from Organometallics Inc. and used as is. Deuterated solvents were purchased from Cambridge Isotope Laboratories Inc. and used as received. [Rh(NBD)Cl]2 (NBD is norbornadiene) was purchased from Stem Chemical Inc. and used as is. All other chemicals were used as received from Aldrich. ¹H NMR spectra were recorded on a Varian Mercury 300 MHz FT-NMR spectrometer and referenced relative to the residual proton resonances. ³¹P{¹H} NMR spectra were recorded on a Varian Mercury 300 MHz FT-NMR spectrometer at 121.4 MHz and referenced relative to an external 85% H₃PO₄ standard. ¹⁹F{¹H} NMR spectra were recorded on a Varian Mercury 300 MHz FT-NMR spectrometer at 282.47 MHz and referenced relative to an external CFCl₃ in CDCl₃ standard. All chemical shifts are reported in parts per million. Electrospray ionization mass spectra (ESI-MS) were recorded on a Micromas Quatro II triple quadrapole mass spectrometer. Electron ionization mass spectra (EIMS) were recorded on a Fisions VG 70-250 SE mass spectrometer. Fluorescent spectra were recorded with a Hewlett Packard (HP) 8452a diode array spectrometer. Elemental analyses were performed by Quantitative Technologies Inc., Whitehouse, NJ.

4.2. Materials

4.2.1. Ph₂PCH₂CH₂SC₆H₄CO₂H (1)

A mixture of 4-mercaptobenzoic acid (2.0 g, 12.32 mmol), 2chloroethyldiphenylposphine (3.3 g, 13.14 mmol), potassium carbonate (6.0 g, 42.98 mmol), and 18-crown-6 (0.5 g, 1.89 mmol) in acetonitrile/H₂O (80:20 mL) was heated at reflux with vigorous stirring overnight. The mixture was allowed to cool to room temperature and concd HCl was added dropwise to make the solution

Scheme 4. (a) CH₂Cl₂, rt; (b) pyridine, CH₂Cl₂, rt.

Figure 5. (a) Fluorescence spectra of **2** (10.8 μ M), **3d** (5.4 μ M), and **4d** (5.4 μ M). (b) Fluorescence spectral change of **4d** upon titration with *n*-Bu₄NCl in the CH₂Cl₂ containing 5% DMF (excitation=345 nm).

acidic under ice-bath cooling. The precipitate was filtered and washed with water, CH₂Cl₂, acetone, and diethyl ether successively and dried in vacuo, which gave analytically pure white solid (3.7 g, 82%). ¹H NMR (DMF-*d*₇): δ 2.66 (m, 2H, –CH₂PPh₂), 3.32 (m, 2H, *J*= 7.2 Hz, –CH₂S–), 7.46–7.69 (m, 12H, –C₆H₄–, –P(C₆H₅)₂), 8.07 (d, 2H, –C₆H₄–). ³¹P{¹H} NMR (DMF-*d*₇): δ –16.32 (s). MS (EI, *m*/*z*)=366.1 (calcd for C₂₁H₁₉O₂PS=366.0). Elemental analysis for C₂₁H₁₉O₂PS·C₄H₁₀O calcd: 68.16% C, 6.64% H. Found: 68.29% C, 6.95% H.

4.2.2. $Ph_2PCH_2CH_2SC_6H_4CONHCH_2(C_{16}H_9)$ (2)

Chloro iso-butylformate (0.1 mL, 0.72 mmol) was added dropwise to the CH₂Cl₂ (10 mL) solution of **1** (0.2 g, 0.55 mmol) and triethylamine (0.1 mL, 0.72 mmol) under ice-bath cooling for 5 min and stirred 1 h at room temperature. To the solution, 2-pyrenylmethylamine · HCl (0.17 g, 0.60 mmol) and triethylamine (3 mL, 21.52 mmol) in CH₂Cl₂ (10 mL) were added dropwise and stirred for 2 h at room temperature. Solvent was evaporated at reduced pressure and the remaining solid was washed with acidic ethanol. The desired product was isolated by filtration and dried under vacuum (70 mg, 22%). ¹H NMR (THF-*d*₈): δ 2.36 (m, 2H, –C*H*₂PPh₂), 2.99 (m, 2H, -CH₂S-), 5.31 (d, 2H, J=5.7 Hz, -CH₂N-), 7.17 (d, 2H, J=6.6 Hz, $-C_6H_4-$), 7.19–7.42 (m, 10H, $-P(C_6H_5)_2$), 7.77 (d, 2H, J=6.6 Hz, -C₆H₄-), 7.96-8.20 (m, 8H, pyrene-H), 8.47 (d, 1H, J=9.0 Hz, pyrene–*H*). ³¹P{¹H} NMR (THF- d_8): δ –15.92 (s). HRMS (EI, m/z)=579.1790 (calcd for C₃₈H₃₀NOPS=579.1786). Elemental analysis for C38H30NOPS · 1/2CH2Cl2 calcd: 74.32% C, 5.02% H, 2.25% N. Found: 74.40% C, 5.58% H, 1.82% N.

4.2.3. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Rh][Cl] (**3a**)

The dichloromethane solution (20 mL) of ligand **2** (200 mg, 345.0 µmol) and [Rh(NBD)Cl]₂ (40 mg, 85.9 µmol) was stirred overnight at room temperature. Solvent was evaporated under reduced pressure. The resulting yellow precipitate was washed with THF and diethyl ether and dried in vacuo (215 mg, 96%). ¹H NMR (CD₂Cl₂/CD₃OD=3:1): δ 2.51 (m, 4H, -CH₂PPh₂), 2.70 (m, 4H, -CH₂S-), 5.06 (d, 4H, *J*=5.5 Hz, -CH₂N-), 7.19–7.34 (m, 24H, -C₆H₄-, -P(C₆H₅)₂), 7.51 (d, 4H, *J*=6.6 Hz, -C₆H₄-), 7.88–8.06 (m, 16H, pyr-ene-*H*), 8.15 (d, 2H, pyrene-*H*), 8.77 (br t, 2H, *J*=9.3 Hz, -NH-). ³¹P{¹H</sup> NMR (CD₂Cl₂/CD₃OD=3:1): δ 64.70 (d, *J*_{Rh-P}=161 Hz). MS (ESI, *m/z*): [M-Cl]⁺=1261.5 (calcd for [C₇₆H₆₀N₂O₂P₂RhS₂]⁺=

1261.2). Elemental analysis for $C_{76}H_{64}N_2O_2P_2RhS_2Cl\cdot 1/2CH_2Cl_2$ calcd: 68.56% C, 4.59% H, 2.09% N. Found: 68.37% C, 4.22% H, 2.11% N.

4.2.4. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Rh][BF₄] (**3b**)

The dichloromethane solution of $[Rh(NBD)Cl]_2$ (40 mg, 85.9 µmol) and AgBF₄ (35 mg, 179.8 µmol) was stirred for 10 min at room temperature. The filtered solution of Rh(I) precursor in dichloromethane was added to dichloromethane solution of ligand **2** (200 mg, 345.0 µmol) dropwise and stirred overnight at room temperature. Solvent was evaporated under reduced pressure and the resulting yellow precipitate was washed with THF and dried in vacuo (189 mg, 81%). ¹H NMR (CD₂Cl₂/CD₃OD=3:1): δ 2.56 (m, 4H, -CH₂PPh₂), 2.78 (m, 4H, -CH₂S-), 5.08 (s, 4H, -CH₂N-), 7.25-7.56 (m, 28H, -C₆H₄-, -P(C₆H₅)₂), 7.74-8.22 (m, 18H, pyrene-*H*). ³¹P{¹H} NMR (CD₂Cl₂/CD₃OD=3:1): δ 64.78 (d, J_{Rh-P}=161 Hz). MS (ESI, *m/z*): [M-BF₄]⁺=1261.6 (calcd for [C₇₆H₆₀N₂O₂P₂RhS₂]⁺=1261.2). Elemental analysis for C₇₆H₆₀BF₄N₂O₂P₂RhS₂·2CH₂Cl₂ calcd: 61.68% C, 4.25% H, 1.84% N. Found: 61.90% C, 4.21% H, 1.74% N.

4.2.5. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Rh][B(C₆F₅)₄] (**3**c)

The desired complex **3c** was synthesized by similar method to that of **3b** using [Rh(COD)Cl]₂ (40 mg, 79.5 µmol), LiB(C₆F₅)₄·Et₂O (130.0 mg, 171.0 µmol), and ligand **2** (185 mg, 319.1 µmol). The product was washed with diethyl ether and dried under vacuum (229 mg, 74%). ¹H NMR (CD₂Cl₂): δ 2.49 (m, 4H, $-CH_2PPh_2$), 2.66 (m, 4H, $-CH_2S-$), 5.07 (d, 4H, J=5.7 Hz, $-CH_2N-$), 7.20–7.45 (m, 28H, $-C_6H_4-$, $-P(C_6H_5)_2$), 7.88–8.15 (m, 18H, pyrene–*H*). ³¹P{¹H} NMR (CD₂Cl₂): δ 64.67 (d, $J_{Rh-P}=162$ Hz). ¹⁹F NMR (CD₂Cl₂): δ –133.49 (s), -146.03 (t), -167.90 (d). MS (ESI, m/z): [M–B(C₆F₅)₄]⁺=1261.5 (calcd for [C₇₆H₆₀N₂O₂P₂RhS₂)⁺=1261.2). Elemental analysis for C₁₀₁H₆₂BCl₂F₂₀N₂O₂P₂RhS₂·CH₂Cl₂ calcd: 59.87% C, 3.08% H, 1.38% N. Found: 59.90% C, 2.72% H, 1.28% N.

4.2.6. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Cu][PF₆] (**3d**)

To the suspension of ligand **2** (91 mg, 0.157 mmol) in dichloromethane (10 mL), dichloromethane solution of $[(CH_3CN)_4Cu]PF_6$ (30 mg, 0.079 mmol) was added dropwise and stirred overnight at room temperature. Solvent was evaporated under reduced pressure and dried in vacuo overnight. Diethyl ether was added and sonicated for 10 min. White precipitate was isolated by filtration and dried under vacuum (103 mg, 96%). ¹H NMR (CD₂Cl₂): δ 2.69 (br s, 4H, -CH₂PPh₂), 3.21 (br s, 4H, -CH₂S-), 5.21 (br s, 4H, -CH₂N-), 6.80 (br s, 2H, -NH-), 7.09 (d, 4H, *J*=6.6 Hz, -C₆H₄-), 7.32-7.45 (m, 20H, -P(C₆H₅)₂), 7.75 (d, 4H, *J*=6.9 Hz, -C₆H₄-), 7.95-8.17 (m, 16H, pyrene-*H*), 8.31 (d, 2H, *J*=9.0 Hz, pyrene-*H*). ³¹P{¹H} NMR (CD₂Cl₂): δ 0.15 (br s, -PPh₂), -143.20 (m, PF₆⁻). MS (ESI, *m/z*): [M-PF₆⁻]⁺= 1221.4 (calcd for [C₇₆H₆₀N₂O₂P₃S₂·1.5CH₂Cl₂ calcd: 62.25% C, 4.25% H, 1.87% N. Found: 62.25% C, 3.84% H, 1.52% N.

4.2.7. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Rh(CO)Cl] (**4a**)

To the solution of complex **3a** in a 3:1 mixture of CD₂Cl₂ and CD₃OD was charged with CO gas (1 atm) for 10 min, which gave a desired open complex in quantitative yield. ¹H NMR (CD₂Cl₂/CD₃OD=3:1): δ 2.68 (br m, 4H, –CH₂PPh₂), 2.90 (br m, 4H, –CH₂S–), 5.20 (d, 4H, *J*=5.4 Hz, –CH₂N–), 7.10 (d, 4H, *J*=7.5 Hz, –C₆H₄–), 7.36–8.15 (m, 40H, –C₆H₄–, –P(C₆H₅)₂, –Pyrenyl–H), 8.28 (d, 2H, *J*=9.0 Hz, –Pyrenyl–H), 8.39 (br t, 2H, –NH–). ³¹P{¹H} NMR (CD₂Cl₂/CD₃OD=3:1): δ 25.06 (d, *J*_{Rh–P}=124 Hz). Alternatively, the complex **4a** can be synthesized from **3b** and **3c** by the reaction of 1 equiv of *n*-Bu₄N⁺Cl⁻ and CO gas (1 atm) in CH₂Cl₂ at room temperature in quantitative yield.

4.2.8. [(Ph₂PCH₂CH₂SC₆H₄CONHCH₂(C₁₆H₉))₂Cu (pyridine)₂][PF₆] (**4d**)

Excess amount of pyridine (1 mL) was added to the solution of **3d** (95 mg, 69.0 μ mol) in dichloromethane (10 mL) and stirred for

30 min at room temperature. Solvent was evaporated under reduced pressure and dried in vacuo overnight. Diethyl ether was added and sonicated for 10 min. White precipitate was isolated by filtration and dried under vacuum (97 mg, 92%). ¹H NMR (CD₂Cl₂): δ 2.52 (br s, 4H, –CH₂PPh₂), 3.00 (br s, 4H, –CH₂S–), 5.14 (br d, 4H, *J*=4.8 Hz, –CH₂N–), 6.74 (br d, 4H, *J*=5.4 Hz, –C₆H₄–), 7.30–7.50 (m, 28H, –P(C₆H₅)₂, pyridine, pyrene–H), 7.73 (t, 2H, *J*=7.8 Hz, pyrene–H), 7.91–8.24 (m, 18H, pyridine, pyrene–H), 8.42 (br s, 4H, pyridine). ³¹P{¹H} NMR (CD₂Cl₂): δ –3.52 (br s, –PPh₂), –143.22 (m, *P*F₆). MS (ESI, *m/z*): [M–2pyridine–PF₆]⁺=1221.6 (calcd for [C₇₆H₆₀N₂O₂P₂-CuS₂]⁺=1221.3). Elemental analysis for C₈₆H₇₀CuF₆N₄O₂P₃S₂ calcd: 67.68% C, 4.62% H, 3.67% N. Found: 67.35% C, 4.50% H, 3.53% N.

4.3. X-ray crystallography

4.3.1. Refinement

Crystals **2** and **3a** were mounted on a CryoLoop[®] with Paratone-N[®] oil and immediately placed under a liquid stream of N₂ on a Bruker SMART APEX CCD system, respectively. Data were collected at -60 °C with Mo K α radiation and corrected for absorption using the SADABS program. The structures were solved by a Patterson map, developed by successive difference Fourier syntheses, and refined by full matrix least squares on all F^2 data. All nonhydrogen atoms were refined as being anisotropic and hydrogen atoms, except H1A on N1 in **3a** were placed in calculated positions with temperature factors fixed at 1.2 or 1.5 times the equivalent isotropic *U* of the C atoms to which they were bonded. The position of the hydrogen atom H1A was determined from a Fourier difference map and allowed to refine.

4.3.2. Crystallographic data

For **2** (CCDC 675487): $C_{38}H_{30}$ NOPS, monoclinic, space group P2(1)/c, a=16.115(2)Å, b=9.778(1)Å, c=18.536(2)Å, $\beta=100.004(2)^{\circ}$, V=2876.3(6)Å³, Z=4, T=213(2) K, $\theta_{max}=28.27^{\circ}$, Mo Ka ($\lambda=0.71073$ Å), 17,252 measured reflections, 5059 independent reflections [R(int)=0.0450], $R_1=0.0718$, $wR_2=0.1687$, GOF=1.172 ([$I>2\sigma(I)$]). For **3a** (CCDC 675488): $C_{76}H_{60}$ ClN₂O₂P₂Rh₁S₂, monoclinic, space group C2/c, a=13.065(2)Å, b=19.762(3)Å, c=24.237(3)Å, $\beta=99.752(2)^{\circ}$, V=6167.1(13)Å³, Z=4, T=213(2) K, $\theta_{max}=28.27^{\circ}$, Mo Ka ($\lambda=0.71073$ Å), 23,331 measured reflections, 7246 independent reflections [R(int)=0.0505], $R_1=0.0585$, $wR_2=0.1254$, GOF=1.102 ([$I>2\sigma(I)$]).

4.4. NMR experiment

4.4.1. ¹H NMR titration

Proton NMR titration was performed at 298 K. The condensed Rh(I) tweezer complex **3c** (5.15 mM) was titrated with *n*-Bu₄N⁺X⁻ (X=F, Cl, Br, and I) in CD₂Cl₂ by monitoring the changes in the chemical shift of amide –NH protons.

4.4.2. Job plot

Stock solution of **3c** (3.43 mM) and *n*-Bu₄N⁺Cl⁻ (3.44 mM) were prepared in CD₂Cl₂ solution separately. Eleven NMR samples ([**3c**]/ ([**3c**]+[*n*-Bu₄N⁺Cl⁻])=0.0, 0.1, 0.2, ..., 0.9, 1.0) were prepared and ¹H NMR spectra were taken at room temperature.

4.5. Fluorescence measurement

4.5.1. Titration experiment

Stock solution of *n*-Bu₄N⁺X⁻ (91.0 mM) and stock solution of **2**, **3d**, and **4d** (0.36 mM) were prepared in CH₂Cl₂ containing 5% DMF. For all measurements, excitation was carried out at 345 nm with emission slit width of 3 nm. Fluorescence titration experiments were performed with 5.4 μ M solutions of **2**, **3d**, and **4d** and various concentrations of n-Bu₄N⁺X⁻ (X=F, Cl, Br, and I) in CH₂Cl₂ containing 5% DMF.

Acknowledgements

C.A.M. acknowledges the ONR, NSF, and ARO for supporting this research and he is also grateful for a NIH Director's Pioneer Award. D.K. acknowledges the Korea Research Foundation Grant (KRF-2007-357-C00053) funded by the Korean Government (MOEHRD) for postdoctoral fellowship support.

Supplementary data

The crystallographic data for **2** (CCDC 675487) and **3a** (CCDC 675488) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2008.05.047.

References and notes

- 1. (a) Fujita, M. Acc. Chem. Res. 1999, 32, 53-61; (b) Pease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, C. P.; Heath, J. R. Acc. Chem. Res. 2001, 34, 433-444; (c) Kesanli, B.; Lin, W. B. Coord. Chem. Rev. 2003, 246, 305-326; (d) Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621-630; (e) Kovbasyuk, L.; Kramer, R. Chem. Rev. 2004, 104, 3161-3187; (f) Heath, J. R.; Stoddart, J. F.; Williams, R. S. Science 2004, 303, 1136-1137; (g) Thanasekaran, P.; Liao, R. T.; Liu, Y. H.; Rajendran, T.; Rajagopal, S.; Lu, K. L. Coord. Chem. Rev. 2005, 249, 1085-1110; (h) Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 1644-1645; (i) Amijs, C. H. M.; van Klink, G. P. M.; van Koten, G. Dalton Trans. 2006, 308-327; (j) Heo, J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2006, 45, 941-944; (k) Oliveri, C. G.; Gianneschi, N. C.; Nguyen, S. T.; Mirkin, C. A.; Stern, C. L.; Wawrzak, Z.; Pink, M. J. Am. Chem. Soc. 2006, 128, 16286-16296; (1) Filby, M. H.; Steed, J. W. Coord. Chem. Rev. 2006, 250, 3200-3218; (m) Beer, P. D. Acc. Chem. Res. 1998, 31, 71-80; (n) Gale, P. A.; Garcia-Garrido, S. E.; Garric, J. Chem. Soc. Rev. 2008, 37, 151-190; (o) Wintergerst, M. P.; Levitskaia, T. G.; Moyer, B. A.; Sessler, J. L.; Delmau, L. H. J. Am. Chem. Soc. 2008, 130, 4129-4139.
- (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022–2043; (b) Gianneschi, N. C.; Masar, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825–837.
- Masar, M. S.; Gianneschi, N. C.; Oliveri, C. G.; Stern, C. L.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 10149–10158.
- 4. Yoon, H. J.; Heo, J.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129, 14182-14183.

- Holliday, B. J.; Farrell, J. R.; Mirkin, C. A.; Lam, K. C.; Rheingold, A. L. J. Am. Chem. Soc. 1999, 121, 6316–6317.
- (a) Farrell, J. R.; Mirkin, C. A.; Guzei, I. A.; Liable-Sands, L. M.; Rheingold, A. L. Angew. Chem., Int. Ed. 1998, 37, 465–467; (b) Farrell, J. R.; Mirkin, C. A.; Liable-Sands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 1998, 120, 11834–11835; (c) Jeon, Y.-M.; Heo, J.; Brown, A. M.; Mirkin, C. A. Organometallics 2006, 25, 2729–2732; (d) Holliday, B. J.; Jeon, Y. M.; Mirkin, C. A., Stern, C. L.; Incarvito, C. D.; Zakharov, L. N.; Sommer, R. D.; Rheingold, A. L. Organometallics 2002, 21, 5713–5725; (e) Brown, A. M.; Ovchinnikov, M. V.; Mirkin, C. A. Angew. Chem., Int. Ed. 2005, 44, 4207–4209; (f) Brown, A. M.; Ovchinnikov, M. V.; Stern, C. L.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 14316–14317; (g) Khoshbin, M. S.; Ovchinnikov, M. V.; Mirkin, C. A.; Golen, J. A.; Rheingold, A. L. Inorg. Chem. 2005, 44, 496–501; (i) Khoshbin, M. S.; Ovchinnikov, M. V.; Salaita, K. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2005, 1496–692; (j) Ulmann, P. A.; Brown, A. M.; Ovchinnikov, M. V.; Salaita, K. S.; Mirkin, C. A.; Gene, J. G.; Rheingold, A. L. Inorg, I. N.; Rheingold, A. L. Chem. Asian J. 2006, 1, 686–692; (j) Ulmann, P. A.; Brown, A. M.; Ovchinnikov, M. V.; Salaita, K. S.; Dirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Chem. Asian J. 2006, 1, 686–692; (j) Ulmann, P. A.; Brown, A. M.; Ovchinnikov, M. V.; Mirkin, C. A.; DiPasquale, A. G.; Rheingold, A. L. Chem.—Eur. J. 2007, 13, 4529–4534.
- (a) Wegner, S. V.; Okesli, A.; Chen, P.; He, C. J. Am. Chem. Soc. 2007, 129, 3474–3475;
 (b) Nagatoishi, S.; Nojima, T.; Juskowiak, B.; Takenaka, S. Angew. Chem., Int. Ed. 2005, 44, 5067–5070;
 (c) Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S. J. Am. Chem. Soc. 2004, 126, 16499–16506.
- 8. Bader, A.; Lindner, E. Coord. Chem. Rev. 1991, 108, 27-110.
- (a) Dixon, F. M.; Eisenberg, A. H.; Farrell, J. R.; Mirkin, C. A.; Liable-Sands, L. M.; Rheingold, A. L. *Inorg. Chem.* **2000**, *39*, 3432–3433; (b) Ovchinnikov, M. V.; Brown, A. M.; Liu, X. G.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. *Inorg. Chem.* **2004**, *43*, 8233–8235.
- (a) Szemes, F.; Hesek, D.; Chen, Z.; Dent, S. W.; Drew, M. G. B.; Goulden, A. J.; Graydon, A. R.; Grieve, A.; Mortimer, R. J.; Wear, T.; Weightman, J. S.; Beer, P. D. *Inorg. Chem.* **1996**, *35*, 5868–5879; (b) Beer, P. D.; Hesek, D.; Nam, K. C.; Drew, M. G. B. Organometallics **1999**, *18*, 3933–3943; (c) Mahoney, J. M.; Beatty, A. M.; Smith, B. D. *Inorg. Chem.* **2004**, *43*, 7617–7621; (d) Suksai, C.; Leeladee, P.; Jainuknan, D.; Tuntulani, T.; Muangsin, N.; Chailapakul, O.; Kongsaeree, P.; Pakavatchai, C. *Tetrahedron Lett.* **2005**, *46*, 2765–2769.
- 11. Roesky, H. W.; Andruh, M. Coord. Chem. Rev. 2003, 236, 91-119.
- 12. (a) Hynes, M. J. J. Chem. Soc., Dalton Trans. 1993, 311–312; (b) The K_a of 3c for Br⁻ and I⁻ are 2.69×10³ M⁻² and 2.03×10³ M⁻², respectively.
- Bisson, A. P.; Lynch, V. M.; Monahan, M. C.; Anslyn, E. V. Angew. Chem., Int. Ed. 1997, 36, 2340–2342.
- Masar, M. S.; Mirkin, C. A.; Stern, C. L.; Zakharov, L. N.; Rheingold, A. L. Inorg. Chem. 2004, 43, 4693–4701.
- 15. Doel, C. L.; Gibson, A. M.; Reid, G. Polyhedron 1995, 14, 3139–3146.
- (a) Del Zotto, A.; Nardin, G.; Rigo, P. J. *Chem. Soc., Dalton Trans.* **1995**, 3343–3351;
 (b) Ruina, Y.; Kunhua, L.; Yimin, H.; Dongmei, W.; Douman, J. *Polyhedron* **1997**, 16, 4033–4038.
- Errington, R. J. Advanced Practical Inorganic and Metalorganic Chemistry; Chapman and Hall: New York, NY, 1997.
- Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals; Butterworth-Heinemann: Oxford, 1996.