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The total and stereospecific synthesis of d4-5-epi-8,12-iso-iPF3a-VI 55 and d4-8,12-iso-iPF3a-VI 64, EPA-
derived all-syn-isoprostanes (iPs), has been accomplished. Because of issues related to volatility and yield
with some of the primary deuterated synthons an improved synthesis is presented. These two deuterated
analogs were used to discover and quantify the presence of the corresponding endogenous isoprostanes
in human urine. These assays may serve as a valuable index of oxidative stress in population with omega-
3 fatty acid enriched diets containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and
may also be useful as an index of the severity of inflammatory diseases such as atherosclerosis and Alz-
heimer’s disease.

� 2009 Elsevier Ltd. All rights reserved.
Isoprostanes (iPs) are natural products of non-enzymatic free synthesized these two all-syn Group VI isoprostanes and identified

radical peroxidation of polyunsaturated fatty acids (PUFAs) such
as arachidonic acid (AA) and eicosapentaenoic acid (EPA).1,2 Iso-
prostanes are isomeric with prostaglandins (PGs), which are
natural products generated by the action of enzymes. The mecha-
nisms of formation of isoprostanes have been discussed in some
detail.3–5 Several syntheses of iPs have been reported.3,6 These
compounds have been widely used as markers of oxidative stress
in various diseases. We and others have shown that the measure-
ment of iPs in urine can be used as an index of the severity of
inflammatory diseases such as Alzheimer’s disease (AD) and
atherosclerosis.2,7

Isoprostanes generated from EPA have received less attention
than AA-derived isoprostanes.8,9 However, the AA-derived iPs we
and others have measured so far as an index of oxidative stress10–12

may not be appropriate for individuals in which the major PUFAs
in the phospholipids are EPA and DHA. A more appropriate index in
these cases might be the measurement of EPA- and/or DHA-derived
iPs, for example, 24 and 25 (Scheme 2A). For these reasons we have
ll rights reserved.
their occurrence in human urine.13 The reason for choosing Group
VI isoprostanes derived from EPA stems from our experience that
the presence of a hydroxyl group in the 5-position of these iPs causes
them to be resistant to b-oxidation,8 facilitating their detection in
urine. For example, we have shown that iPF3a-VI is highly resistant
to b-oxidation and we have been able to detect appreciable amounts
of this substance in human urine.8 Recent studies from our labora-
tory suggest that 5-epi-8,12-iso-iPF3a-VI 24 and 8,12-iso-iPF3a-VI
25 are considerably more abundant in urine than iPF3a-VI and may
therefore serve as excellent markers for oxidative stress involving
degenerative diseases of the brain, which contains high levels of
DHA, as well as in individuals who consume large amounts of x3-
PUFA. To provide the deuterium-labeled standards required for the
quantitation of these major EPA-derived iPs in biological fluids14

we are reporting here the total synthesis of deuterated analogs of
24 and 25, namely d4-5-epi-8,12-iso-iPF3a-VI 55 and d4-8,12-iso-
iPF3a-VI 64 (Scheme 4).

Site of deuteration: We have previously developed methods to
introduce four deuterium atoms into the lower side chains of iPs,
as this would avoid the loss of deuterium as a result of b-oxidation.
Although this is much less of an issue with Group VI iPs, as

http://dx.doi.org/10.1016/j.bmcl.2009.09.099
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Scheme 1. iPs and nPs derived from AA, EPA, and DHA by free radical peroxidation.
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Scheme 2. Structures of the major EPA-derived iPs 5-epi-8,12-iso-iPF3a-VI and
8,12-iso-iPF3a-VI.
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discussed above, there is an additional advantage in avoiding the
addition of deuterium to the upper side chain due to the risk of
scrambling in the synthetic oxo precursors of this side chain. Be-
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Scheme 3. Synthesis of deuterated side chain. Reagents and conditions: (a) Wilkinson’s
CH2Cl2, 0 �C to rt, 6 h, 75% (two steps); (d) PPh3, CH3CN, 70 �C, 96%; (e) NaI, CH3CN, rt, 97%
rt, 6 h, 80% (two steps).
cause of the presence of the x3-double bond in 24 and 25, we
elected to introduce four deuterium atoms in positions 19 and 20
of these molecules.

Synthesis: The most difficult step in our prior synthesis of tetra-
deutero iPF4a-VI was the isolation of deuterated propanol 32
(Scheme 3).15 The continuation of the synthesis to obtain derivative
38 was impractical at that point because of the dwindling yields due
to the multistep synthesis. We elected at that time to redesign the
synthesis by extending the isoprostane synthon by three additional
carbons and reacting it with deuterated synthon 35.15 This was
hardly a fruitful alternative since the isoprostane synthon requires
a multistep synthesis, making the synthesis completely linear rather
than convergent, which was our original intention.
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catalyst, benzene, D2, 97%; (b) Me2AlCl, CH2Cl2, �25 �C to rt, 8 h; (c) TsCl, pyridine,
; (b) (f) KHMDS, THF,�90 �C to rt, 85%; (g) 1 N HCl, THF, rt; (h) TsCl, pyridine, CH2Cl2,
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In the present study we circumvented the volatility issue in two
ways. We used a non-volatile tosylate intermediate and a very effi-
cient procedure to convert a tosylate phosphonium salt into an io-
dide derivative, as the use of the phosphonium tosylate by itself
results in low yields in a Wittig reaction. Transformation of tosyl-
ate salts 34 and 40 to iodides 35 and 41, respectively, proceeds in
quantitative yields. We were surprised to note that the literature
does not contain examples of such transformations. This can be a
useful general procedure to deal with deuterium labeled small
molecules.

Scheme 3 describes the synthesis of the deuterated side chain,
which was subsequently connected to the 5-membered all-syn iso-
prostane ring. Using commercial propargyl alcohol as our starting
material, the alcohol was protected using THP. The acetylene deriv-
ative 30 (Scheme 3) was then treated with Wilkinson’s catalyst in
the presence of deuterium gas to generate the deuterated interme-
diate 31, which on further treatment with dimethyl aluminum
chloride generated the low-boiling volatile three-carbon alcohol
32. Attempts to isolate this alcohol resulted in very low recovery.
The crude 32, which was used without purification or workup in
the next step, was treated with TsCl to generate tosylate 33. After
workup and purification, 33 was treated with triphenyl phosphine
in the presence of CH3CN to generate the phosphonium salt 34,
which was purified by column chromatography. We attempted to
react 34 with aldehyde 36 and obtained a low yield of the desired
product 37 (22–38%). By changing the tosylate to an iodide using
sodium iodide, we obtained the iodo phosphonium salt 35.17 This
was then used in a Wittig reaction with aldehyde 36 to obtain
the desired product in 85% isolated yield. A cursory look at the lit-
erature reveals that tosylate salts, when used in Wittig reactions,
afford low yields of the desired products. It is worth mentioning
that an attempt to prepare the tetradeutero propyl iodide from



Figure 1. High Performance Liquid Chromatography: The UHPLC was performed
using an Accela solvent delivery system (Thermo, Waltham, MA) and a column of
Hypersil GOLD C18 (2) (200 mm � 2.1 mm; 1.9 lm particle size column; Thermo).
The mobile phase consisted of water (solvent A) and acetonitrile:methanol (95:5,
solvent B), both with 0.005% acetic acid adjusted to pH 5.7 with ammonium
hydroxide. The flow rate was 350 ll/min. The separations involved various linear
solvent gradient programs.
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32 resulted in very low yield of the iodo derivative, probably due to
volatility problems. As shown in Scheme 3, phosphonium salt 41
was prepared in good yield by a similar sequence (Panel B). Scheme
4 describes the stereospecific synthesis of d4-5-epi-8,12-iso-iPF3a-
VI 55 and d4-8,12-iso-iPF3a-VI 64.18 For reasons of clarity we have
included the first few structures, which we have previously dis-
closed.15 Step u, Scheme 4B afforded in addition to the desired
product 60, 8–9% of the cis derivative 59. The isomerization proce-
dure works well also on the crude mixture and no special purifica-
tion and isolation of 59 is necessary. The transformation of bis-TES
56 to a TES aldehyde 57 was accomplished in high yields using
Spur’s procedure.19

Metabolism: The iPs 24 and 25 (Scheme 2) can be formed by the
direct autooxidation of EPA as shown in Scheme 1. Alternatively,
these iPs can be formed as a result of b-oxidation of DHA-derived
neuroprostanes (nPs) as shown in Scheme 5, which we have previ-
ously demonstrated in the case of isomers of 65.8 Furthermore we
and others have shown the DHA-derived nPs could not be detected
in urine, a fact we interpreted as being due to b-oxidation.8,9 Since
iPs such as 24 and 25 are resistant to b-oxidation we were readily
able to measure them in urine. Hence the measurement of 24 and
25, which we have accomplished in human and murine urine,14 is
an indication of the in vivo formation of either or both EPA-derived
iPs and DHA-derived nPs that have been converted to the corre-
sponding C20 derivatives by endogenous b-oxidation. Figure 1 shows
LC/MS/MS chromatogram of tetradeutero isoprostones 55 and 64.
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