A Novel Solid-Phase Synthetic Method for 1,4-Benzodiazepine-2,5-dione Derivatives

Moon-Kook Jeon,* Jeong-Jin Kwon, Myung-Su Kim, Young-Dae Gong

Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong-gu, Daejeon, 305-600, Korea Fax +82(42)8607694; E-mail: moteta@krict.re.kr Received 18 March 2008

Abstract: Utilizing polymer-bound anthranilic acid derivatives 1, we were able to obtain the 1,4-benzodiazepine-2,5-dione derivatives 3 ($R^3 = H, R^4 = H, MeO, CI$) through an unprecedented reaction sequence, reductive alkylation–N-protected amino acid coupling–deprotective cyclization, in 28–71% five-step overall isolated yields and 95–99% purities from Wang resin 4. Applying the novel protocol to the resin 2, the 7-benzamido-1,4-benzodiazepine-2,5-dione derivatives 3 ($R^1 = Bn, R^4 = 7$ -BzNH) could be obtained in 19–42% seven- or eight-step overall isolated yields and 92–98% purities from AMEBA resin 7.

Key words: combinatorial chemistry, solid-phase synthesis, anthranilic acid, benzodiazepine, cyclative cleavage

Solid-phase synthesis of combinatorial libraries has emerged as a powerful tool for efficient drug discovery process.¹ We have recently been exploring the potential of resin-bound anthranilic acid derivatives **1** and **2** as versatile intermediates for combinatorial generation of druglike heterocyclic compound libraries² (Figure 1). Herein we would like to present a novel solid-phase synthetic method for 1,4-benzodiazepine-2,5-dione derivatives **3** from resin-bound anthranilic acid derivatives **1** and **2**.

Recently 1,4-benzodiazepine-2,5-dione derivatives, a subclass of general 1,4-benzodiazepines,³ have attracted much attention for their interesting biological properties including the potential as a scaffold for RGD peptidomimetics,^{4a} GPIIbIIIa-fibrinogen interaction antagonistic activity for antithrombotic agents,^{4a–d} p53-HDM2 interaction antagonistic activity,^{4e–h} cytotoxic^{4i–k} and antiproliferative^{4l} activities, cell adhesion inhibitory activity,^{4m} and HDAC inhibitory activity⁴ⁿ for anticancer agents, IgE synthesis inhibitory activity in human B-cells for treatment of allergic diseases,^{4o} GHS receptor antagonistic activity for treatment of obesity and related disorders,^{4p} and endothelin receptor antagonistic activity.^{4q}

The 1,4-benzodiazepine-2,5-dione skeleton was constructed in solution phase according to the following methods: (i) cyclization of 2-nitrobenzamides,^{4i,5a-c} 2-azidobenzamides,^{5d-f} or N-protected 2-aminobenzamides^{5g-i} prepared from α -amino esters or *N*-carboxy amino acid anhydrides, (ii) postmodification of Ugi four-component condensation products from anthranilic acids or 2-nitrobenzoic acids,⁶ (iii) condensation of isatoic anhydrides

Figure 1

with α -amino acids or esters,^{4a,7} (iv) ring closure of *N*-(α -haloacetyl) derivatives of 2-aminobenzamides,^{4a,8} (v) treatment of *N*-(α -haloacetyl) derivatives of anthranilates with ammonia,⁹ (vi) palladium-catalyzed carbonylative cyclization of *N*-(α -aminoacetyl) derivatives of 2-haloa-nilines.¹⁰ Some other methods were also reported involving the reaction of α -amino ester coupled 2-carboxyphenyl triflate and ammonia^{11a} and the condensation of 2-aminobenzamide and 2-phenyl-4-arylideneox-azolinones.^{11b}

On the other hand, there were several reports regarding the solid-phase synthetic methods for 1,4-benzodiazepine-2,5-dione-based libraries. The first protocol in solution phase was actively adapted to the solid-phase synthesis of 1,4-benzodiazepine-2,5-dione derivatives varying the resin, attachment site, and substituents.^{40,12} Utilization of Ugi four-component condensation products was also reported to afford 1,4-benzodiazepine-2,5-dione derivatives through postcleavage cyclization starting from the resin-bound isonitriles, $^{13a-c}$ the resin-bound α -amino acids,^{13d} or the resin-bound anthranilic acids.^{13e} In addition, the solid-phase synthesis of 1,4-benzodiazepine-2,5dione derivatives was performed utilizing the condensation of resin-bound isatoic anhydrides and α -amino acids.14 As an example of so-called solid/solution-phase annulation (SPAn) reagents, the N-(α -bromoacetyl) derivative of a resin-bound anthranilic acid was utilized for the preparation of 1,4-benzodiazepine-2,5-dione derivatives from primary amines.¹⁵

Nearly all these reported solid-phase synthetic methods except the corresponding example of SPAn reagents are characterized by the common reaction sequence that forms the 1,4-benzodiazepine-2,5-dione skeleton through the prior formation of the amide bond between N-4 and C-5 and subsequent linkage between N-1 and C-2. On the other hand, it may be understood that it is needed to ex-

SYNLETT 2008, No. 11, pp 1651–1656 Advanced online publication: 11.06.2008 DOI: 10.1055/s-2008-1078484; Art ID: U02208ST © Georg Thieme Verlag Stuttgart · New York

Figure 2

ploit the R⁴ substituent as well as the R¹, R², and R³ substituents in order to fully realize the potential of the 1,4benzodiazepine-2,5-dione scaffold for construction of combinatorial libraries from the inspection of some examples 1,4-benzodiazepine-2,5-dione of derivatives (Figure 2, structure 3). As a novel approach to solid-phase synthesis of 1,4-benzodiazepine-2,5-dione derivatives, we envisioned that the resin-bound anthranilic acid derivatives 1 and 2 could be adapted to an unprecedented reaction sequence, even in solution phase, that constructs the ring skeleton through the prior formation of the amide bond between N-1 and C-2 and subsequent linkage between N-4 and C-5 using N-protected amino acids as connecting building blocks,¹⁶ and that in particular the intermediate resin 2 could provide 1,4-benzodiazepine-2,5-dione derivatives encompassing diverse amino-related functional groups for \mathbb{R}^4 substituent (Schemes 1 and 2).

In order to confirm the possibilities, we first started the investigation from the resin-bound anthranilic acid derivatives **1** prepared by our previously reported procedure^{2a,b} from Wang resin **4** (Scheme 1). The *N*-benzylation of the resin **1a** ($\mathbb{R}^4 = \mathbb{H}$) under the reported conditions^{2a} gave the *N*-benzylated anthranilate resin **5a** ($\mathbb{R}^4 = \mathbb{H}$, $\mathbb{R}^1 = \mathbb{B}n$). Reaction of the intermediate **5a** with *N*-Fmoc-protected phenylalanine ($\mathbb{R}^2 = \mathbb{B}n$, 3 equiv) in the presence of POCl₃ (3 equiv) and pyridine (6 equiv) in CH₂Cl₂ at room temperature afforded the amino acid coupled anthranilate resin **6a**

 $(R^4 = H, R^1 = Bn, R^2 = Bn)$.¹⁷ Deprotection of the resin **6a** in 20% piperidine-DMF at room temperature directly furnished the 1,4-benzodiazepine-2,5-dione derivative 3a (Table 1) through the subsequent spontaneous cyclative cleavage¹⁸ in one pot. Although the racemization-prone phenylalanine was used,¹⁹ significant racemization was not observed for the reaction sequence (<1%) as determined by chiral HPLC analysis of the derivative 3a compared with that of the corresponding racemic reference. The reaction sequence was successfully applied to the resin-bound anthranilic acid derivatives 1 under the above established conditions to afford some 1,4-benzodiazepine-2,5-dione derivatives **3** ($\mathbb{R}^3 = \mathbb{H}$) in 28–71% fivestep overall isolated yields and 95-99% purities from Wang resin 4 as summarized in Table 1. The solid-phase reactions to the final products 3 were checked by on-bead ATR-FTIR spectroscopy and the compounds 3 in Table 1 are unknown except $3a^{4n}$ and $3e^{20}$ and all final products **3a-o** were characterized on the basis of ¹H NMR, ¹³C NMR, and LC–UV–MS spectral data.

Utilizing the novel protocol established for the resinbound anthranilic acid derivatives **1** (Scheme 1), we proceeded to the preparation of the 1,4-benzodiazepine-2,5dione derivatives **3** with amino-related benzamido functionality at the 7-position from the resin intermediate **2** (Scheme 2). The resin intermediate **2**, prepared on the basis of our previously reported procedure,^{2b} was subjected

Scheme 1

Synlett 2008, No. 11, 1651-1656 © Thieme Stuttgart · New York

Table 1Yields and Purities of Compounds $3a-o$ ($R^3 =$	H)	
--	----	--

Compd.	. R ⁴	R^1	R ²	Yield (%) ^a	Purity (%) ^b
3 a	Н	Bn	Bn	52	99
3b	Н	Bn	s-Bu	49	98
3c	Н	Bn	<i>i</i> -Bu	65	99
3d	Н	Bn	Me	46	99
3e	Н	Bn	Н	38	99
3f	Н	4-MeOBn	Bn	66	99
3g	Н	4-FBn	Bn	68	95
3h	Н	4-O ₂ NBn	Bn	70	99
3i	MeO	Bn	Bn	37	99
3j	MeO	2-MeBn	Bn	41	99
3k	MeO	3-FBn	Bn	39	98
31	MeO	<i>i</i> -Bu	Bn	29	99
3m	Cl	Bn	Bn	71	99
3n	Cl	4-NCBn	Bn	65	99
30	Cl	pyridyl-3-methyl	Bn	28	99

^a Five-step overall isolated yields from Wang resin 4 (loading capacity = 0.92 mmol/g) after silica gel column chromatography.

^b Determined on the basis of LC-UV(200-400 nm)-MS spectrum of the isolated products after silica gel column chromatography.

to the reaction sequence (reductive alkylation using benzaldehyde, Fmoc-protected amino acid coupling, and deprotective cyclization) to afford the resin-bound 1,4benzodiazepine-2,5-dione derivatives 9. The cleavage of the resins 9 was accomplished in 50% TFA-CH₂Cl₂ at room temperature successfully to give the final products, 7-benzamido-1,4-benzodiazepine-2,5-dione derivatives 3 $(R^1 = Bn, R^3 = H, R^4 = 7-BzNH)$ in 35–42% seven-step overall isolated yields and 92-98% purities from AMEBA resin 7. The results are summarized in Table 2. To exploit the possibility for the preparation of 1,4-benzodiazepine-2,5-diones with substituents at the 4-position, the resin 9 $(R^2 = H)$ was treated with benzyl bromide (3 equiv) in the presence of Cs₂CO₃ (3 equiv) in DMF at 60 °C, and the subsequent cleavage in 50% TFA-CH₂Cl₂ at room temperature gave the expected N-benzylated product 3u (R¹ = $R^3 = Bn, R^2 = H, R^4 = 7$ -BzNH) in 19% eight-step overall isolated yield and 96% purity from AMEBA resin 7. Similarly in the case of the resin 1, the solid-phase reactions in Scheme 2 were also checked by on-bead ATR-FTIR spectroscopy. Significant racemization was not observed for the reaction sequence (<1%) as determined by chiral HPLC analysis of the derivative **3p**. The compounds **3** $(R^4 = 7$ -BzNH) in Table 2 are all unknown and were characterized on the basis of ¹H NMR, ¹³C NMR, and LC-UV–MS spectral data.

In conclusion, we were able to establish a novel efficient protocol for the construction of 1,4-benzodiazepine-2,5dione skeleton utilizing the resin-bound anthranilic acid derivatives 1 and 2^{21} The reaction sequence, reductive alkylation-N-protected amino acid coupling-deprotective

OMe

NΗ

Β'n

benzaldehyde NaBH(OAc)₃ DCE, r.t.

TFA

3u ($R^1 = R^3 = Bn$, $R^2 = H$, $R^4 = 7$ -BzNH)

Scheme 2

Synlett 2008, No. 11, 1651-1656 © Thieme Stuttgart · New York

cyclization, was unprecedented even in solution phase and in particular the intermediate resin **2** enabled us to exploit the diverse amino-related functionalities at the 7-position of the scaffold. The examination of the scope and limitation of the protocol for diversification of the substituents of 1,4-benzodiazepine-2,5-dione skeleton is currently in progress focusing on the amino-related functionalities other than amido group.

Table 2Yields and Purities of the Compounds 3p-u (R⁴ = 7-BzNH)

Compound R ¹		\mathbb{R}^2	\mathbb{R}^3	Yield (9	%) ^a Purity (%) ^b
3р	Bn	Bn	Н	40	98
3q	Bn	<i>i</i> -Bu	Н	35	95
3r	Bn	<i>i</i> -Pr	Н	39	93
3s	Bn	Me	Н	42	95
3t	Bn	Н	Н	38	92
3u	Bn	Н	Bn	19	96

^a Seven- or eight-step overall isolated yields from AMEBA resin **7** (loading capacity = 1.6 mmol/g) after silica gel column chromatography.

^b Determined on the basis of LC–UV (200–400 nm)–MS spectrum of the isolated products after silica gel column chromatography.

Acknowledgment

We are grateful to the Center for Biological Modulators and the Korea Research Institute of Chemical Technology for financial support of this research.

References and Notes

- Dolle, R. E.; Le Bourdonnec, B.; Goodman, A. J.; Morales, G. A.; Salvino, J. M.; Zhang, W. J. Comb. Chem. 2007, 9, 855.
- (2) (a) Jeon, M.-K.; La, H. J.; Ha, D.-C.; Gong, Y.-D. Synlett
 2007, 1431. (b) Jeon, M.-K.; Kim, D.-S.; La, H. J.; Ha, D.-C.; Gong, Y.-D. Tetrahedron Lett. 2005, 46, 7477. (c) Jeon, M.-K.; Kim, D.-S.; La, H. J.; Gong, Y.-D. Tetrahedron Lett. 2005, 46, 4979.
- (3) For a general reference for 1,4-benzodiazepines, see: Tucker, H.; Le Count, D. J. *1,4-Diazepines*, In *Comprehensive Heterocyclic Chemistry II*, Vol. 9; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon: Oxford, **1996**, 151–182.
- (4) (a) McDowell, R. S.; Blackburn, B. K.; Gadek, T. R.; McGee, L. R.; Rawson, T.; Reynolds, M. E.; Robarge, K. D.; Somers, T. C.; Thorsett, E. D.; Tischler, M.; Webb, R. R. II.; Venuti, M. C. J. Am. Chem. Soc. 1994, 116, 5077.
 (b) Blackburn, B.; Barker, P.; Gadek, T.; McDowell, R.; McGee, L.; Somers, T.; Webb, R.; Robarge, K. Int. Patent, WO 9308174, 1993; Chem. Abstr. 1994, 120, 217745.
 (c) Blackburn, B.; Olivero, A. G.; Robarge, K. Int. Patent, WO 9846576, 1998; Chem. Abstr. 1998, 129, 316247.
 (d) Claremon, D. A.; Liverton, N. Int. Patent, WO 9422825, 1994; Chem. Abstr. 1995, 122, 56059. (e) Parks, D. J.; LaFrance, L. V.; Calvo, R. R.; Milkiewicz, K. L.; Gupta, V.; Lattanze, J.; Ramachandren, K.; Carver, T. E.; Petrella, E.

C.; Cummings, M. D.; Maguire, D.; Grasberger, B. L.; Lu, T. Bioorg. Med. Chem. Lett. 2005, 15, 765. (f) Marugan, J. J.; Leonard, K.; Raboisson, P.; Gushue, J. M.; Calvo, R.; Koblish, H. K.; Lattanze, J.; Zhao, S.; Cummings, M. D.; Player, M. R.; Schubert, C.; Maroney, A. C.; Lu, T. Bioorg. Med. Chem. Lett. 2006, 16, 3115. (g) Leonard, K.; Marugan, J. J.; Raboisson, P.; Calvo, R.; Gushue, J. M.; Koblish, H. K.; Lattanze, J.; Zhao, S.; Cummings, M. D.; Player, M. R.; Maroney, A. C.; Lu, T. Bioorg. Med. Chem. Lett. 2006, 16, 3463. (h) Koblish, H. K.; Zhao, S.; Franks, C. F.; Donatelli, R. R.; Tominovich, R. M.; LaFrance, L. V.; Leonard, K. A.; Gushue, J. M.; Parks, D. J.; Calvo, R. R.; Milkiewicz, K. L.; Marugan, J. J.; Raboisson, P.; Cummings, M. D.; Grasberger, B. L.; Johnson, D. L.; Lu, T.; Molloy, C. J.; Maroney, A. C. Mol. Cancer Ther. 2006, 5, 160. (i) Kamal, A.; Laxman, N.; Ramesh, G.; Neelima, K.; Kondapi, A. K. Chem. Commun. 2001, 437. (j) Kamal, A.; Ramesh, G.; Laxman, N.; Ramulu, P.; Scrinivas, O.; Neelima, K.; Kondapi, A. K.; Sreenu, V. B.; Nagarajaram, H. A. J. Med. Chem. 2002, 45, 4679. (k) Nakatani, S.; Yamamoto, Y.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Chem. Pharm. Bull. 2004, 52, 368. (1) Machii, D.; Umehara, H.; Yamashita, Y.; Suda, T.; Miki, I.; Ambrosi, H.; Frormann, S. Int. Patent, WO 2005040172, 2005; Chem. Abstr. 2005, 142, 447237. (m) Zilg, C.; Mulhaupt, R.; Finter, J. Int. Patent, WO 2001004193, 2001; Chem. Abstr. 2001, 134, 116623. (n) Loudni, L.; Roche, J.; Potiron, V.; Clarhaut, J.; Bachmann, C.; Gesson, J.-P.; Tranoy-Opalinski, I. Bioorg. Med. Chem. Lett. 2007, 17, 4819 (o) Ettmayer, P.; Chloupek, S.; Weigand, K. J. Comb. Chem. 2003, 5, 253. (p) Chen, X.; Chen, X.; Connors, R. V.; Dai, K.; Fu, Y.; Jaen, J. C.; Kim, Y.-J.; Li, L.; Lizarzaburu, M. E.; Mihalic, J. T.; Shuttleworth, S. J. Int. Patent, WO 2006020959, 2006; Chem. Abstr. 2006, 144, 350725. (q) Cheng, M.-F.; Yu, H.-M.; Ko, B.-W.; Chang, Y.; Chen, M.-Y.; Ho, T.-I.; Tsai, Y.-M.; Fang, J.-M. Org. Biomol. Chem. 2006, 4, 510.

- (5) (a) Tapia, R. A.; Centella, C. R.; Valderrama, J. A. Synth. Commun. 1999, 29, 2163. (b) Karp, G. M. J. Org. Chem.
 1995, 60, 5814. (c) Thurston, D. E.; Jones, G. B.; Davis, M. E. J. Chem. Soc., Chem. Commun. 1990, 874. (d) Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R. Tetrahedron Lett.
 2002, 43, 6629. (e) Sugimori, T.; Okawa, T.; Eguchi, S.; Kakehi, A.; Yashima, E.; Okamoto, Y. Tetrahedron 1998, 54, 7997. (f) Molina, P.; Díaz, I.; Tárraga, A. Tetrahedron 1995, 51, 5617. (g) He, F.; Foxman, B. M.; Snider, B. B. J. Am. Chem. Soc. 1998, 120, 6417. (h) Akssira, M.; Boumzebra, M.; Kasmi, H.; Dahdouh, A.; Roumestant, M. L.; Viallefont, P. Synth. Commun. 1993, 23, 2265. (i) Akssira, M.; Boumzebra, M.; Kasmi, H.; Dahdouh, A.; Roumestant, M. L.; Viallefont, P. Tetrahedron 1994, 50, 9051.
- (6) (a) Faggi, C.; Marcaccini, S.; Pepino, R.; Pozo, M. C. Synthesis 2002, 2756. (b) Lindhorst, T.; Bock, H.; Ugi, I. Tetrahedron 1999, 55, 7411. (c) Hulme, C.; Peng, J.; Tang, S.-Y.; Burns, C. J.; Morize, I.; Labaudiniere, R. J. Org. Chem. 1998, 63, 8021. (d) Keating, T. A.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8935. (e) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574.
- (7) (a) Hu, W.-P.; Wang, J.-J.; Lin, F.-L.; Lin, Y.-C.; Lin, S.-R.; Hsu, M.-H. J. Org. Chem. 2001, 66, 2881. (b) Kamal, A.; Reddy, B. S. N.; Reddy, G. S. K. Synlett 1999, 1251.
 (c) Jolivet-Fouchet, S.; Fabis, F.; Bovy, P.; Ochsenbein, P.; Rault, S. Heterocycles 1999, 51, 1257. (d) Nagasaka, T.; Koseki, Y. J. Org. Chem. 1998, 63, 6797. (e) Bhat, B.; Harrison, D. M. Tetrahedron 1993, 49, 10655. (f) Kamal, A. J. Org. Chem. 1991, 56, 2237.

- (8) (a) Ho, T.-I.; Chen, W.-S.; Hsu, C.-W.; Tsai, Y.-M.; Fang, J.-M. *Heterocycles* 2002, *57*, 1501. (b) Kazmierski, W. M.; McDermed, J. D. *Synth. Commun.* 2000, *30*, 2629. (c) Juaristi, E.; León-Romo, J. L.; Ramírez-Quirós, Y. *J. Org. Chem.* 1999, *64*, 2914. (d) Webb, R. R. II.; Barker, P. L.; Baier, M.; Reynolds, M. E.; Robarge, K. D.; Blackburn, B. K.; Tischler, M. H.; Weese, K. J. *Tetrahedron Lett.* 1994, *35*, 2113.
- (9) (a) Churcher, I.; Ashton, K.; Butcher, J. W.; Clarke, E. E.; Harrison, T.; Lewis, H. D.; Owens, A. P.; Teall, M. R.; Williams, S.; Wrigley, J. D. J. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 179. (b) Cho, N. S.; Song, K. Y.; Párkányi, C. J. Heterocycl. Chem. **1989**, *26*, 1807.
- (10) (a) Mori, M.; Uozumi, Y.; Ban, Y. J. Chem. Soc., Chem. Commun. 1986, 841. (b) Mori, M.; Kimura, M.; Uozumi, Y.; Ban, Y. Tetrahedron Lett. 1985, 26, 5947.
- (11) (a) Kraus, G. A.; Liu, P. *Tetrahedron Lett.* **1995**, *36*, 7595.
 (b) Subhashini, N. J. P.; Hanumanthu, P. *Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.* **2000**, *39*, 198.
- (12) (a) Boojamra, C. G.; Burow, K. M.; Ellman, J. A. J. Org. Chem. 1995, 60, 5742. (b) Boojamra, C. G.; Burow, K. M.; Thompson, L. A.; Ellman, J. A. J. Org. Chem. 1997, 62, 1240. (c) Cheng, M.-F.; Fang, J.-M. J. Comb. Chem. 2004, 6, 99. (d) Goff, D. A.; Zuckermann, R. N. J. Org. Chem. 1995, 60, 5744. (e) Mayer, J. P.; Zhang, J.; Bjergarde, K.; Lenz, D. M.; Gaudino, J. J. Tetrahedron Lett. 1996, 37, 8081. (f) Smith, R. A.; Bobko, M. A.; Lee, W. Bioorg. Med. Chem. Lett. 1998, 8, 2369. (g) Migihashi, C.; Sato, F. J. Heterocycl. Chem. 2003, 40, 143. (h) Kamal, A.; Reddy, G. S. K.; Raghavan, S. Bioorg. Med. Chem. Lett. 2001, 11, 387. (i) Kamal, A.; Reddy, G. S. K.; Reddy, K. L.; Raghavan, S. Tetrahedron Lett. 2002, 43, 2103.
- (13) (a) Hulme, C.; Peng, J.; Morton, G.; Salvino, J. M.; Herpin, T.; Labaudiniere, R. *Tetrahedron Lett.* **1998**, *39*, 7227.
 (b) Kennedy, A. L.; Fryer, A. M.; Josey, J. A. Org. Lett. **2002**, *4*, 1167. (c) Chen, J. J.; Golebiowski, A.; Klopfenstein, S. R.; West, L. *Tetrahedron Lett.* **2002**, *43*, 4083. (d) Hulme, C.; Ma, L.; Kumar, N. V.; Krolikowski, P. H.; Allen, A. C.; Labaudiniere, R. *Tetrahedron Lett.* **2000**, *41*, 1509. (e) Dener, J. M. Int. Patent, WO 2000056721, **2000**; *Chem. Abstr.* **2000**, *133*, 266873.
- (14) Kamal, A.; Reddy, K. L.; Shankaraiah, V. D. N. *Synlett* **2004**, 1841.
- (15) Dolle, R. E.; MacLeod, C.; Martinez-Teipel, B.; Barker, W.; Seida, P. R.; Herbertz, T. Angew. Chem. Int. Ed. 2005, 44, 5830.
- (16) A referee pointed out a report in which the solution-phase synthesis of 1,4-benzodiazapine-2,5-dione using a similar strategy was described. See: Gordon-Wylie, S. W.; Teplin, E.; Morris, J. C.; Trombley, M. I.; McCarthy, S. M.; Cleaver, W. M.; Clark, G. R. *Crystal Growth Design* **2004**, *4*, 789.
- (17) Although several other conditions for the resin 5a and *N*-Fmoc-protected phenylalanine ($R^2 = Bn$, 3 equiv) were examined varying coupling agent [DCC, DIC, EDC, Obenzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU), BOP, PyBOP, 2-chloro-1,3dimethylimidazolidium hexafluorophosphate (CIP), 1,1'carbonyldiimidazole (CDI), N,N'-disuccinimidyl carbonate (DSC), or diphenylphosphoryl azide (DPPA)], additive [none, N-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), or N-hydroxysuccinimide (HOSu)], base [none, pyridine, Et₃N, diisopropylethylamine (DIEA), or NMM], solvent [CH₂Cl₂, THF, DMF, or N,N-dimethylacetamide (DMA)] at r.t. or elevated temperatures, they did

not bring any significant change on the resin 5a when judged on the basis of on-bead ATR-FTIR spectroscopy.

- (18) For a recent review on cyclative cleavage strategy, see: Pernerstorfer, J. In *Combinatorial Chemistry*; Bannwarth, W.; Hinzen, B., Eds.; Wiley-VCH: Weinheim, **2006**, 111– 142.
- (19) Kovacs, J. Racemization and Coupling Rates of N-α-Protected Amino Acid and Peptide Active Esters: Predictive Potential, In The Peptides, Vol. 2; Gross, E.; Meienhofer, J., Eds.; Academic: New York, **1980**, 485–539.
- (20) Mohiuddin, G.; Reddy, P. S. N.; Ahmed, K.; Ratnam, C. V. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1985, 24, 905.
- (21) Representative Procedures for Preparation of Compounds 3 Preparation of (S)-2-{Benzyl[2-(Fmoc-amino)-3phenylpropionyl]amino}benzoate Resin (6a; R⁴ = H, R¹ = Bn, R² = Bn): To a mixture of the resin 5a^{2a,b} (R⁴ = H, R¹ = Bn, 100 mg, theoretically 0.077 mmol) and Fmocphenylalanine (93 mg, 0.23 mmol) in CH₂Cl₂ (2 mL) at r.t. were added pyridine (37 mg, 0.46 mmol) and phosphorous oxychloride (37 mg, 0.23 mmol). The mixture was stirred at r.t. for 10 h and the resin was filtered, washed several times with CH₂Cl₂, DMF, MeOH, H₂O, and MeOH, and dried in a vacuum oven to give 6a (124 mg). On-bead ATR-FTIR: 3418 (NH), 3028, 2921, 1722 (OC=O, NH-Fmoc, overlapped), 1664 (NC=O), 1601, 1512, 1492, 1451, 1241, 1076, 1028, 824, 757, 738, 697 cm⁻¹.

Preparation of (S)-1,3-Dibenzyl-1,4-benzodiazepine-2,5dione (3a; $R^4 = H$, $R^1 = Bn$, $R^2 = Bn$): To the resin 6a ($R^4 =$ H, $R^1 = Bn$, $R^2 = Bn$, 124 mg, theoretically 0.074 mmol) was added 20% piperidine-DMF (2 mL) and the mixture was stirred at r.t. for 7.5 h. The mixture was filtered and washed with CH₂Cl₂. The filtrate was evaporated in vacuo and the residue was purified by a silica gel column chromatography (n-hexane-EtOAc, 1:1) to afford 3a (14 mg, 52%; 99% purity on the basis of LC-UV-MS spectrum). Chiral HPLC analysis of the derivative 3a was performed using CHIRALCEL OD-H (0.46 × 25 cm, DAICEL) column, 10% EtOH in hexane eluent at 0.6 mL/min flow rate, and UV detector at $\lambda = 254$ nm and showed a major peak at the $t_{\rm R} =$ 22.40 min and a trace (<1%) at $t_{\rm R}$ = 20.20 min. In the case of the corresponding racemic reference prepared from racemic phenylalanine by the same method, the HPLC spectrum showed two peaks at $t_{\rm R} = 21.87$ and 23.17 min under the same conditions. ¹H NMR (500 MHz, CDCl₃): δ = 3.08 (dd, J = 7.9, 14.5 Hz, 1 H), 3.48 (dd, J = 6.7, 14.5 Hz, 1 H), 4.14 (m, 1 H), 5.10 (d, J = 15.7 Hz, 1 H), 5.14 (d, J = 15.7 Hz, 1 H), 6.74 (br d, J = 5.4 Hz, 1 H), 7.10 (d, J = 7.2 Hz, 2 H), 7.20-7.30 (m, 10 H), 7.44 (dt, J = 1.5, 8.4 Hz, 1 H), 7.80 (dd, J = 1.5, 7.8 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃): $\delta = 34.8,$ 52.2, 53.8, 122.3, 126.2, 126.8, 127.1, 127.5, 128.8, 129.4, 130.4, 132.6, 136.3, 136.6, 140.1, 168.4, 169.7 (shortage of two aromatic carbon peaks maybe due to peak overlapping). ESI-MS: $m/z = 357 [M + H]^+$.

Preparation of Methyl 5-Benzamido-2-benzylaminobenzoate Resin (8): To a mixture of the resin 2^{2b} (460 mg, theoretically 0.53 mmol), prepared from AMEBA resin (1.6 mmol/g), and benzaldehyde (169 mg, 1.59 mmol) in DCE (5 mL) at r.t. was added NaBH(OAc)₃ (338 mg, 1.59 mmol). The mixture was stirred at r.t. for 5 h and the resin was filtered, washed several times with CH₂Cl₂, DMF, MeOH, H₂O and MeOH, and dried in a vacuum oven to give **8** (482 mg). On-bead ATR–FTIR: 3365 (NH), 3026, 2922, 1681 (OC=O), 1643 (NC=O), 1610, 1587, 1505, 1494, 1451, 1382, 1214, 1196, 1156, 1113, 1029, 819, 756, 697 cm⁻¹. **Preparation of (S)-Methyl 5-Benzamido-2-{benzyl[2-**

Synlett 2008, No. 11, 1651–1656 © Thieme Stuttgart · New York

(Fmoc-amino)-3-phenylpropionyl]amino}benzoate Resin ($\mathbf{R}^2 = \mathbf{Bn}$): To a mixture of the resin 8 (100 mg, theoretically 0.10 mmol) and Fmoc-phenylalanine (116 mg, 0.300 mmol) in CH₂Cl₂ (2 mL) at r.t. were added pyridine (47 mg, 0.60 mmol) and phosphorus oxychloride (46 mg, 0.30 mmol). The mixture was stirred at r.t. for 10 h and the resin was filtered, washed several times with CH₂Cl₂, DMF, MeOH, H₂O and MeOH, and dried in a vacuum oven to give the amino acid coupled intermediate resin ($\mathbf{R}^2 = \mathbf{Bn}$, 125 mg). On-bead ATR-FTIR: 3418 (NH), 3027, 2924, 1724 (OC=O, N-Fmoc, overlapped), 1650 (2 × NC=O, overlapped), 1611, 1504, 1493, 1450, 1264, 1197, 1159, 1030, 822, 757, 735, 698 cm⁻¹.

Preparation of (S)-7-Benzamido-1,3-dibenzyl-1,4benzodiazepine-2,5-dione Resin (9; \mathbb{R}^2 = \mathbb{Bn}): To the amino acid coupled intermediate resin ($\mathbb{R}^2 = \mathbb{Bn}$, 139 mg, theoretically 0.11 mmol) at r.t. was added 20% piperidine– DMF (2 mL). The mixture was stirred at r.t. for 7.5 h and the resin was filtered, washed several times with CH₂Cl₂, DMF, and MeOH, and dried in a vacuum oven to give **9** ($\mathbb{R}^2 = \mathbb{Bn}$, 112 mg). On-bead ATR-FTIR: 3418 (NH), 3027, 2923, 1662 (3 × NC=O, overlapped), 1610, 1493, 1450, 1263, 1195, 1158, 1115, 1031, 824, 734, 698 cm⁻¹.

Preparation of (*S*)-7-Benzamido-1,3-dibenzyl-1,4benzodiazepine-2,5-dione (3p; $R^1 = R^2 = Bn$, $R^3 = H$, $R^4 =$ 7-BzNH): To the resin 9 ($R^2 = Bn$, 112 mg, theoretically 0.10 mmol) at r.t. was added 50% TFA–CH₂Cl₂ (2 mL). The

mixture was stirred at r.t. for 12 h and the mixture was filtered and washed with CH2Cl2. The filtrate was evaporated in vacuo and the residue, dissolved in CH₂Cl₂, was passed through a SAX cartridge and washed with CH2Cl2. The filtrate was evaporated in vacuo and the residue was purified by a silica gel column chromatography (nhexane-EtOAc, 1:1) to afford 3p (19 mg, 40%; 98% purity on the basis of LC-UV-MS spectrum). Chiral HPLC analysis of the derivative 3p was performed using the same protocol as that for the derivative 3a and showed a major peak at $t_{\rm R}$ = 70.42 min and a trace (<1%) at $t_{\rm R}$ = 53.44 min. In the case of the corresponding racemic reference prepared from racemic N-Fmoc-phenylalanine by the same method, the HPLC spectrum showed two peaks at $t_{\rm R} = 52.28$ and 71.32 min under the same conditions: ¹H NMR (500 MHz, $CDCl_3$): $\delta = 3.00 (dd, J = 8.1, 14.4 Hz, 1 H), 3.43 (dd, J = 8.1, 14.4 Hz, 1 H)$ 6.5, 14.4 Hz, 1 H), 4.14 (m, 1 H), 5.02 (d, J = 15.5 Hz, 1 H), 5.17 (d, J = 15.5 Hz, 1 H), 6.31 (br, 1 H), 7.08 (d, J = 6.5 Hz)2 H), 7.16–7.28 (m, 9 H), 7.43 (t, J = 7.9 Hz, 2 H), 7.53 (t, J = 7.4 Hz, 1 H), 7.78 (d, J = 2.6 Hz, 1 H), 7.86 (d, J = 8.5Hz, 2 H), 8.32 (dd, J = 2.6, 8.9 Hz, 1 H), 8.84 (br s, 1 H). ¹³C NMR (125 MHz, CDCl₃): δ = 34.9, 52.1, 53.8, 121.3, 123.5, 124.8, 127.0, 127.2, 127.3, 127.6, 128.7, 128.8, 128.9, 129.3, 132.2, 134.5, 135.7, 135.9, 136.5, 136.7, 166.1, 168.1, 169.4 (shortage of one aromatic carbon peak maybe due to peak overlapping). ESI-MS: $m/z = 476 [M + H]^+$.