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ABSTRACT: O-Phenyloximes tethered to alkenes undergo 5-exo-trig iminyl
radical cyclizations upon microwave irradiation. Trapping of the resulting
cyclic radicals results in C−C, C−N, C−O, C−S, or C−X bond formation.
Allylic sulfides undergo a tandem cyclization−thiyl radical β-elimination,
affording terminal alkenes. The cyclizations exhibit a broad scope, and in some
cases they are highly diastereoselective. The pyrroline adducts are versatile
intermediates that can be transformed into a range of different species.

The chemistry of nitrogen-centered radicals1 is experienc-
ing a renaissance that has largely been fueled by the

development of new transformations mediated by photoredox
catalysts2 and other types of transition metal catalysts. Iminyl
radical cyclizations, which were pioneered by Zard,3 are an
important subset of nitrogen-centered radical reactions.4

Several recent reports describe the synthesis of functionalized
pyrrolines via 5-exo-trig cyclizations of iminyl radicals that are
generated via single-electron transfer (SET) reduction of O-
acyloximes or O-aryloximes. These processes require oxidation
of the cyclic adduct to facilitate catalyst turnover, which limits
the scope of reagents that can be used to trap and functionalize
the cyclic radical or cationic intermediate5 (Scheme 1a).
Inspired by Forrester’s seminal work,6 Studer7 and Leonori8

demonstrated that α-imino-oxy acids are useful substrates for

cyclizations featuring iminyl radical generation via SET
oxidation9 (Scheme 1b). The cyclic adducts produced in
these reactions are reduced to regenerate the catalyst, allowing
a complementary set of trapping agents to be employed when
compared to the reactions described above. Nonetheless, the
number of viable radical traps is still constrained by reliance on
a redox cycle. Additionally, base is required to deprotonate the
α-imino-oxy acids prior to iminyl radical generation via SET
oxidation.7−9 Accordingly, a method of forming iminyl radicals
that does not rely on SET10 would complement these
protocols by permitting the use of a wide range of radical
traps, thereby enabling construction of numerous function-
alized pyrrolines.
In 2007, Walton showed that microwave-promoted homo-

lytic cleavage of the weak N−O bond of O-phenyloximes
(BDE = ca. 35 kcal/mol)11 could trigger initiator- and catalyst-
free iminyl radical cyclizations that employ toluene as both
solvent and radical trap.12 By using solvents that do not readily
undergo hydrogen atom abstraction (e.g., PhCF3, CH3CN), we
modified this protocol and synthesized 2-acylpyrroles via 5-
exo-dig cyclizations and functionalized nitriles via fragmenta-
tions of iminyl radicals.13,14 A large number of radical traps are
compatible with the fragmentations, allowing formation of C−
C, C−O, C−N, or C−X bonds.14 Based on these results, we
reasoned that application of our protocol to Walton’s original
microwave-promoted pyrroline synthesis would enable trap-
ping of the cyclic radical intermediate with a host of agents,
greatly expanding the scope of this transformation (Scheme
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Scheme 1. Pyrrolines via Iminyl Radical Cyclizations
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1c). Herein we report the results of our study, which establish
microwave-promoted 5-exo-trig iminyl radical cyclizations as
convenient and user-friendly reactions that forge pyrrolines
endowed with diverse functionality. The broad scope of this
process can be attributed to the catalyst- and base-free
conditions as well as the absence of redox cycles. The
reactions are also fast, easy to perform, and in some cases
stereoselective.
We began by probing the microwave-promoted cyclization

of O-phenyloxime 1 in the presence of allylsulfone 2a15 (Table
1). This radical trap permitted convenient measurement of

reaction yields via 1H NMR spectroscopy. Performing the
cyclization at 100 °C in PhCF3 as solvent afforded a low yield
of pyrroline 3a (entry 1). Elevating the temperature to 120 °C
delivered better results (entry 2), but a further increase was not
beneficial (entry 3). Switching to a more polar solvent did not
significantly improve the yield (entries 4 and 5). Finally, we
were pleased to discover that extending the reaction time to 2
h furnished 3a in a satisfactory 72% isolated yield (entry 6).
We then evaluated several other radical traps in the

microwave-promoted cyclization of 1 (Figure 1). A host of
different reagents were viable, affording pyrrolines 3 in
generally good yields. For example, C−O bond formation
could be accomplished by trapping the cyclic radical
intermediate with TEMPO (entry 1). C−X bonds were forged
by employing CCl4,

16a CBr4,
17 or 2-iodopropane.18 (entries 2−

4). C−N and C−S bonds were constructed by using sulfonyl
azide 2f19 and xanthate 2g,20 respectively (entries 5 and 6).
Finally, C−C bond formation was achieved by trapping with
benziodoxolone-based hypervalent iodine reagent 2i21 (entry
8). The ability to install a diverse range of functional groups is
clearly a hallmark of this radical process that does not require
SET.
Unfortunately, use of Selectfluor16 (2h) as a radical trap

yielded only trace amounts of the desired fluorinated adduct
3h (entry 7). The major product (ca. 10−15%) was an adduct
of the cyclic radical intermediate with PhCF3. Apparently, the
rate of radical trapping by Selectfluor was slower than the rate
of trapping by the solvent. The poor solubility of Selectfluor in
PhCF3 was likely responsible for this problem. However, other
solvents such as CH3CN or CH3OH did not afford detectable
amounts of the desired product. Microwave irradiation of a
solution of 1 in PhCF3 in the absence of radical traps resulted
in slow formation of the PhCF3 adduct. Thus, practical radical

traps in these iminyl radical cyclizations must be able to
outcompete the solvent for the cyclic radical intermediate.
Substrates that can undergo β-elimination of a thiyl radical

after cyclization22 provide an attractive alternative to using
radical traps, as the resulting alkene can be elaborated to
introduce numerous functional groups. Accordingly, we
performed the cyclization of allylic sulfide 4 (Scheme 2).
Gratifyingly, this substrate reacted smoothly under microwave
irradiation to produce alkene-containing pyrroline 5 in good
yield.

Upon establishing the wide scope of the iminyl radical
cyclization with respect to radical traps, we subsequently
demonstrated the viability of various O-phenyloximes 6 in
iminyl radical cyclizations with TEMPO trapping (Scheme 3).
These substrates were readily obtained by condensation of the
corresponding ketones with O-phenylhydroxylamine hydro-
chloride (PhONH2·HCl). Replacement of the phenyl sub-
stituent in 1 with an alkyl group was permitted, albeit with a
somewhat lower cyclization yield (7a; cf. Figure 1, entry 1).
Alkyl substitution of the alkene acceptor at the distal (7b) or
proximal (7c) positions was also tolerated. The use of a cyclic
alkene substrate afforded cis-fused bicycle 7d as a 12:1 mixture
of C−O epimers with TEMPO trapping favored from the
convex face of the radical intermediate. A geminal dimethyl-

Table 1. Optimization of Cyclization Conditions

entry solvent temp (°C) time (min) yield of 3a (%)

1 PhCF3 100 60 20a

2 PhCF3 120 45 35a

3 PhCF3 130 45 30a

4 CH3OH 110 45 30a

5 CH3CN 120 120 41b

6 PhCF3 120 120 72b

aCalculated from 1H NMR spectra of reaction mixtures. bIsolated
yield.

Figure 1. Scope of radical traps in cyclizations of 1. Conditions were
PhCF3, 120 °C (μW), and 1−2 h unless otherwise specified.
aIrradiated at 110 °C for 5 h. bIrradiated at 120 °C for 3 h. The major
detected product was an adduct where the cyclic radical was trapped
with PhCF3.

cIrradiated at 110 °C for 2 h.

Scheme 2. Cyclization−Thiyl Radical β-Elimination
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substituted O-phenyloxime furnished pyrroline 7e in good
yield, demonstrating that 5-exo-trig cyclization of the iminyl
radical intermediate is faster than the undesired fragmentation
that would have afforded a tertiary radical in this case.
Interestingly, cyclizations of α- and β-hydroxy-substituted O-
phenyloximes afforded pyrrolines 7g and 7i with excellent
diastereoselectivity (15:1 and >20:1 dr, respectively), whereas
cyclizations of the corresponding methyl-substituted substrates
yielded pyrrolines 7f and 7h with negligible levels of selectivity
(1.4:1 and 2.4:1 dr, respectively). The reasons for this disparity
are unclear and will be the subject of future investigation. The
modest yields of 7g and 7i can at least partially be attributed to
degradation during the purification process that may be a result
of the labile nature of the alcohol moiety.
In an effort to probe the scalability of the reaction, ca. 1

mmol of O-phenyloxime 1 was subjected to microwave
irradiation in the presence of TEMPO. We were pleased to
find that pyrroline 3b was produced in good yield (Scheme 4,

eq 1). Additionally, conventional heating using an oil bath was
explored as an alternative to microwave irradiation. Although a
longer reaction time was required, cyclization of 1 in an oil
bath with TEMPO trapping proceeded in comparable yield to
the analogous microwave-mediated reaction (Scheme 4, eq 2).
Our results contrast with those of Walton and coworkers, who
observed lower yields when iminyl radical cyclizations were

promoted via conventional heating instead of microwave
irradiation.12 While the reason for this discrepancy is yet to be
determined, we are gratified that our iminyl radical cyclizations
are accessible to researchers who do not possess a microwave
reactor.
The pyrrolines generated by the iminyl radical cyclizations

are versatile and can be transformed into functionalized
pyrrolidines as illustrated in Scheme 5. Pd-catalyzed hydro-

genation of 3b afforded pyrrolidine 8 in high yield and
excellent selectivity for the cis-diastereomer. This reduction
could also be mediated by NaBH(OAc)3 or NaBH3CN, albeit
with lower yields and dr values. Subsequent tosylation and
reductive N−O bond cleavage23 furnished alcohol 9. Grignard
addition to 3b was also diastereoselective, generating
pyrrolidine 10 as the major product due to preferential attack
on the less-hindered face of the pyrroline ring. Finally,
subjection of terminal alkene 5 to cross metathesis with
methyl acrylate and the Grubbs second-generation catalyst
afforded enoate 11 in excellent yield. A second loading of the
catalyst was required to drive the reaction to completion,
possibly due to catalyst decomposition facilitated by the basic
imine moiety.
In conclusion, we developed microwave-promoted 5-exo

iminyl radical cyclizations for the synthesis of functionalized
pyrrolines. The simple protocol, short reaction times, and in
some cases excellent stereoselectivity are noteworthy. The
direct thermal generation of iminyl radicals from O-phenyl-
oximes proceeds in the absence of catalysts and SET cycles,
allowing a wide range of radical traps to be employed.24 The
process is scalable and can be performed with conventional
heating instead of microwave irradiation, albeit with longer
reaction times. The pyrroline adducts can undergo a number of
interesting transformations. We anticipate that this practical
method will be valuable to the organic synthesis community.
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