Synthesis and crystal structure of (Z)-1-(phenylsulphenyl)-2-phenylethenyl p-toluenesulfonate

Antonio Luiz Braga,⁽¹⁾* Oscar E.D. Rodrigues,⁽¹⁾ Daniel J. Emmerich,⁽¹⁾ Claudio C. Silveira,⁽¹⁾ Manfredo Hörner,⁽¹⁾* and Ezequiel M. Vazquez-Lopez⁽²⁾

Received July 3, 1998

The reaction between 1-phenylsulphenyl-2-phenylethyne and *p*-toluenesulfonic acid in methylene chloride gives (Z)-1-(phenylsulphenyl)-2-phenylethenyl p-toluenesulfonate (1) in good yields. This reaction is both a regio- and a stereospecific *cis* addition, confirmed by X-ray crystal structure analysis of the title compound. 1 crystallizes in the monoclinic space group $P2_1/n$ with the lattice parameters a = 10.556(3), b = 9.730(3), c = 19.687(3) Å, $\beta = 105.05(2)^\circ$, V = 1952.7(8) Å³, and Z = 4. The results of elemental analysis, IR and NMR spectroscopy are included.

KEY WORDS: Vinilic sulfides; thioacetylenes; tosylates; X-ray structure.

Introduction

Vinilic sulfides are intermediates of great synthetic potential, since they combine the ability of the double bond to form single carbon-carbon bonds with the functional transformation achieved by the well known reactions of organosulfur compounds.¹ (Z)- α -sulfenylvinyl *p*-sulfonates are known,² but not yet studied in detail. The crystal structure of this compound was undertaken because a knowledge of its stereochemistry is required to predict successive reaction pathways, and it is not trivial to assign the stereochemistry of trisubstituted olefins by other methods.³ In this paper we describe the synthesis and the crystal and molecular structure of $Ph(H)C = C[OS(O_2)]$ $C_6H_4CH_3$]SPh (1), which is a very important precursor for the synthesis of unsaturated and carbonyl compounds.

Experimental

Elemental analysis was performed with a Carlo Erba 1108 analyzer. The IR spectrum was registered using KBr pellets on a Bruker IFS28 spectrometer, and NMR spectra were acquired on a Bruker AC 80 spectrometer. A Büchi apparatus was used for the melting point determination.

All reagents were purchased from Aldrich and used directly from original packages. The starting material, 1-phenysulphenyl-2-phenylethyne, was prepared according to literature.⁴

Preparation of (Z)-1-(phenylsulphenyl)-2phenylethenyl p-toluenesulfonate

A mixture of the 1-phenysulphenyl-2-phenylethyne (210 mg, 1 mmol) and *p*-toluenesulfonic acid (390 mg, 2.5 mmol) in methylene chloride (5 mL) was stirred at 0°C for 30 min and overnight at room temperature. The reaction mixture was filtered through Al_2O_3 and K_2CO_3 columns and the solvent evaporated. The residue was recrystallized (ethyl ether/

⁽¹⁾ Departamento de Química, Universidade Federal de Santa Maria, Caixa Postal 5071, 97.105-900 Santa Maria-RS, Brazil.

⁽²⁾ Departamento de Química Inorgánica, Universidad de Vigo, E-36200 Vigo, Spain.

^{*} To whom correspondence should be addressed.

hexane) to give the product (332 mg, 87%); $mp = 62.63^{\circ}$ C; Anal. Found: C, 65.92; H, 4.75%. C₂₁H₁₈O₃S₂ requires: C, 65.95; H, 4.74%. IR (KBr): ν (cm⁻¹): 2975, 1580, 1470, 1370, 1275, 1000. ¹H NMR (80 MHz, CDCl₃): 7.64 (d, 2H, J = 8Hz), 7.14-7.28 (m, 12H), 6.95 (1H, s), 2.32 (3H, s). ¹³C NMR (20 MHz, CDCl₃): 145.12, 140.81, 133.36, 132.53, 131.21, 129.89, 129.50, 129.34, 129.20, 128.98, 128.70, 128.49, 128.29, 127.33, 21.63.

Crystallographic section

Single crystals of **1** were grown from a diethyl ether/n-hexane mixture. A colorless crystal was mounted on a glass fiber and used for intensity data collection. Automatic intensity search and indexing

methods indicated a cell belonging to the monoclinic crystal system with a *P* lattice. X-ray intensity data were recorded with a scan speed of 45 sec/reflection. Every 60 min, the intensity and orientation of three standard reflections were confirmed; the observed intensity decay was less than 1.5% over the data collection. From the Bravais lattice and observed reflections conditions, the space group was chosen to be $P2_1/n$. A semi-empirical absorption correction based on *psi*-scans was made on the the intensity data.⁵

The structure was solved using direct methods employing SHELXS-97⁷ program and all nonhydrogen atoms were located by subsequent Fourier difference synthesis. For structure refinement the SHELXL-97⁸ program was employed and the fullmatrix least-squares method minimized on Σw $(F_0^2 - F_0^2)^2$ where w is a weighting scheme indicated

Compound CCDC deposit no. Color/shape Formula weight Space group Temperature, °C Cell constants ^a	Ph(H)C=C[OS(O ₂)C ₆ H ₄ CH ₃]SPh CCDC-1003/5557 Colorless/prismatic 382.47 $P2_1/n$ 20
a, A b, A c, A β, deg Coll volume. A^3	10.556(3) 9.730(3) 19.687(3) 105.05(2) 1052 7(8)
Formula units/unit cell D_{cale} , g cm ⁻³	4 1.301
μ_{calc} , cm ⁻¹ Diffractometer/scan Radiation graphite monochromator	2.90 Enraf-Nonius CAD-4 ⁶ / ω -2 θ Mo $K\alpha$ ($\lambda = 0.71073$ Å)
Max. crystal dimensions, mm Scan width	$\begin{array}{l} 0.051 \times 0.000 \times 0.0000 \times 0.00000 \times 0.00000 \times 0.0000 \times 0.00000 \times 0.00000000$
Standard reflections Decay of standards	208; 43-5; 2-3-2 ±1.5%
2θ range, deg Range, of <i>h</i> , <i>k</i> , <i>l</i>	$\begin{array}{l} 2129\\ 4.70 \leq 2\theta \leq 45.52\\ -11 \leq h \leq 11, -10 \leq k \leq 0, \ 0 \leq l \leq 21 \end{array}$
Reflections observed $[I > 2\sigma(I)]^b$	1037
Computer programs ^c Structure solution No. of parameters varied	SHELXL-97° SHELXS-97 ⁷ 239
GOF $R = \Sigma F_{o} - F_{c} / \Sigma F_{o} $ R_{w} Extinction	1.008 0.0464 0.0797 0.00006(8)
Largest feature final diff. map	$0.198 e^{-} A^{-3}$

Table 1. Crystal Data and Summary of Intensity Data Collection and Structure Refinement

^{*a*} Least-squares refinement of $[(\sin \theta)/\lambda]^2$ values for 25 reflections $\theta > 20$ deg.

^b Corrections: Lorentz-polarization.

^c Neutral scattering factors and anomalous dispersion corrections.

(Z)-1-(phenylsulphenyl)-2-phenylethenyl p-toluenesulfonate

below. All nonhydrogen atoms were refined using anisotropic thermal parameters. Hydrogen atom sites were obtained geometrically and their displacement parameters were refined isotropically on a groupwise basis. The hydrogen atom bound to the C(2) atom was found in a difference Fourier map and refined isotropically. The final refinement of the structure includes an isotropic extinction correction and converge to R = 4.64% and $R_w = 7.97\%$ with the weighting scheme, $w = 1/[s^2(Fo^2) + (0.0608P)^2 + 2.3183P]$, where $P = (Fo^2 + 2F_c^2)/3$. Table 1 summarizes the crystal data and structure refinement parameters for **1**.

Results and discussion

Molecular structure of 1

Figure 1 shows the ZORTEP⁹ plot of the molecular structure and atom numbering of **1**. Atomic positional parameters for non-hydrogen atoms are listed in Table 2 and selected bond distances and bond angles are presented in Table 3. The X-ray structure clearly demonstrates the Z geometry for **1**.

The C(1) - C(2) distance of 1.314(7) Å confirms the expected double-bond character between these atoms. This value is in good agreement with other analogous ethylene compounds, e.g., the observed

Fig. 1. ZORTEP⁹ drawing with atom-labeling scheme of the structure of $Ph(H)C = C[OS(O_2)C_6H_4CH_3]SPh$; displacement ellipsoids at the 30% probability level.

	X	у	z	$U(eq)^a$
S(1)	5405(2)	1889(2)	1170(1)	72(1)
S(2)	2892(1)	426(2)	1997(1)	71(1)
O(1)	3856(3)	1628(4)	1020(2)	65(1)
O(2)	6011(3)	700(5)	977(2)	91(1)
O(3)	5456(4)	3175(5)	828(2)	87(1)
C(1)	3372(5)	352(8)	1219(3)	60(2)
C(2)	3365(6)	-716(9)	810(4)	66(2)
C(3)	2847(7)	-2104(8)	861(3)	64(2)
C(4)	3467(6)	-3223(9)	656(3)	80(2)
C(5)	3001(8)	-4534(9)	688(4)	101(2)
C(6)	1881(8)	-4770(9)	910(4)	104(3)
C(7)	1240(7)	-3648(10)	1092(4)	92(2)
C(8)	1699(7)	-2342(8)	1074(3)	74(2)
C(11)	5932(5)	2118(7)	2079(3)	57(2)
C(12)	5627(5)	3305(7)	2375(3)	67(2)
C(13)	6097(6)	3522(7)	3086(4)	74(2)
C(14)	6879(7)	2576(9)	3512(4)	73(2)
C(15)	7179(6)	1387(8)	3212(4)	82(2)
C(16)	6725(6)	1147(7)	2493(4)	77(2)
C(17)	7376(6)	2797(7)	4298(3)	116(3)
C(21)	1406(5)	1363(6)	1737(3)	56(2)
C(22)	702(6)	1535(7)	1053(3)	77(2)
C(23)	-475(7)	2259(8)	907(4)	96(3)
C(24)	-956(7)	2745(8)	1429(6)	107(3)
C(25)	-268(8)	2560(8)	2114(5)	108(3)
C(26)	908(6)	1880(7)	2265(3)	77(2)

^{*a*} U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C-C distance of 1.316 Å in (E)-1-chloro-1-(tosyloxy)-3,3-dimethyl-1-butene¹⁰ and 1.34(1) Å in dichloro[(Z)-2-chloro-2-phenylvinyl]-(4-methoxyphenyl) tellurium(IV).¹¹ A slight deviation from planarity of the trisubstituted ethylene fragment is observed with a C(3) - C(2) - C(1) - S(2) torsion angle of $6.1(10)^{\circ}$. The C = C - SPh and Ph - C = C bond angles opening up to 128.1(6) and 129.0(7)°, and the C= $C - OS(O_2)$ - tol bond angle decreasing to 117.6(5)°. According to the torsion angles defined by the atoms C(8) - C(3) - C(2) - C(1)[37.0(9)°], C(16) -C(11) - S(1) - O(1) [111.6(4)°], and C(22) -C(21) - S(2) - C(1) [18.0(6)°], the p π -p π interaction between the C(2) atom and the C(3) – C(8) phenyl ring and the $d\pi$ -p π interactions between the S(1) atom and the C(11) - C(16) phenyl ring and the S(2)atom and the C(21) - C(26) phenyl ring are weakened. Therefore, the bond lengths C(3) - C(2) =1.470(8), S(1) - C(11) = 1.746(5), and S(2) - C(21)= 1.770(5) Å, are slightly shorter in comparison with the respective sums of the covalent radii ($C \cdots C$ =

Braga, Rodrigues, Emmerich, Silveira, Hörner, Vazquez-Lopez

$C[OS(O_2)C_6H_4CH_3]SPh$			
S(1) - O(1)	1.604(3)		
S(1) - O(2)	1.421(4)		
S(1) - O(3)	1.428(4)		
S(1) - C(11)	1.746(5)		
S(2) - C(1)	1.736(6)		
S(2) - C(21)	1.770(5)		
O(1) - C(1)	1.435(6)		
C(1) - C(2)	1.314(7)		
C(2) - C(3)	1.470(8)		
C(2) - H(2)	0.88(4)		
O(2) - S(1) - O(3)	120.9(3)		
O(2) - S(1) - O(1)	109.3(2)		
O(3) - S(1) - O(1)	102.3(2)		
O(2) - S(1) - C(11)	109.4(3)		
O(3) - S(1) - C(11)	109.3(3)		
O(1) - S(1) - C(11)	104.3(2)		
C(1) - S(2) - C(21)	101.9(3)		
C(1) = O(1) = S(1)	120.4(3)		
C(2) - C(1) - O(1)	117.6(5)		
C(2) - C(1) - S(2)	128.1(6)		
O(1) - C(1) - S(2)	114.3(5)		
C(1) - C(2) - C(3)	129.0(7)		
C(1) - C(2) - H(2)	114(3)		
C(3) - C(2) - C(1) - S(2)	6.1(10)		
C(8) - C(3) - C(2) - C(1)	37.0(9)		
C(16) - C(11) - (1) - O(1)	111.6(4)		
C(22) - C(21) - S(2) - C(1)	18.0(6)		
O(2) - O(3) - O(1) - C(11)	70.0(2)		

Table 3. Selected Bond Lengths (Å), Angles (°) and Torsional Angles (°) for Ph(H)C= C[OS(O₂)C₄H₄CH₂]SPh

1.54 and S…C = 1.80 Å). The S(1) atom shows a distorted tetrahedral configuration, with a O(2) – O(3) – O(1) – C(11) torsion angle of 70.0(2)°. The S(1) – O(1) distance [1.604(3) Å] and the O(1) – C(1) distance [1.435(6) Å] are in good agreement with the values found for analogous bonds in (*E*)-1-Chloro-1-(tosyloxy)-3,3-dimethyl-1-butene.¹⁰ Two lone pairs together with the C(1) and the C(21) atoms impose a typical tetrahedral configuration to the S(2) atom. As expected by the valence-

shell electron-pair-repulsion model (VSEPR)¹² the C(1)-S(2)-C(21) angle of $101.3(9)^{\circ}$ becomes appreciably deviated from the ideal internal angle of a tetrahedron as result of the repulsion between both of the lone pairs of electrons and from those on the S-C bonds. The three phenyl rings are essentially planar with an average RMS deviation of 0.0068 Å and their interplanar angles are 84.8(2)° between the C(3)-C(8) and C(11)-C(16) phenyl rings and 33.6(2)° between the C(11)-C(16) and C(21)-C(26) phenyl rings.

Acknowledgments

The authors thank the CNP_q for financial support, and Prof. Dr. Alfonso Castiñeiras Campos, University of Santiago de Compostela, Spain for the diffractometer facilities.

References

- 1. Kuwajima, I.; Tanino, K. J. Synth. Org. Chem. Jpn. 1996, 54, 929.
- Braga, A.L.; Rodrigues, O.E.D.; Avila, E.; Silveira, C.C. Tetrahedron Lett. 1998, 39, 3395.
- Braga, A.L.; Andrade, L.H.; Zeni, G.Z.; Silveira, C.C.; Stefani, H. A. Synthesis 1998, 39.
- 4. Braga, A.L.; Silveira, C.C.; Reckziegel, A.; Menezes, P.H. *Tetrahedron Lett.* **1993**, *34*, 8041.
- North, A.C.T.; Phillips, D.C.; Scott Mathews, F. Acta Crystallogr. 1968, A24, 351.
- 6. Enraf-Nonius, *CAD-4-Express Software;* Enraf-Nonius Inc.: Delft, The Netherlands, 1992.
- Sheldrick, G.M. SHELXS-97, Program for Crystal Structure Solution; University of Göttingen: Germany, 1990.
- 8. Sheldrick, G.M. SHELXL-97, Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.
- 9. Zsolnai, L.; Pritzkow, H. ZORTEP, Program for Personal Computer; University of Heidelberg: Germany, 1996.
- 10. Stang, J.P.; Roberts, K.A. J. Org. Chem. 1997, 52, 5213.
- 11. Zuckerman-Schpector, J.; Comasseto, J.V.; Stefani, H.A. Acta Crystallogr. **1995**, *C51*, 861.
- 12. Gillespie, R.J. *Molecular Geometry*; van Nostrand-Reinhold, 1972.