Tandem Gold(III)-Catalyzed Amination-Intramolecular Hydroamination Reactions of 1-En-4-yn-3-ols with Sulfonamides: Efficient Approach to Highly Substituted Pyrroles

Xing-Zhong Shu,^a Xue-Yuan Liu,^a Hui-Quan Xiao,^a Ke-Gong Ji,^a Li-Na Guo,^a and Yong-Min Liang^{a,b,*}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou UniVersity, Lanzhou 730000, People's Republic of China
 ^b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, People's Republic of China
 Phone: (+86)-931-891-2593; fax: (+86)-931-891-2582; e-mail: liangym@lzu.edu.cn

Received: September 13, 2007; Revised: November 22, 2007; Published online: January 4, 2008

Supporting information for this article is available on the WWW under http://asc.wiley-vch.de/home/.

Abstract: A simple, convenient and efficient synthetic approach to highly substituted pyrroles has been developed by utilizing a gold(III)-catalyzed tandem amination-intramolecular hydroamination reaction. The first examples of gold-catalyzed, selective amination of 1-en-4-yn-3-ols have also been disclosed.

Keywords: amination; 1-en-4-yn-3-ols; gold; hydroamination; pyrroles

The pyrrole core is an important heteroaromatic system found in a diverse array of structures, including those of many natural products,^[1] biologically active agents,^[2] and components in polymers.^[3] The construction of this important class of heterocycle typically relies on reactions which date from the 19th century, such as the Paal-Knorr cyclization^[4] and the Hantzsch synthesis.^[5] These classic condensation reactions can be limited in their efficiency, functional group compatibility, regiospecificity, and substituent diversity. Although more recent progress in pyrrole syntheses including catalytic multicomponent coupling approaches^[6] and transition metal-based strategies^[7] looks attractive, a general approach by converting commercially available or readily accessible materials in one step to highly substituted pyrroles is still lacking.

Gold catalysts have recently been shown to be superior reagents in activating alkynes and alkenes towards nucleophilic attack,^[8] especially in the field of hydroamination^[9] which offers an attractive alternative means for C–N bond formation. However, only few examples of the gold-catalyzed synthesis of highly substituted pyrroles have been reported.^[10] This strongly motivated us to extend our research into this area. In our ongoing efforts to develop new methodologies for the synthesis of heterocycles promoted by transition metal catalysts,^[11] we envisioned that 1-en-4-yn-3-ols **1**, readily available from alkynes and α , β unsaturated ketones, might undergo the following process (Scheme 1), leading to highly substituted pyrroles. First, being activated by gold catalysts,^[12] propargylic alcohols 1 should undergo an amination process with excellent regiochemical selectivity to afford enynamines 2.^[13] Then compounds 2 could undergo intramolecular hydroamination to afford products II followed by facile isomerization resulting in the pyrroles 3. Herein, we report a convenient synthetic approach to highly substituted pyrroles by utilizing a gold(III)-catalyzed tandem amination-hydroamination process. In this simple two-step, one-pot reaction, readily available propargylic alcohols 1 and sulfonamides are used as starting materials to produce pyrrole products 3 with high diversity.

We started by treating propargylic alcohol 1a (0.3 mmol) and TsNH₂ (15 equivs.) with 5 mol% of HAuCl₄·4H₂O in CH₃CN (2 mL) and, gratifyingly, the desired product 3a was formed in 21% yield after 8 h, along with uncyclized enynamine 2a (37% yield; Table 1, entry 1). To our delight, on increasing the amount of catalyst to 20%, an excellent yield (81%) of 3a was obtained and no intermediate 2a could be isolated (Table 1, entry 3). With other gold catalysts, such as NaAuCl₄·2H₂O, AuCl₃ AuCl and Au(I) systems generated from silver salts, no superior results were obtained (Table 1, entries 4–8). PtCl₂ and protic acid such as chloroacetic acid have also been applied to the reaction under identical conditions, but no reaction occurred (Table 1, entries 9 and 10). Other solvents like CH₂Cl₂ toluene and THF produced lower

Scheme 1. Proposed gold(III)-catalyzed synthesis of substituted pyrroles.

Table 1. Optimization of reaction conditions.^[a]

Entry	Catalyst (mol%)	Solvent	Yield [%] ^[b]	
•	• • • •		2a	3 a
1	$HAuCl_4 \cdot 4H_2O(5)$	CH ₃ CN	37	21
2	$HAuCl_4 \cdot 4H_2O(10)$	CH ₃ CN	15	46
3	$HAuCl_4 \cdot 4H_2O(20)$	CH ₃ CN	0	81
4	NaAuCl ₄ ·2H ₂ O (20)	CH ₃ CN	23	42
5	$AuCl_3$ (20)	CH ₃ CN	0	51
6	AuCl (20)	CH ₃ CN	37	trace
7	$Au(PPh_3)Cl (20)/AgBF_4 (20)$	CH ₃ CN	0	42
8	$Au(PPh_3)Cl(20)/AgSbF_6(20)$	CH ₃ CN	0	37
9 ^[c]	$PtCl_2$ (20)	CH ₃ CN	0	0
$10^{[d]}$	$ClCH_2CO_2H$ (20)	CH ₃ CN	0	0
11	$HAuCl_4 \cdot 4H_2O(20)$	THF	0	0
12	$HAuCl_4 \cdot 4H_2O(20)$	CH_2Cl_2	0	24
13	$HAuCl_4 \cdot 4H_2O(20)$	toluene	0	8

^[a] Reactions were conducted with 0.3 mmol of **1a**, 15 equivs. of TsNH₂ (13–14 equivs. of TsNH₂ could be recovered after the reaction in most cases) in 2 mL of solvent at 30 °C for 8 h.

^[b] Isolated yield.

^[c] 93% of $\mathbf{1a}$ was recovered.

 $^{[d]}~90\,\%$ of 1a was recovered.

COMMUNICATIONS

Entry	Substrate	Product		Time [h]	Yield [%] ^[b]
1 2 3 4 5 6 6 7 8 9 10 11 12	$\begin{array}{c} OH \\ Ph \\ 1a - 1h \end{array}$	$R \xrightarrow{Ts} Ph$ $3a - 3h$ $Ph \xrightarrow{Ts} R$	3a , R=Ph 3b , R= p -CH ₃ OC ₆ H ₄ 3c , R= p -CH ₃ C ₆ H ₄ 3d , R= p -CH ₃ CoC ₆ H ₄ 3e , R= p -BrC ₆ H ₄ 3f , R= n -C ₅ H ₁₁ 3g , R=H 3h , R= 2 -thienyl 3i , R= p -ClC ₆ H ₄ 3j , R= p -CH ₃ OC ₆ H ₄ 3k , R= p -CH ₃ C ₆ H ₄ 3l , R= m -CH ₃ C ₆ H ₄	8 48 8 7 9 2 1 5 7 8 7 4.5	81 40 64 75 70 75 74 54 83 25 46 64
13	1i - 1l OH Ph Ph 1m	1i - 1I Ph N Ph N Ph		10	78
14	OH Ph In	Ph , Ts N Ph 3n		8	74
15	OH Ph Ph 10	Ph NHTs Ph Ph		1	96
16	OH Ph 1p	Ph NHTs 2c		1	76
17 ^[c]	Ph Ph 1q	Ph Ph TsHN Ph 2d		0.5	89

Table 2.	Gold(III)-catal	yzed react	ion of prop	pargylic alc	cohols 1	with T	[sNH ₂ . ^[a]
----------	-------	------------	------------	-------------	--------------	----------	--------	------------------------------------

[a] Reactions were conducted with 0.3 mmol of 1, 15 equivs. of TsNH₂ (13-14 equivs. of TsNH₂ could be recovered after the reaction in most cases), 20 mol% of HAuCl₄·4H₂O in 2 mL of CH₃CN at 30°C.

^[b] Isolated yield.

^[c] The Z isomer was always the most stable product.^[14]

yields of the desired products (Table 1, entries 11–13). Thus, the use of $HAuCl_4 \cdot 4H_2O$ (20 mol%) in CH_3CN at 30 °C was found to be the most efficient and used as the standard conditions.

With these optimal conditions in hand, we examined the scope of this reaction, as shown in Table 2. Compared with previous conclusion^[15] that arylacetylenes were not effective for the gold(III)-catalyzed intramolecular hydroamination, various aryl substituents on the alkyne, including phenyl ,electron-rich, and electron-poor ones, were compatible with this reaction, and generally good yields of the corresponding pyrroles were obtained (entries 1-5). When aliphatic and terminal alkynes were used, the reaction proceeded faster, furnishing the corresponding products in high yields within 2 h (entries 6 and 7). Alkynes with heteroaromatic groups such as 2-thienyl also proceeded smoothly (entry 8). Substitution on the allyl moiety was tolerated. With an electron-withdrawing aryl group, propargylic alcohol 1i afforded the desired product 3i in 83% yield (entry 9). However, when electron-rich ones were used, the yields of corresponding products were decreased (entries 10–12).^[16] Propargylic alcohols with larger ring size, such as a seven-membered substrate, reacted smoothly to yield **3m** in 78% yield (entry 13). Substitution on the ring was also tolerated (entry 14) (Figure 1).^[17] Although, **1o–1q** could efficiently undergo the formal amination in excellent yields (up to 96%), the following intramolecular hydroamination could not proceed even after 24 h under reflux (entries 15–17).

Interestingly, with the use of **1r** as the substrate, bis(pyrrol-2-yl)arylene **3o** was obtained in 61% yield after 8 h (Scheme 2). Such bis(pyrrol-2-yl)arylenes could be used to provide electroactive poly-[bis(pyrrol-2-yl)arylene] polymers^[18] with polypyrrolelike electrochromic properties that are useful for biomedical applications.^[19]

Then we investigated various sulfonamides, amides, and amines under these optimized conditions. Besides p-methylphenylsulfonamide, phenylsulfonamide could also be employed as an efficient nucleophile (Table 3, entry 1). However, with the use of p-bromophenylsulfonamide or alkylsulfonamides, such as methylsul-

Figure 1. X-ray structure of 3n.

Table 3. Gold(III)-catalyzed synthesis of substituted pyrroles**3** by cyclization of **1a** with sulfonamides.

OH Ph Ph	15 equivs. RSO ₂ NH ₂ , C 20 mol % HAuCl ₄ • 4 H ₂ C	Ph CH ₃ CN D, 30 °C Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph
1a		3
Entry	R	3 (Yield [%]) ^[b]
1	C ₆ H ₅	3p (62)
2	$p-CH_3C_6H_4$	3a (81)
3	p-BrC ₆ H ₄	0
4	CH ₃	3q (34)

^[a] Reactions were conducted with 0.3 mmol of **1a**, 15 equivs. of RSO_2NH_2 (13–14 equivs. of RSO_2NH_2 could be recovered after the reaction in most cases), 20 mol% of $HAuCl_4·4H_2O$ in 2 mL of CH_3CN at 30°C.

^[b] Isolated yield.

yield: 61%

Scheme 2. One pot synthesis of bis(pyrrol-2-yl)arylene 30.

246 asc.wiley-vch.de

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 3. Two-step synthesis of pyrrole 3a.

fonamide, the reactions gave no or low yields of the desired products (Table 3, entries 3 and 4). Amides and amines did not work as nucleophiles for this reaction.

In order to confirm the mechanism shown in Scheme 1 for the one-pot reaction, we next conducted the reactions, as shown in Scheme 3. After the reaction was run with 10 mol% of HAuCl₄·4H₂O for 1 h, an intermediate 2a was isolated in 73% yield along with 18% of pyrrole 3a. Compound 2a could subsequently be converted to 3a in high yield (up to 86%) under the same conditions. These results strongly support our proposed two-step mechanism. Compared with two-step reactions, one-pot procedure with low amounts of gold catalysts are usually problematic. This may be due to the noble character of gold, which is easily deactivated by reduction.^[21] The choice of Nnucleophiles might be crucial, they must exert enough nucleophilicity in each step of the reaction but should not deactivate the gold catalysts.^[22] Thus sulfonamides with low Lewis basicity should be the appropriate choice as a dual nucleophile for this process. Furthermore, to compete with the rapid decomposition of the substrate, the use of an excess amount of sulfonamides was also needed.

In summary, we have developed a simple, convenient and efficient synthetic approach to highly substituted pyrroles utilizing a gold(III)-catalyzed tandem amination-intramolecular hydroamination reaction followed by facile isomerization. Various substituents of propargylic alcohols **1**, such as alkyl, aryl, proton and heteroaromatic groups are tolerated. The reaction proceeds efficiently under mild conditions with commercially available catalysts without any additive.

Experimental Section

General Procedure for the Preparation of Enynamines 2 and Substituted Pyrroles 3

To a stired solution of propargylic alcohol 1 (0.30 mmol) and TsNH₂ (774 mg, 4.5 mmol) in CH₃CN (2.0 mL) was

added 24.7 mg (20 mol%) of $HAuCl_4 \cdot 4H_2O$ under air at 30 °C. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was diluted with diethyl ether (20 mL) and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford the corresponding products.

2a: Compound **2a** was prepared according to the above method, but employing 10 mol% of HAuCl₄·4H₂O to afford **2a** as a solid; yield: 73%; mp: 184–186°C; ¹H NMR (300 MHz, CDCl₃): δ =7.84–7.81 (d, *J*=8.1 Hz, 2H), 7.44–7.17 (m, 12H), 5.93–5.91 (d, *J*=8.1 Hz, 1H), 5.64–5.61 (d, *J*=8.1 Hz, 1H), 1.73–1.62 (m, 1H), 1.46–1.29 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ =143.2, 142.2, 139.2, 137.2, 131.5, 129.2, 128.5, 128.3, 128.1, 127.5, 127.4, 126.2, 123.3, 118.8, 93.3, 89.0, 60.0, 30.0, 23.9, 21.8, 21.6, 21.4; IR (KBr): v=3268, 2928, 2858, 1597, 1492, 1449, 1328, 1159 cm⁻¹; anal. calcd. for C₂₈H₂₇NO₂S: C 76.16, H 6.16, N 3.17; found: C 76.23, H 6.19, N, 3.01.

3a: The reaction mixture was chromatographed using 40:1 hexanes/EtOAc to afford the indicated compound as a solid; yield: 107.2 mg (81%); mp: 118.5–119.5 °C; ¹H NMR (300 MHz, CDCl₃): δ = 7.33–7.17 (m, 10H), 7.04–6.97 (m, 4H), 4.30 (s, 2H), 2.47–2.42 (m, 2H), 2.31 (s, 3H), 2.27–2.23 (m, 2H), 1.67–1.63 (m, 2H), 1.60–1.55 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ = 143.7, 139.9, 136.3, 132.4, 131.2, 131.1, 130.0, 129.0, 128.4, 128.2, 127.3, 127.1, 126.7, 125.8, 125.5, 125.0, 32.1, 23.3, 23.2, 22.4, 22.1, 21.5; IR (KBr): v=3028, 2930, 2858, 1712, 1598, 1492, 1446, 1367, 1171 cm⁻¹; anal. calcd for C₂₈H₂₇NO₂S: C 76.16, H 6.16, N, 3.17; found: C 76.21, H 6.11, N 3.12.

Acknowledgements

We thank the NSF (NSF-20621091, NSF-20732002) and the "Hundred Scientist Program" from the Chinese Academy of Sciences for financial support.

References

- a) R. J. Sundberg, in: Comprehensive Heterocyclic Chemistry II, (Eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, Oxford, 1996, Vol. 2, pp 119–206; b) H. Hoffmann, T. Lindel, Synthesis 2003, 1753–1783; c) S. Agarwal, S. Cämmerer, S. Filali, W. Fröhner, J. Knöll, M. P. Krahl, K. R. Reddy, H.-J. Knölker, Curr. Org. Chem. 2005, 9, 1601–1615.
- [2] a) P. A. Jacobi, L. D. Coults, J. S. Guo, S. I. Leung, J. Org. Chem. 2000, 65, 205–213; b) A. Fürstner, Angew. Chem. 2003, 115, 3706–3728; Angew. Chem. Int. Ed. 2003, 42, 3582–3603.
- [3] a) P. Novak, K. Müller, K. S. V. Santhanam, O. Haas, *Chem. Rev.* **1997**, *97*, 207–282; b) A. Ramanavicius, A. Ramanaviciene, A. Malinauskas, *Electrochem. Acta* **2006**, *51*, 6025–6037.
- [4] a) L. Knorr, Ber. dtsch. chem. Ges. 1884, 17, 1635–1642; b) C. Paal, Ber. dtsch. chem. Ges. 1885, 18, 367–371.

- [5] a) A. Hantzsch, Ber. dtsch. chem. Ges. 1890, 23, 1474–1483; b) G. Kaupp, J. Schmeyers, A. Kuse, A. Atfeh, Angew. Chem. 1999, 111, 3073–3076; Angew. Chem. Int. Ed. 1999, 38, 2896–2899.
- [6] For a review, see: a) G. Balme, Angew. Chem. 2004, 116, 6396-6399; Angew. Chem. Int. Ed. 2004, 43, 6238-6241; for selected examples, see: b) Y. Nishibayashi, M. Yoshikawa, Y. Inada, M. D. Milton, M. Hidai, S. Uemura, Angew. Chem. 2003, 115, 2663-2666; Angew. Chem. Int. Ed. 2003, 42, 2681-2684; c) R. Dhawan, B. A. Arndtsen, J. Am. Chem. Soc. 2004, 126, 468-469; d) D. Tejedor, D. González-Cruz, F. García-Tellado, J. J. Marrero-Tellado, M. L. Rodríguez, J. Am. Chem. Soc. 2004, 126, 8390-8391; e) Y. Yamamoto, H. Hayashi, T. Saigoku, H. Nishiyama, J. Am. Chem. Soc. 2005, 127, 10804-10805.
- [7] For selected examples, see: a) C. A. Merlic, A. Baur, C. C. Aldrich, J. Am. Chem. Soc. 2000, 122, 7398-7399;
 b) A. V. Kel'in, A. W. Sromek, V. Gevorgyan, J. Am. Chem. Soc. 2001, 123, 2074-2075; c) H. Takaya, S. Kojima, S. I. Murahashi, Org. Lett. 2001, 3, 421-424;
 d) Y. L. Wang, S. Z. Zhu, Org. Lett. 2003, 5, 745-748.
- [8] For selected reviews on gold-catalyzed reactions, see:
 a) G. Dyker, Angew. Chem. 2000, 112, 4407-4409; Angew. Chem. Int. Ed. 2000, 39, 4237-4239; b) A. S. K. Hashmi, Gold Bull. 2004, 37, 51-65; c) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 2005, 3, 387-391; d) R. C. D. Brown, Angew. Chem. 2005, 117, 872-874; Angew. Chem. Int. Ed. 2005, 44, 850-852;
 e) A. S. K. Hashmi, Angew. Chem. 2005, 117, 7150-7154; Angew. Chem. Int. Ed. 2005, 44, 6990-6993;
 f) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064-8105; Angew. Chem. Int. Ed. 2006, 45, 7896-7936; g) A. M. Echavarren, E. Jiménez-Núñez, Chem. Commun. 2007, 333-346; h) A. S. K. Hashmi, Chem. Rev. 2007, 3180-3211.
- [9] For gold-catalyzed inter- or intramolecular hydroamination of unsaturated compounds, see: a) Y. Fukuda, K. Utimoto, H. Nozaki, Heterocycles 1987, 25, 297-300; b) E. Mizushima, T. Hayashi, M. Tanaka, Org. Lett. 2003, 5, 3349-3352; c) C. Brouwer, C. He, Angew. Chem. 2006, 118, 1776-1779; Angew. Chem. Int. Ed. 2006, 45, 1744-1747; d) X. Han, R. A. Widenhoefer, Angew. Chem. 2006, 118, 1779-1781; Angew. Chem. Int. Ed. 2006, 45, 1747-1749; e) N. Nishina, Y. Yamamoto, Angew. Chem. 2006, 118, 3392-3396; Angew. Chem. Int. Ed. 2006, 45, 3314-3317; f) X.Y. Deng, T. A. Baker, C. M. Friend, Angew. Chem. 2006, 118, 7233-7236; Angew. Chem. Int. Ed. 2006, 45, 7075-7078; g) J. Zhang, C.-G. Yang, C. He, J. Am. Chem. Soc. 2006, 128, 1798-1799; h) M. Shi, L. P. Liu, J. Tang, Org. Lett. 2006, 8, 4043-4046; i) D. Kadzimirsz, D. Hildebrandt, K. Merz, G. Dyker, Chem. Commun. 2006, 661-662; j) R. L. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 2452-2453; k) Y. H. Zhang, J. P. Donahue, C. J. Li, Org. Lett. 2007, 9,627-630.
- [10] a) J. T. Binder, S. F. Kirsch, Org. Lett. 2006, 8, 2151–2153; b) D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260–11261.

- [11] a) X. H. Duan, X. Y. Liu, L. N. Guo, M. C. Liao, W. M. Liu, Y. M. Liang, *J. Org. Chem.* 2005, 70, 6980–6983;
 b) X. Liu, Z. Pan, X. Shu, X. Duan, Y. Liang, *Synlett* 2006, 1962–1964.
- [12] Gold catalysts act as propargylic alcohol-activating agents in propargylic substitutions, see: M. Georgy, V. Boucard, J. M. Campagne, J. Am. Chem. Soc. 2005, 127, 14180-14181.
- [13] S_N1 or S_N2'-like nucleophilic attack may be involved in the process. For a series of research works concerned with this system, see: a) T. Ishikawa, M. Okano, T. Aikawa, S. Saito, *J. Org. Chem.* 2001, 66, 4635–4642; b) T. Ishikawa, T. Aikawa, S. Watanabe, S. Saito, *Org. Lett.* 2006, *8*, 3881–3884.
- [14] a) W. Oroshnir, J. Am. Chem. Soc. 1956, 78, 2651–2652; b) T. Ishikawa, M. Okano, T. Aikawa, S. Saito, J. Org. Chem. 2001, 66, 4635–4642.
- [15] R. A. Widenhoefer, X. Q. Han, Eur. J. Org. Chem. 2006, 4555–4563.
- [16] Most of starting material was decomposed especially for **1j.**
- [17] The molecular structure of the corresponding product 3n was determined by X-ray crystallography (Figure 1). X-ray data for compound **3n**: $C_{29}H_{29}NO_2S$, MW = 455.59, T = 273(2) K, $\lambda = 0.71073$ Å, monoclinic space group, P21/c, a=8.6485(10) Å, b=32.699(3) Å, c=9.0126(12) Å, $\alpha = 90^{\circ}$, $\beta = 109.287(2)^{\circ}$, $\gamma = 90^{\circ}$, V =2405.7(5) Å³, Z=4, ρ_{cald} =1.258 mgm⁻³, μ =0.161 mm⁻¹, F(000) = 968, crystal size $0.58 \times 0.54 \times 0.49$ mm³, independent reflections 4235 [R(int) = 0.0190], reflections collected 12226, refinement method, full-matrix leastsquares on F^2 , goodness-of-fit on F^2 1.015, final R indices $[I > 2\sigma(I)]$ $R_1 = 0.0437$, $wR_2 = 0.1278$, R indices (all date) $R_1 = 0.0489$, $wR_2 = 0.1318$, largest diff. peak and hole 0.207 and -0.355 e Å⁻³. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: CCDC 660656.
- [18] a) F. Larmat, J. Soloducho, A. R. Katritzky, J. R. Reynolds, *Synth. Met.* 2001, *124*, 329–336; b) G. Zotti, S. Zecchin, G. Schiavon, A. Berlin, G. Pagani, M. Borgonovo, R. Lazzaroni, *Chem. Mater.* 1997, *9*, 2876–2886; c) G. A. Sotzing, J. R. Reynolds, A. R. Katritzky, J. Soloducho, S. Belyakov, R. Musgrave, *Macromolecules* 1996, *29*, 1679–1684.
- [19] a) T. J. Rivers, T. W. Hudson, C. E. Schmidt, Adv. Funct. Mater. 2002, 12, 33–37; b) X. Y. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson, D. C. Martin, J. Biomed. Mater. Res. 2001, 56, 261–272; c) J. H. Collier, J. P. Camp, T. W. Hudson, C. E. Schmidt, J. Biomed. Mater. Res. 2000, 50, 574–584.
- [20] 18% of pyrrole **3a** was also separated.
- [21] a) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553–11554; b) A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39, 2285–2288.
- [22] Strong N-nucleophiles (or N-nucleophiles with strong Lewis basicity) such as amines could deactivate gold catalysts. For previous report see: ref.^[9g]