

Surface Chemistry

DOI: 10.1002/anie.201402374

Crystal-Plane-Controlled Selectivity of Cu₂O Catalysts in Propylene Oxidation with Molecular Oxygen**

Qing Hua, Tian Cao, Xiang-Kui Gu, Jiqing Lu, Zhiquan Jiang, Xiaorong Pan, Liangfeng Luo, Wei-Xue Li, and Weixin Huang*

Abstract: The selective oxidation of propylene with O_2 to propylene oxide and acrolein is of great interest and importance. We report the crystal-plane-controlled selectivity of uniform capping-ligand-free Cu₂O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2: Cu2O octahedra exposing {111} crystal planes are most selective for acrolein; Cu₂O cubes exposing {100} crystal planes are most selective for CO₂; Cu₂O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One-coordinated Cu on Cu₂O(111), three-coordinated O on Cu₂O(110), and two-coordinated O on Cu₂O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2, respectively. These results reveal that crystal-plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.

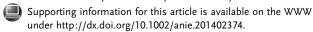
Propylene oxide (PO) and acrolein rank among the top industrial chemical intermediates produced annually and are currently manufactured by the partial oxidation of propylene. The selective catalytic partial oxidation of propylene with O₂ is the desirable green method for their industrial production. This method has been realized for the industrial production of acrolein with bismuth/molybdenum-based mixed-oxide catalysts; however, the current major methods for the industrial

[*] Q. Hua,[+] T. Cao,[+] Dr. Z. Jiang, L. Luo, Prof. Dr. W. Huang Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Key Laboratory of Materials for Energy Conversion, Department of Chemical Physics

University of Science and Technology of China Jinzhai Road 96, Hefei 230026 (China)

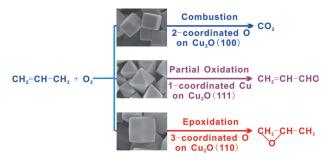
E-mail: huangwx@ustc.edu.cn

Dr. X.-K. Gu,[+] Prof. Dr. W.-X. Li


State Key Laboratory of Catalysis

Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457, Dalian 116023 (China)

Prof. Dr. J. Lu,[+] X. Pan


Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004 (China)

- [+] These authors contributed equally.
- [**] This research was financially supported by the National Natural Science Foundation of China (21173204, 11079033, 21225315), the National Basic Research Program of China (2013CB933104, 2010CB923301), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030103).

production of propylene oxide are the environmentally unfriendly chlorohydrin process and equally environmentally unfriendly variations of the Halcon process.[1] Thus, great effort has been devoted to the development of efficient catalysts for propylene epoxidation with $O_{2s}^{[2-5]}$ for which promising active components are limited to the IB elements (Cu, Ag, and Au). Copper is much more economical than gold and silver for use as an industrial catalyst. Copper-based catalysts have been examined for the partial oxidation of propylene with O₂, [5] and cuprous oxide, instead of metallic Cu, has been proposed as the active structure. [6] The morphology of the oxide nanoparticle determines the exposed crystal planes and the surface composition/structure and thus significantly influences its catalytic performance.^[7] Recently, uniform Cu₂O nanocrystals with different morphologies were synthesized and demonstrated to exhibit morphology-dependent catalytic activity in CO oxidation with excess or stoichiometric O2, [8] the photocatalytic degradation of dyes,[9] and liquid-phase organic reactions.[10] Herein we report that the morphology and exposed crystal planes of capping-ligand-free Cu₂O nanocrystals control the catalytic selectivity as well as the catalytic activity in propylene oxidation with O2; we also reveal the underlying structureactivity relationships of this complex heterogeneous catalytic reaction at the molecular level and identify the catalytically active sites (Scheme 1).

Uniform cubic, octahedral, and rhombic-dodecahedral Cu₂O nanocrystals were synthesized according to well-established procedures, in which poly(*N*-vinyl-2-pyrrolidone) (PVP) and oleic acid (OA) capping ligands were employed to prepare octahedral and rhombic-dodecahedral Cu₂O nanocrystals, respectively, whereas no capping ligand was used for cubic Cu₂O nanocrystals. (denoted as c-Cu₂O) have sizes between 400 and

Scheme 1. Crystal-plane-controlled selectivity of Cu_2O catalysts in the oxidation of propylene with molecular oxygen. The catalytically active sites on Cu_2O are indicated for the different reaction pathways.

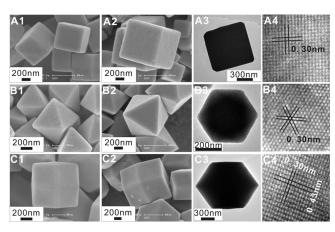
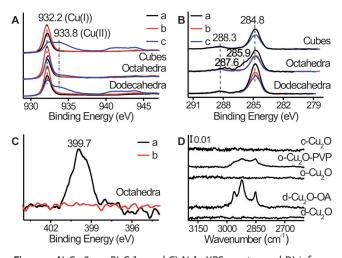
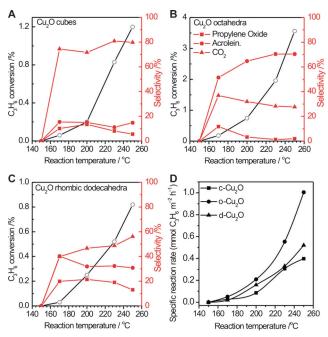



Figure 1. A1) SEM image of as-synthesized Cu₂O cubes; A2–A4) SEM, TEM, and HRTEM images of as-synthesized Cu₂O cubes subjected to controlled treatment at 200 °C for 0.5 h; B1) SEM image of assynthesized Cu₂O octahedra capped with PVP; B2–B4) SEM, TEM, and HRTEM images of capping-ligand-free Cu₂O octahedra; C1) SEM image of as-synthesized Cu₂O rhombic dodecahedra capped with OA; C2–C4) SEM, TEM, and HRTEM images of capping-ligand-free Cu₂O rhombic dodecahedra. The distances 0.43 and 0.30 nm correspond to the {001} and {110} planes of Cu₂O, respectively.

700 nm and selectively expose six {100} crystal planes (Figure 1 A1; see also Figure S1 A in the Supporting Information). As-synthesized octahedral Cu₂O nanocrystals (denoted as o-Cu₂O-PVP) have sizes between 300 and 600 nm and selectively expose eight {111} crystal planes (Figure 1 B1; see also Figure S2 A). As-synthesized rhombic-dodecahedral Cu₂O nanocrystals (denoted as d-Cu₂O-OA) have sizes between 600 and 900 nm and selectively expose 12 {110} crystal planes (Figure 1 C1; see also Figure S3 A). XRD (see Figure S4) and Cu 2p XPS (Figure 2 A) confirmed that their crystal phases had the Cu₂O structure and their surfaces remained as Cu₂O. The specific BET surface areas of c-Cu₂O, o-Cu₂O-PVP, and d-Cu₂O-OA were measured to be 1.49, 1.74, and 0.774 m² g⁻¹, respectively (see Figure S5). Because of the synthetic proce-

Figure 2. A) Cu $2p_{3/2}$, B) C 1s, and C) N 1s XPS spectra, and D) infrared spectra of a) as-synthesized Cu_2O nanocrystals, b) capping-ligand-free Cu_2O nanocrystals, and c) capping-ligand-free Cu_2O nanocrystals after evaluation of the catalytic performance up to $250\,^{\circ}C$.


dures used, o-Cu₂O-PVP and d-Cu₂O-OA are capped (with PVP and OA, respectively), but c-Cu₂O is not. As shown in Figure 2B–D, whereas o-Cu₂O-PVP exhibits N 1s and C 1s XPS features and C–H stretching-vibration bands arising from capped PVP, and d-Cu₂O-OA exhibits C 1s XPS features and C–H stretching-vibration bands arising from capped OA, c-Cu₂O only exhibits C 1s features corresponding to adventitious carbon (284.8 eV) and carbonate species (288.3 eV)^[12] but no C–H stretching-vibration bands.

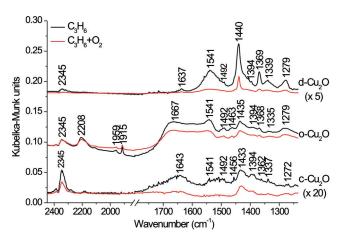
The removal of capping ligands on nanocrystals without a change in their composition and structure remains challenging, but is essential for their use as catalysts.^[13] We found that the controlled treatment of o-Cu₂O-PVP and d-Cu₂O-OA in a stream of a C_3H_6/O_2 mixture balanced with N_2 ($C_3H_6/O_2/N_2$ 2:1:22) enabled the selective removal of capping ligands without changing the composition and structure of the nanocrystals. Upon the controlled treatment of o-Cu₂O-PVP in this way at 200 °C for 0.5 h, the N 1s peak disappeared (Figure 2C), the C 1s peaks at 285.9 and 287.6 eV also disappeared, and the C 1s peak at 284.8 eV was greatly attenuated (Figure 2B); furthermore, the C-H vibration bands in the infrared spectrum disappeared (Figure 2D). In the case of d-Cu₂O-OA, the treatment temperature was increased to 215°C to remove the oleic acid surfactant, as evidenced by the disappearance of the C-H vibration bands in the infrared spectrum after treatment for 0.5 h (Figure 2D) and the great attenuation of the C 1s peak at 284.8 eV (Figure 2B). The morphology, bulk structure, and surface composition of o-Cu₂O-PVP (Figure 1B2–B4, Figure 2A; see also Figure S4) and d-Cu₂O-OA (Figure 1 C2–C4, Figure 2 A; see also Figure S4) did not change during this controlled treatment. Thus, we successfully acquired capping-ligand-free uniform octahedral (denoted as o-Cu2O) and rhombicdodecahedral (denoted as d-Cu₂O) Cu₂O nanocrystals. Their synthesis was further supported by the experimental observations that CO was clearly chemisorbed on o-Cu₂O and d-Cu₂O, but not on o-Cu₂O-PVP and d-Cu₂O-OA (see Figure S6). C 1s XPS results (Figure 2B) demonstrated that the surface carbon species on o-Cu₂O and d-Cu₂O as well as c-Cu₂O were carbonate and adventitious carbon. Both are common on oxide-catalyst surfaces.

The novelty of our method to remove capping ligands on Cu₂O nanocrystals is the use of an atmosphere consisting of both oxidizing gas (O₂) and reducing gas (C₃H₆) with appropriate concentrations. On one hand, capping ligands on Cu₂O nanocrystals could be adequately oxidized by O₂ and removed at relatively low temperatures to avoid a hightemperature-induced morphology change; on the other hand, the coexistence of C₃H₆ and O₂ in the atmosphere could cooperatively prevent Cu₂O nanocrystals from both oxidation and reduction. The latter hypothesis is further supported by the experimental results that the morphology, bulk structure, and surface composition of as-synthesized capping-ligandfree c-Cu₂O remained unchanged after controlled oxidative treatment at 200 °C for 0.5 h (Figure 1 A2–A4, Figure 2 A; see also Figure S4). Our method provides a promising general strategy for the selective removal of chemisorbed capping ligands on catalytic nanocrystals without changing their composition and structure.

The catalytic performance of the Cu_2O nanocrystals in propylene oxidation with O_2 was evaluated. Propylene oxide, acrolein, and carbon dioxide were identified as the dominant reaction products. o- Cu_2O and d- Cu_2O were more catalytically active than the corresponding nanocrystals o- Cu_2O -PVP and d- Cu_2O -OA (see Figure S7), thus demonstrating that capping ligands on as-synthesized Cu_2O nanocrystals suppress their catalytic activity. Capping-ligand-free Cu_2O nanocrystals exhibited distinct morphology-dependent catalytic activity (Figure 3 A–C). All Cu_2O nanocrystals became active at

Figure 3. C_3H_6 conversion and selectivity for propylene oxide, acrolein, and CO_2 of the C_3H_6 oxidation with O_2 as catalyzed by capping-ligand-free A) Cu_2O cubes, B) octahedra, and C) rhombic dodecahedra. D) Specific reaction rate of C_3H_6 oxidation with molecular oxygen as catalyzed by capping-ligand-free Cu_2O cubes (c- Cu_2O), octahedra (o- Cu_2O), and rhombic dodecahedra (d- Cu_2O).

 $170\,^{\circ}\text{C},$ and $C_{3}H_{6}$ conversion increased with the reaction temperature. At the same temperature, $C_{3}H_{6}$ conversion was catalyzed by the $Cu_{2}O$ nanocrystals with varying degrees of efficiency according to the order $o\text{-}Cu_{2}O > c\text{-}Cu_{2}O > d\text{-}Cu_{2}O$. The specific propylene reaction rate normalized to the specific surface area of various $Cu_{2}O$ nanocrystals (Figure 3D) also followed the order $o\text{-}Cu_{2}O > d\text{-}Cu_{2}O > c\text{-}Cu_{2}O$. Thus, $Cu_{2}O$ octahedra are more active in catalyzing $C_{3}H_{6}$ oxidation with O_{2} than $Cu_{2}O$ cubes and rhombic dodecahedra. This behavior exemplifies well the recently established concept of the morphology-controlled catalytic activity of oxide catalysts. $^{[7]}$


Very interestingly, we observed that the catalytic selectivity of Cu₂O nanocrystals in propylene oxidation with O₂ also depended sensitively on their morphology. c-Cu₂O was very selective in catalyzing the propylene combustion reaction with a CO₂ selectivity of around 80% under the investigated reaction temperatures (Figure 3A), whereas o-Cu₂O exhibited the highest selectivity for the partial oxida-

tion of propylene to acrolein (Figure 3B). At 170°C, the selectivity for the formation of acrolein, propylene oxide, and CO₂ was 51, 12, and 37%, respectively. As the reaction temperature was increased, the selectivity for acrolein continued to increase at the expense of the selectivity for propylene oxide and CO₂, and the selectivity for acrolein reached 71% at 250°C. d-Cu₂O exhibited comparable selectivity for the formation of propylene oxide (20%), acrolein (40%), and CO₂ (40%) at 170°C (Figure 3C). When the reaction temperature was increased to 250°C, the selectivity for propylene oxide did not change initially, but then decreased to 13% at 250°C; the selectivity for acrolein gradually decreased; and the selectivity for CO2 gradually increased. Therefore, in the catalysis of propylene oxidation with O₂, c-Cu₂O is the most selective of the three nanocrystal catalysts for the combustion of propylene to produce CO₂, o-Cu₂O is the most selective for the partial oxidation of propylene to produce acrolein, and d-Cu₂O is the most selective for the epoxidation of propylene to produce propylene epoxide. These results for the first time demonstrate that the selectivity of oxide catalysts in reactions as complex as propylene oxidation with O2 can be tuned by changing their morphology, thus offering a novel strategy to control the selectivity of oxide catalysts.

Propylene epoxidation with molecular O2 is a highly desirable reaction but remains very challenging. We calculated the formation rate of propylene oxide and the turnover frequency (TOF) on the basis of surface Cu atoms for propylene oxidation with O₂ as catalyzed by d-Cu₂O at 250 °C and compared both values with those found for the reaction catalyzed by previously reported representative supported copper-based catalysts (see Table S1 in the Supporting Information). Owing to the very small specific surface area of d-Cu2O, the formation rate of propylene oxide (0.057 mmol g_{catalyst}⁻¹ h⁻¹) was quite low; however, the TOF value reached 1.46×10^{-3} s⁻¹ and is comparable to that of the most active K⁺-promoted highly dispersed supported CuO_x catalysts at 350 °C. [5b] For d-Cu₂O nanocrystal catalysts, there is plenty of room to increase the propylene conversion rate by reducing their size and enlarging their specific surface area. Thus, Cu₂O rhombic dodecahedra are a promising catalyst for propylene oxidation with O₂ to selectively produce propylene oxide together with acrolein.

Following the evaluation of the catalytic performance of the nanocatalysts up to 250 °C, SEM and TEM results showed that c-Cu₂O, o-Cu₂O, and d-Cu₂O maintained their original morphologies and phase structure well (see Figures S1 A3, S2A3, S3A3, and S4), but features arising from CuO appeared in the Cu 2p_{3/2} XPS spectra (Figure 2A). This observation indicates the partial oxidation of Cu₂O nanocrystals during the catalytic reaction; however, high-resolution TEM images (see Figure S1 D3, S2 D3, and S3 D3) failed to show any lattice fringes arising from CuO. This result implies the likely formation of very thin CuO islands on the surface of Cu₂O nanocrystals. No obvious accumulation of adventitious carbon and carbonate were observed by C 1s XPS (Figure 2B). We also investigated the stability of o-Cu₂O at 240°C (see Figure S8A) and d-Cu₂O at 215°C in the catalysis of propylene oxidation with O₂ (see Figure S8B). o Cu_2O was very stable at 240°C and promoted approximately 2.5% C_3H_6 conversion with around 80% selectivity for the formation of acrolein. d-Cu₂O was not stable even at 215°C. During the reaction, C_3H_6 conversion slowly decreased from 0.35 to 0.15%, the selectivity for propylene oxide slowly decreased from 18.4 to 12%, and the selectivity for acrolein slowly increased from 33.4 to 45.6%. After the stability test, the surface of o-Cu₂O was slightly oxidized, but that of d-Cu₂O was seriously oxidized (see Figure S9).

The above results clearly reveal that the morphology of oxide nanocrystals controls their catalytic selectivity as well as their catalytic activity. Figure 4 compares the DRIFTS spectra acquired for the chemisorption of C_3H_6 and $C_3H_6+O_2$ on

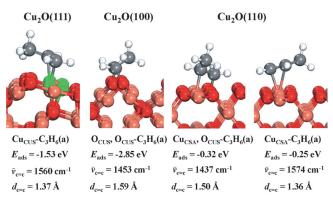


Figure 4. DRIFTS spectra of C_3H_6 and $C_3H_6+O_2$ chemisorption on capping-ligand-free Cu_2O cubes (c- Cu_2O), octahedra (o- Cu_2O), and rhombic dodecahedra (d- Cu_2O) at 230 °C. DRIFTS = diffuse reflectance infrared Fourier transform spectroscopy.

different Cu₂O nanocrystals at 230 °C. The first observation is that on each type of Cu₂O nanocrystal, the vibrational features of $C_3H_6 + O_2$ chemisorption are similar to those of C₃H₆ chemisorption, except that their intensities are reduced. This observation infers that propylene oxidation with O_2 as catalyzed by Cu₂O follows the Mars-van Krevelen (MvK) mechanism, and the lattice oxygen atoms of the Cu₂O surface are the active oxygen species. The second observation is that o-Cu₂O exhibits substantially stronger vibrational features than those of c-Cu₂O and d-Cu₂O. Thus, o-Cu₂O is most active toward the chemisorption and surface reaction of C₃H₆, in agreement with the experimental result that o-Cu₂O is much more catalytically active than c-Cu₂O and d-Cu₂O. The third observation is that the vibrational features vary on different Cu₂O nanocrystals and indicates the morphology-dependent formation of surface adsorbates/intermediates upon C₃H₆ oxidation on Cu₂O nanocrystals. This behavior corresponds well to the morphology-dependent catalytic selectivity of the nanocrystals in propylene oxidation with O₂.

To assist the assignment of the observed vibrational bands (see Table S2), we measured DRIFTS spectra for C_3D_6 chemisorption (see Figure S10) and CO_2 chemisorption (see Figure S11) on different Cu_2O nanocrystals. o- Cu_2O , c- Cu_2O , and d- Cu_2O expose {111}, {100}, and {110} crystal planes, respectively, whose surface structures were optimized (see

Figure S12). $^{[11]}$ Coordinatively saturated Cu (Cu_{CSA}) and O (O_{CSA}) in the bulk cubic Cu₂O are two-coordinated and fourcoordinated, respectively. The Cu₂O(111) surface is terminated with three-coordinated O_{CUS} (CUS = coordinatively unsaturated) in the top layer and one-coordinated Cu (Cu_{CUS}) and Cu_{CSA} in the second layer in a 1:3 ratio. The Cu₂O(100) surface is terminated with two-coordinated O atoms (O_{CUS}) in the top layer and Cu_{CSA} in the second layer. The Cu₂O(110) surface is terminated with three-coordinated O_{CUS} and Cu_{CSA} in the top layer and Cu_{CSA} in the second layer. Therefore, C_3H_6 adsorption on $Cu_2O(111)$, (100), and (110) surfaces was also studied by DFT calculations, the results of which (Figure 5) support the experimental observations well. On $Cu_2O(111)$, C_3H_6 is preferentially adsorbed at the Cu_{CUS} site to form Cu_{CUS}-C₃H₆(a) with an adsorption energy of -1.53 eV and a C=C stretching frequency of 1560 cm⁻¹. Experimentally, on the o-Cu₂O surface, chemisorbed C₃H₆

Figure 5. Optimized structures of the most stable $C_3H_6(a)$ species on $Cu_2O(111)$, (100), and (110) surfaces with the adsorption energy, C=C stretching frequency, and C=C bond length. Red, gray, white, pink, and green balls represent O, C, H, coordinatively saturated Cu, and coordinatively unsaturated Cu, respectively.

species are only C₃H₆(a) with a C=C stretching frequency of 1541 cm⁻¹. On Cu₂O(100), C₃H₆ preferentially bonds to two neighboring two-coordinated O_{CUS} sites to form O_{CUS} , O_{CUS} - $C_3H_6(a)$ with an adsorption energy of -2.85 eV and a C=C stretching frequency of 1453 cm⁻¹. Experimentally, on the c-Cu₂O surface, the dominant chemisorbed C₃H₆ species exhibits a C=C stretching frequency of 1428 cm⁻¹. On Cu₂Obridge-adsorbed Cu_{CSA} , O_{CUS} $-C_3H_6(a)$ 1437 cm⁻¹) and atop-adsorbed Cu_{CSA} - $C_3H_6(a)$ ($\bar{\nu}_{C=C}$ = 1574 cm⁻¹) have similar adsorption energies. Experimentally, on the d-Cu₂O surface, C₃H₆(a) species with C=C stretchingvibration frequencies of 1541 and 1428 cm⁻¹ were both observed. The $\bar{\nu}_{\text{C=C}}$ bands of O_{CUS} , O_{CUS} – $C_3H_6(a)$ and Cu_{CSA},O_{CUS}-C₃H₆(a) at 1428 cm⁻¹ are indistinguishable from the C-H bending-vibration bands (Figure 4), but their presence is evidenced in the case of C₃D₆ chemisorption (see Figure S10), in which case the C-D bending-vibration bands are red-shifted away from the $\bar{\nu}_{C=C}$ bands.

Besides the different chemisorbed $C_3H_6(a)$ species, different surface intermediates form on various Cu_2O nanocrystals. On the o- Cu_2O surface, chemisorbed acrolein ($\bar{\nu}_{C=O}$ at 1667 cm⁻¹) is evident, and chemisorbed allyl ($\bar{\nu}_{C-C-C}$ at 1428

and 1406 cm⁻¹; see Figure S10) and allene species ($\bar{\nu}_{C=C=C}$ at 1959 and 1915 cm⁻¹), which are key intermediates for the partial oxidation of propylene to acrolein,^[14] are also present. These observations agree with the high selectivity of o-Cu₂O nanocrystals in catalyzing the partial oxidation of propylene to acrolein and indicate Cu_{CUS}-C₃H₆(a) on Cu₂O(111) as the active species. The C=C bond distance of Cu_{CUS}-C₃H₆(a) was calculated to be 1.37 Å, whereas that of the gas-phase C₃H₆ molecule is 1.34 Å. Thus, the C=C bond of Cu_{CUS}-C₃H₆(a) is only marginally activated, and its entity can reasonably be preserved in the subsequent surface reactions, thus leading to the formation of acrolein.

On the c-Cu₂O surface, CO₂(a) ($\bar{\nu}_{as}$ (CO₂) at 2345 cm⁻¹) and carbonate/carboxylate species (broad bands between 1650 and 1350 cm⁻¹) are dominant surface intermediates, in agreement with the high selectivity of c-Cu₂O in catalyzing propylene combustion. The C=C bond distance of O_{CUS},O_{CUS}- $C_3H_6(a)$ on $Cu_2O(100)$ was calculated to be 1.59 Å; thus, its C=C bond is significantly weakened and should undergo facile cleavage in the subsequent surface reactions. The epoxidation and combustion of propylene are the reaction pathways involving cleavage of the C=C bond. DFT calculation results (see Figure S13A) show that the activation energy for the epoxidation of O_{CUS} , O_{CUS} – $C_3H_6(a)$ to give chemisorbed propylene oxide (C₃H₆O(a)) and the decomposition of O_{CUS}, O_{CUS} – C₃H₆(a) into adsorbed CH₂(a) and CHCH₃(a) is 2.09 and 1.02 eV, respectively. This result indicates that O_{CUS} , O_{CUS} – $C_3H_6(a)$ should preferentially undergo the combustion reaction, thus supporting the experimental results for c-Cu₂O.

On the d-Cu₂O surface, a chemisorbed allyl species is present (see Figure S10), and the presence of C₃H₆O(a) is indicated by the strong and narrow C-H bending-vibration band at 1440 cm⁻¹. Such a feature does not appear in the case of C₃H₆ chemisorption on c-Cu₂O and o-Cu₂O and can be reasonably assigned to δ(CH₂) of C₃H₆O(a) by comparison with the infrared spectra of propylene, acrolein, and propylene oxide.[15] These observations agree with the production of both acrolein and propylene oxide through propylene oxidation with O₂ as catalyzed by d-Cu₂O. The C=C bond distance of Cu_{CSA} – $C_3H_6(a)$ on $Cu_2O(110)$ was calculated to be 1.36 Å, and thus Cu_{CSA} – $C_3H_6(a)$ is reasonably considered to be the active species for the formation of acrolein; Cu_{CSA},O_{CUS}- $C_3H_6(a)$ on $Cu_2O(110)$ exhibits a significantly weakened C=C bond with a C=C bond distance of 1.50 Å and can reasonably be expected to undergo the surface reactions involving the breaking of the C=C bond. Interestingly, the results of DFT calculations (see Figure S13B) show that the activation energy for the epoxidation of Cu_{CSA},O_{CUS}-C₃H₆(a) to give $C_3H_6O(a)$ and the decomposition of $Cu_{CSA}, O_{CUS}-C_3H_6(a)$ into adsorbed CH₂(a) and CHCH₃(a) is 1.28 and 2.08 eV, respectively. These activation energies indicate that Cu_{CSA} , O_{CUS} -C₃H₆(a) should preferentially undergo the epoxidation reaction, thus supporting the experimental results for d-Cu₂O. The different reactivities of O_{CUS}, O_{CUS}-C₃H₆(a) on Cu₂O(100) and Cu_{CSA},O_{CUS}-C₃H₆(a) on Cu₂O(110) reflect the different reactivities of two-coordinated O_{CUS} on Cu₂O(100) and three-coordinated O_{CUS} on Cu₂O(110). Two-coordinated O_{CUS} is more electrophilic than three-coordinated O_{CUS} and is thus more able to completely break the C=C bond of propylene to result in the combustion reaction. These results provide unprecedented comprehensive fundamental understanding of the structure–activity relationships and active sites of Cu_2O catalysts in the catalysis of propylene oxidation with O_2 (Scheme 1).

In summary, we have successfully revealed the crystalplane-controlled selectivity of Cu₂O catalysts in the catalysis of propylene oxidation with O₂ and gained an understanding of their structure-activity relationships and catalytically active sites by the use of capping-ligand-free Cu₂O octahedra, cubes, and rhombic dodecahedra as catalysts. Cu_2O octahedra enclosed by {111} crystal planes are most selective for the formation of acrolein, and one-coordinated Cu^I on Cu₂O(111) is the active site; Cu₂O cubes enclosed by {100} crystal planes are most selective for the formation of CO2, and twocoordinated O on Cu₂O(100) is the active site; and Cu₂O rhombic dodecahedra enclosed by {110} crystal planes are most selective for the formation of propylene oxide, and three-coordinated O on Cu₂O(110) is the active site. These results reveal a strategy based on the morphology (crystalplane) engineering of oxide catalysts as an effective approach for both the discovery of selective catalysts and the broadening of our fundamental understanding of heterogeneous catalysis. On one hand, 100% selectivity for the targeted product is the ultimate goal of heterogeneous catalysis. A catalyst nanoparticle enclosed by different crystal planes is intrinsically inappropriate as a means to reach this ultimate goal because different crystal planes will exhibit various selectivities. In this regard, catalyst nanocrystals that have a uniform morphology and selectively expose a single type of crystal plane are promising as highly selective catalysts. On the other hand, fundamental understanding of structureactivity relationships and active sites is a long-standing challenge for complex heterogeneous catalytic reactions. The traditional approach is to study single-crystal-based model catalysts under ultrahigh-vacuum conditions, but these systems often suffer from the so-called "pressure gap" and "materials gap". Catalyst nanocrystals with uniform morphologies and well-defined structures are appropriate model catalysts for fundamental studies of practical heterogeneous catalytic reactions. The acquired fundamental understanding will be invaluable for the design of efficient catalysts. The success of this approach can be anticipated from our present results, which show that Cu₂O octahedra are a promising catalyst for propylene oxidation with O₂ to produce acrolein, and that uniform Cu₂O particles that selectively expose a high density of three-coordinated O sites are active in catalyzing propylene epoxidation with O₂ to produce propylene oxide: a highly desirable but very challenging catalytic reaction.

Received: February 13, 2014 Published online: April 1, 2014

Keywords: active sites · nanocatalysis · oxide catalysts · reaction mechanisms · surface chemistry

- [1] Handbook of Heterogeneous Catalysis, Vol. 5 (Eds.: G. Ertl, H. Knözinger, J. Weitkamp), VCH, Weinheim, 1997.
- [2] a) T. A. Nijhuis, M. Makkee, J. A. Moulijn, B. M. Weckhuysen, Ind. Eng. Chem. Res. 2006, 45, 3447-3459; b) F. Cavani, J. H. Teles, ChemSusChem 2009, 2, 508-534.
- [3] a) T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 1998, 178, 566-575; b) B. Chowdhury, J. J. Bravo-Suárez, M. Daté, S. Tsubota, M. Haruta, Angew. Chem. 2006, 118, 426-429; Angew. Chem. Int. Ed. 2006, 45, 412-415; c) S. Lee, L. M. Molina, M. J. López, J. A. Alonso, B. Hammer, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin, S. Vajda, Angew. Chem. 2009, 121, 1495-1499; Angew. Chem. Int. Ed. 2009, 48, 1467 – 1471; d) J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Angew. Chem. 2009, 121, 8002-8006; Angew. Chem. Int. Ed. 2009, 48, 7862-7866.
- [4] a) F. W. Zemichael, A. Palermo, M. Tikhov, R. M. Lambert, Catal. Lett. 2002, 80, 93-98; b) M. Luo, J. Lu, C. Li, Catal. Lett. 2003, 86, 43-49; c) J. Lu, J. J. Bravo-Suárez, A. Takahashi, M. Haruta, S. T. Oyama, J. Catal. 2005, 232, 85-95; d) Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, R. J. Meyer, P. C. Redfern, D. Teschner, R. Schlögl, M. J. Pellin, L. A. Curtiss, S. Vajda, Science 2010, 328, 224-228; e) L. M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin, I. Barke, V. von Oeynhausen, Y. Lei, R. J. Meyer, J. A. Alonso, A. F. Rodríguez, A. Kleibert, S. Giorgio, C. R. Henry, K.-H. Meiwes-Broer, S. Vajda, Catal. Today 2011, 160, 116-130.
- [5] a) O. P. H. Vaughan, G. Kyriakou, N. Macleod, M. Tikhov, R. M. Lambert, J. Catal. 2005, 236, 401-404; b) H. Chu, L. Yang, Q. Zhang, Y. Wang, J. Catal. 2006, 241, 225-228; c) W. Su, S. Wang, P. Ying, Z. Feng, C. Li, J. Catal. 2009, 268, 165 – 174; d) L. Yang, J. He, Q. Zhang, Y. Wang, J. Catal. 2010, 276, 76-84; e) A. Marimuthu, J. Zhang, S. Linic, Science 2013, 339, 1590-1593; f) R. K. Grasselli, J. D. Burrington, Adv. Catal. 1981, 30, 133-163; g) D. Torres, N. Lopez, F. Illas, R. M. Lambert, Angew. Chem. 2007, 119, 2101-2104; Angew. Chem. Int. Ed. 2007, 46, 2055 - 2058.
- [6] a) G. W. Keulks, L. D. Krenske, T. M. Notermann, Adv. Catal. 1979, 27, 183-225; b) K. H. Schulz, D. F. Cox, Surf. Sci. 1992, 262, 318-334; c) K. H. Schulz, D. F. Cox, J. Catal. 1993, 143,

- 464-480; d) J. B. Reitz, E. I. Solomon, J. Am. Chem. Soc. 1998, 120, 11467-11478; e) W. Zhu, Q. Zhang, Y. Wang, J. Phys. Chem. C 2008, 112, 7731-7734; f) J. He, Q. Zhai, Q. Zhang, W. Deng, Y. Wang, J. Catal. 2013, 299, 53-66.
- [7] a) J. A. van Bokhoven, ChemCatChem 2009, 1, 363-364; b) K. B. Zhou, Y. D. Li, Angew. Chem. 2012, 124, 622-635; Angew. Chem. Int. Ed. 2012, 51, 602-613; c) W. X. Huang, Top. Catal. 2013, 56, 1363-1376.
- [8] a) H. Bao, W. Zhang, Q. Hua, Z. Jiang, J. Yang, W. X. Huang, Angew. Chem. 2011, 123, 12502-12506; Angew. Chem. Int. Ed. 2011, 50, 12294-12298; b) Q. Hua, T. Cao, H. Bao, Z. Jiang, W. X. Huang, ChemSusChem 2013, 6, 1966-1972.
- [9] a) W.-C. Huang, L.-M. Lyu, Y.-C. Yang, M. H. Huang, J. Am. Chem. Soc. 2012, 134, 1261-1267; b) Y. Zhang, B. Deng, T. Zhang, D. Gao, A. Xu, J. Phys. Chem. C 2010, 114, 5073-5079; c) J.-Y. Ho, M. H. Huang, J. Phys. Chem. C 2009, 113, 14159-14164.
- [10] a) Y. Xu, H. Wang, Y. Yu, L. Tian, W. Zhao, B. Zhang, J. Phys. Chem. C 2011, 115, 15288-15296; b) L. Li, C. Nan, Q. Peng, Y. Li, Chem. Eur. J. 2012, 18, 10491-10496; c) K. Chanda, S. Rej, M. H. Huang, Chem. Eur. J. 2013, 19, 16036-16043.
- [11] a) H. Z. Bao, W. H. Zhang, D. L. Shang, Q. Hua, Y. S. Ma, Z. Q. Jiang, J. L. Yang, W. X. Huang, J. Phys. Chem. C 2010, 114, 6676-6680; b) Q. Hua, D. Shang, W. Zhang, K. Chen, S. Chang, Y. Ma, Z. Jiang, J. Yang, W. X. Huang, Langmuir 2011, 27, 665 -
- [12] T. F. Moulder, W. J. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, PerkinElmer, Eden Prairie, MN, 1992.
- [13] J. A. Lopez-Sanchez, N. Dimitratos, C. Hammond, G. L. Brett, L. Kesavan, S. White, P. Miedziak, R. Tiruvalam, R. L. Jenkins, A. F. Carley, D. Knight, C. J. Kiely, G. J. Hutchings, Nat. Chem. **2011**, 3, 551 – 556.
- [14] C. Zhao, I. E. Wachs, J. Phys. Chem. C 2008, 112, 11363-11372.
- [15] http://webbook.nist.gov/cgi/cbook.cgi?ID = C115071&Units = SI&Type = IR-SPEC&Index = 1#IR-SPEC (IR spectrum of propylene); http://webbook.nist.gov/cgi/cbook.cgi?ID = C107028&Units = SI&Type = IR-SPEC&Index = 1#IR-SPEC(IR spectrum of acrolein); http://webbook.nist.gov/cgi/cbook. cgi?ID = C75569&Units = SI&Type = IR-SPEC&Index = 1#IR-SPEC (IR spectrum of propylene oxide).

4861