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An improved microwave-assisted method was developed for the preparation of ethyl 5-aminopyrazole
carboxylates from ethyl 2-cyano-3-methylthioacrylates and hydrazine. It was shown that using micro-
wave irradiation significantly reduced the reaction time and improved the process selectivity and yield.
The reaction proved to be reproducible in different microwave reactors and on large scale, affording the
desired products in high yields and purity. A representative library of 3-arylamino-substituted 5-
aminopyrazole-4-carboxylates was successfully prepared to assess the scope of the method.

� 2017 Elsevier Ltd. All rights reserved.
Molecules constructed using the aminopyrazole skeleton have
attracted the significant interest of researchers due to their useful
medicinal properties. Aminopyrazoles were reported to possess
antiparasitic activity against Toxoplasma gondii1 and Plasmodium
falciparum.2 Potentially useful aminopyrazoles for the treatment
of lipid disorders, as well as highly potent and selective agonists
of the GPR109b receptor were also identified.3

The aminopyrazole scaffold was also successfully used for the
construction of various therapeutically important kinase inhibi-
tors. Thus, compounds exhibiting potential neuroprotective effects
through the inhibition of c-jun N-terminal kinase 34 and selectively
inhibiting mitogen-activated protein kinase 2,5 which plays a role
in autoimmune diseases, were developed. Recently, aminopyra-
zoles have been found to possess anticancer activity through inhi-
bition of cyclin-dependent kinase (CDK),6 p21-activated kinase7

and Rearranged during Transfection (RET) kinase.8

3,5-Diaminopyrazoles have recently been reported as cyclin-
dependent kinase 9 (CDK9) inhibitors with the potential to treat
multiple myeloma and chronic lymphocytic leukaemia. The dia-
mine CAN508 (1)9 (Fig. 1) represents one of the first CDK inhibitors
with high selectivity towards CDK9.10 Interesting bioactive 3-ary-
lamino-substituted 5-aminopyrazoles have also been identified.
Compound 2 demonstrated significant cytotoxicity against the
Ehrlich ascites carcinoma cells,11 while compound 3 was found
to possess antibacterial properties.12

Aminopyrazoles have been extensively explored as useful
building blocks for more complex fused heterocyclic systems, such
as pyrazolopyridines, pyrazolopyrimidines, and pyrazolotri-
azines.13 Among 5-aminopyrazoles, their 4-cyano derivatives are
classical heterocyclic synthons, which have been well-described
in the literature and have gained a reputation as useful building
blocks for the synthesis of many pyrazole-fused heterocyclic sys-
tems.14 3-Amino-substituted 5-amino-4-cyanopyrazoles (6) have
been prepared using the straightforward reaction of 3-amino sub-
stituted 3-methylsulfanyl-2-cyanoacrylonitrile (5) with hydrazine
(Scheme 1).15 However, replacement of one of the cyano groups
of 5 with ethyl carboxylate would give 3-amino-substituted ethyl
2-cyano-3-methylthioacrylates (8), which possess both a nitrile
and an ester group competing for the nucleophile. Hence,
conducting a similar reaction of 8 with hydrazine would result in
two possible directions for pyrazole ring closure to give either
ethyl 5-aminopyrazole-4-carboxylates (9), 3-oxo-2,3-dihydro-1H-
pyrazole-4-carbonitriles (10) or a mixture of these two compounds
(Scheme 2).

Reported synthetic procedures based on the reaction of 8 with
hydrazine under conventional heating are controversial.16,17 Initial
nucleophilic attack of hydrazine should result in the elimination of
methanethiol and subsequent intramolecular cyclization via
nucleophilic substitution occurs at the ester yielding pyrazole 10
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Fig. 1. Selected bioactive 3,5-diaminopyrazoles.
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(Pathway B).16 However, it was also reported that intramolecular
cyclization occurred with an alternative nucleophilic attack to
the electron deficient carbon of the cyano group affording 9
(Pathway A).17

Microwave technology has been demonstrated to speed up
reactions, often achieving good purity and product yield.18 We
decided to investigate the selectivity of the reaction between
amino-substituted ethyl 2-cyano-3-methylthioacrylates (8) and
hydrazine and explore the effect of microwave irradiation, which
in many cases has been reported to increase the selectivity of
chemical reactions.19

Following a previously reported method, ethyl 2-cyano-3-
methylthio-3-phenylaminoacrylate (8a) was prepared from the
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Scheme 3. Reagents and conditions: (i) PhNH2 (1 equiv.), MeOH, reflux, 12 h; (ii) N2H
microwave, 160 �C, 10 min (9a, 90% and 10a, trace).
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reaction of ethyl 2-cyano-3,3-bis(methylthio)acrylate (7) with ani-
line (Scheme 3).20 The structure of 8awas confirmed by NMR spec-
tra, particularly the downfield shifted signal (11.51 ppm in CDCl3)
of the NH proton involved in an intramolecular hydrogen bond
with the neighbouring ester group. The (E)-geometry of 8a was
also supported by 2D NOESY data. The cross peak observed in
the 2D NOESY spectrum of 7 between the signals of the ester group
and the methylthio groups, was absent in the spectrum of 8a.
Furthermore, single crystal X-ray data for similar compounds21

suggested the same geometry.
Initially, we attempted the reaction of 8a with hydrazine using

conventional heating at reflux in methanol. Analysis of the crude
material showed the presence of a mixture of products, with the
major product ethyl 5-amino-3-phenylaminopyrazole-4-carboxy-
late (9a) and minor product 2,3-dihydro-3-oxo-5-phenylaminopy-
razole-4-carbonitrile (10a) in a 7:3 ratio (Scheme 3). Under these
conditions, 9a was obtained in 53% yield.

An attempt to carry out the reaction of 8a with hydrazine in
methanol under microwave irradiation at 160 �C for 10 min
afforded ethyl 5-amino-3-phenylaminopyrazole-4-carboxylate
(9a) as the major product in high yield (90%). The ring closure
showed almost exclusive presence of the desired 5-amino-3-
phenylaminopyrazole-4-carboxylate (9a) in the crude reaction
product; only trace amounts of side-product 10a were identified
by 1H NMR spectroscopy. The desired product 9a was easily iso-
lated in analytically pure form via recrystallization from methanol.

The ester group on the pyrazole ring remained intact as con-
firmed by the ethoxycarbonyl signals at 1.30 ppm and 4.24 ppm
in the 1H NMR spectra. In the 13C NMR spectra, the carbonyl group
signal appeared at 164.2 ppm. The deshielding effect of the
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adjacent ester group resulted in an upfield shifted signal of the
pyrazole C-4 at 81.6 ppm. Additionally, the band at 1641 cm�1 in
the IR spectra corresponding to the carbonyl group, together with
no detectable nitrile band, supported the formation of 9a.

Changing the solvent in the microwave-assisted reaction of 8a
with hydrazine to acetonitrile or tetrahydrofuran had no signifi-
cant effect on the reaction outcome. The yield and selectivity of
the process were similar to those observed for the reaction con-
ducted in methanol.

To our satisfaction, increasing the scale of the microwave-
assisted reaction to 11.5 mmol under identical microwave irradia-
tion conditions led to the same high purity product and excellent
yield (97%).

Themethodwas further validatedusing three differentmodels of
microwave synthesizers: Discover SP (CEM),Monowave 450 (Anton
Paar), and Initiator+(Biotage). For all three systems, identical tem-
perature settings (160 �C) and reaction time (10 min) were used.
Table 1
Synthesis of 3-arylamino-substituted ethyl 5-aminopyrazole-4-carboxylates (9a-l).
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Experiments were performed in triplicate and no significant dif-
ference was observed between results obtained using these three
instruments. Average yields obtained using Discover SP (CEM),
Monowave 450 (Anton Paar), and Initiator + (Biotage) were
90 ± 0.9%, 87 ± 0.5%, and 91 ± 2.8%, respectively.

To test the scope of our newly developed method, a series of
3-arylamino substituted ethyl 2-cyano-3-methylthioacrylates (8)
was first prepared using the known reaction of ethyl 2-cyano-3,3-
bis(methylthio)acrylate (7) with various anilines.20 Using our
improved protocol, we obtained a library of 3-arylamino-substi-
tuted ethyl 5-aminopyrazole-4-carboxylates (9) in high yields (up
to 99%) and excellent selectivity (Table 1). Only trace amounts of
10 were detected in some of the crude reaction products. It should
be noted that the yields obtained with the microwave-assisted
method were higher compared to previously reported protocols
with a significant decrease in reaction time, requiring just 10 min
compared to the reported 3–6 h under conventional heating.16,17
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In summary we have successfully developed an improved
microwave-assisted method for the synthesis of 3-arylamino-sub-
stituted ethyl 5-aminopyrazole-4-carboxylates (9). We demon-
strated that microwave irradiation significantly shortened the
reaction time and substantially improved the reaction selectivity
and, as a result, the yield and purity. The scale of the reaction could
be increased without adverse effects. The method was also con-
firmed to be reproducible giving similar results under the same
reaction conditions using three different types of microwave reac-
tors. Exploring the reaction scope, we observed a good tolerance to
different arylamino substituents allowing the generation of a
library of ethyl 5-aminopyrazole-4-carboxylates which may be
useful for biological investigation and also as synthons for the con-
struction of more complex molecules and other heterocyclic
systems.
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