788 Communications synthesis

Reaction of 1,3,5-Oxadiazinium Salts with Amines; Formation of *N*-(*N*-Benzoyliminobenzyl)-*N'*-substituted Benzamidines; a New Class of Compounds, Azavinylogues of *N*-Acylamidines¹

R. Fuks*, M. Strebelle, A. Wenders

Université Libre de Bruxelles, Faculté des Sciences, Chimie Générale I, Campus Plaine, B-1050 Brussels, Belgium

1,3,5-Oxadiazinium salts (e.g. 1) are readily accessible from the reaction of a nitrile (1 mol) with an acyl chloride (1 mol) and a Lewis acid (1 mol)^{2,3}. Various heterocyclic systems such as pyrimidine, s-triazine, triazole, and oxadiazole derivatives can be obtained from 1 by reaction with carbanions⁴ (derived e.g. from malonitrile, methyl cyanoacetate, ethyl benzoylacetate, etc.), ammonia⁵, hydrazines, hydroxylamines and urea³, respectively. These reactions have been shown to take place via an initial nucleophilic attack at position 2 to open the ring and subsequent cyclisation with elimination of a small molecule such as water, methanol, ethanol, or benzamide^{3,4,6}.

In this communication we report the synthesis of N-(N-benzoyliminobenzyl)-N'-substituted benzamidines 3 by the reaction of 2,4,6-triphenyl-1,3,5-oxadiazinium pentachlorostannates 1 with primary and secondary aliphatic and/or aromatic amines 2.

The products 3 are stable, in contrast to the corresponding, usually not isolated, intermediates in the ring transformation reactions mentioned above (compare also with the formation of N-substituted pyridinium salts by the reaction of primary amines with pyrylium salts^{6, 7, 8}).

C ₆ H ₅ N SnCl ₅ C ₆ H ₅ C ₆ H ₅	R ² NH	> Ç ₆ H₅ Ç ₆ H₅
1	2	ς ₆ H ₅ ς ₆ H ₅ ν−c=ν−c=0
		C ₆ H ₅ -C N-R ²
		3 R ¹

All new compounds 3 were characterised by microanalysis, I.R., U.V., ¹H-N.M.R., and mass spectral data (see Tables). They are stable in solid form or in aqueous base but are hydrolysed by aqueous acid to the benzamidine 4 and dibenzovlamine (5).

$$\begin{array}{c} C_{6}H_{5} C_{6}H_{5} \\ C_{6}H_{5}-C \\ N-C=N-C=0 \\ N-R^{2} \\ R^{1} \\ 3 \\ C_{6}H_{5}-C \\ N-R^{2} \\ R^{1} \\ 4 \\ R^{1} \\ \end{array} \xrightarrow[N-R^{2}]{H_{2}O/HCl} \\ + C_{6}H_{5}-C-NH-C-C_{6}H_{5} \\ + C_{6}H_{5}-C-NH-C-C_{6}H_{5} \\ \end{array}$$

General Procedure for the Synthesis of N-(N-Benzoyliminobenzyl)-N'-substituted Benzamidines 3:

In a three necked flask fitted with a thermometer, a dropping funnel, and a gas inlet tube for nitrogen is placed 2,4,6-triphenyl-1,3,5-oxadiazinium pentachlorostannate² (1; 24.3 g, 0.04 mol) suspended in dry dichloromethane (100 ml). With magnetic stirring, the amine 2 (0.04 mol) in dichloromethane (40 ml) is added and the mixture is heated under gentle reflux for 3 h. The resultant

Prod- uct	R ¹	R ² Yield m.p. (recryst. from)		Molecular formula ^a	Mass spectra m/e M ⁺		
3a	(CH ₂)5***	No. were probable in a common or com	71	173° (acetone)	C ₂₆ H ₂₅ N ₃ O (395.5)	395 403	
3 b	C ₆ H ₅	Н	66	188° (ether)	$C_{27}H_{21}N_3O$ (403.5)		
3c	4-ClC ₆ H ₄	Н	67	201° (ether)	C ₂₇ H ₁₉ ClN ₃ O (437.5)	437	
3d	i-C ₃ H ₇			129° (cyclohexane)	$C_{27}H_{29}N_3O$ (411.5)	411	
3e	cvclo-C ₆ H ₁₁	Н	71	161° (CCl ₄)	$C_{27}H_{27}N_3O$ (409.5)	409	
3f	n-C4H9	Н	50	143° (ethyl acetate)	$C_{25}H_{25}N_3O$ (383.5)	383	
3g	4-H ₃ CC ₅ H ₄	Н	78	182° (acetone)	C ₂₈ H ₂₃ N ₃ O (417.5)	417	
3h	4-H ₃ CO—C ₆ H ₄	H	64	198° (ethyl acetate)	C ₂₈ H ₂₃ N ₃ O ₂ (433.5)		
3i	4-O ₂ N-C ₆ H ₄	Н	73	157° (CCl ₄)	$C_{27}H_{20}N_4O_3$ (448.5)	448	
3j	$-(CH_2)_2-O-(CH_2)_2-$		75	163° (cyclohexane)	$C_{25}H_{23}N_3O_2$ (397.5)	397	

^a All products gave satisfactory microanalyses (C $\pm 0.4\%$, H $\pm 0.3\%$, N $\pm 0.4\%$).

Table 2. Spectral Data for Benzamidines 3

Prod-	rod- I.R. (KBr) v [cm ⁻¹] ^a					¹ H-N.M.R. (CDCl ₃) δ [ppm] H _{arom} N—H N—CH \Rightarrow C—CH ₂ \Rightarrow C			\ c		
uct	NH	CH _{arom}	C=O	C==N	CH_2	C=C _{arom}	H _{arom}	N—H	N-CH	>CCH;	. →C—CH ₃
3a		2930 (m)	1630 (s)	1550 (s)	1050 (m)	1590 (m)	7.5 (15H)		3.5 (4H)	1.7 (6H)	
3b	3300 (s)	3050 (w)	1650 (s)	1540 (vs)		1585 (s)	7.5	5.8		emanus.	
3e	3230 (m)	3050 (w)	1650 (vs)	1530 (vs)		1580 (s)	7.5	ь			
3d		2970 (w)	1650 (s)	1570 (vs)	1010 (m)	1600 (s)	7.5 (15H)		3.6 (2H)		1.4 (12H)
3e	3260 (m)	2990 (w)	1620 (s)	1550 (vs)	1040 (m)	1595 (s)	7.5 (15H)	5.1	3.8 (1 H)	1.5 (10H)	PROMOTE
3f	3270 (s)	2940 (m)	1620 (vs)	1515 (vs)	1025 (m)	1585 (s)	7.0-8.0 (15H)	5.4	3.3 (2H)	1.5-	-1.0 (7 H)
	3330 (m)	3010 (w)	1640 (vs)	1530 (vs)	1010 (s)	1590 (s)	7.0-8.0 (19 H)	6.3	-		2.3 (3 H)
3g 3h	3210 (m)	3000 (w)	1625 (s)	1510 (vs)	1030 (s)	1600 (vs)	7.0-8.0 (19H)	b			3.75 (3 H)
3i	3210 (III) 3250 (w)	3050 (w)	1630 (s)	1490 (vs)	1010 (s)	1600 (vs)	7.0-8.0 (15H)	5.1	4.1 (1 H)		1.5 (6 H)
31 3j	3230 (W)	3050 (w)	1630 (s)	1550 (vs)	1015 (w)	1590 (s)	7.0-8.0 (15 H)		. ,	5 (8 H)	

^a vs = very strong; s = strong; m = medium; w = weak.

b Not detected.

mixture is then cooled in ice/water and poured on to cold (0°) 1 molar aqueous sodium hydroxide solution (250 ml). The two phases are separated, the aqueous phase is reextracted with dichloromethane, the combined organic phases are dried (MgSO₄), and evaporated to dryness. The residue is recrystallised from a suitable solvent (see Table 1) to give the pure product 3.

Hydrolysis of Products 3; Typical Procedure:

The benzamidine $3(R^1=C_6H_5,R^2=H;2~g,0.005~mol)$ is dissolved in 6 normal hydrochloric acid (50 ml) and the solution is kept at room temperature for 72 h. It is then extracted with dichloromethane, the organic layer is dried and evaporated to give a crystalline residue. This is recrystallised from benzene to give pure dibenzoylamine (5); yield: 0.75 g (66%); m.p. and m.m.p. 147° ; I.R. identical with an authentic sample³.

The acidic layer is made alkaline with sodium hydroxide solution and extracted with dichloromethane. The organic layer is concentrated to give an oily residue. This is dissolved in 1 normal hydrochloric acid (150 ml), the solution is made alkaline with aqueous sodium hydroxide, and extracted with dichloromethane. The organic layer is dried and evaporated to an oily residue which is purified by column chromatography (silicagel 60/ethyl acetate). The product 4 is recrystallised twice from a little cyclohexane; yield: 0.2 g (20%); m.p. and m.m.p. 115°; I.R. identical with an authentic sample¹⁰.

Received: July 7, 1977

^{*} Author to whom correspondence shoud be addressed.

N-Alkylation and acylation of nitriles, 4. Part 3. R. Fuks, *Tetrahedron* 29, 2153 (1973). Presented at the "Third International Symposium on the Chemistry of Small Ring Compounds and Activated Multiple Bonds" Louvain-La-Neuve August 23, 1976.

² H. Meerwein, H. Laasch, P. Mersch, J. Spille, *Chem. Ber.* 89, 209 (1958).

³ R. R. Schmidt, Chem. Ber. 98, 334 (1965).

⁴ I. Shibuya, M. Kurabayashi, Bull. Chem. Soc. Jpn. 42, 2382 (1969); 46, 3902 (1973).

⁵ P. Eitner, F. Kraft, Ber. Dtsch. Chem. Ges. 25, 2267, (1892).

⁶ H. C. Van Der Plas, Ring Transformations of Heterocycles, Vol. 2 p. 1, 17, 207, Academic Press, New York-London, 1973.

⁷ C. Toma, A. T. Balaban, Tetrahedron Supp. no. 7, p. 9 (1966).

⁸ K. Dimroth, *Angew. Chem.* **72**, 331 (1960).

⁹ See however A. T. Balaban, C. Toma, *Tetrahedron Supp.* no. 7, p. 1 (1966).

¹⁰ F. C. Cooper, M. W. Partridge, *Org. Synth. Coll. Vol.* IV, 769 (1963).