Date: 14-04-14 10:47:28

Pages: 18

DOI: 10.1002/ejoc.201400068

Sulfoximine-Based Modular Enantioselective Synthesis of Azaspirocycles Featuring Sulfoximine Displacement, Dianion Cycloalkylation, RCM and **N-Acyliminium Ion Formation**

Adeline Köhler (née Adrien),^{[a][‡]} Gerhard Raabe,^[a] Jan Runsink,^{[a][†]} Franz Köhler,^{[a][‡]} and and Hans-Joachim Gais*^[a]

Keywords: Ring-closing metathesis / Nucleophilic substitution / Carbanions / Spiro compounds / Enantioselectivity / Sulfoximine

We describe a modular, enantioselective synthesis of functionalised azaspirocycles with a range of ring sizes. The synthesis exploits the special features of sulfoximines, including chirality, carbanion-stabilisation, nucleophilicity, and nucleofugacity. Diastereoselective intramolecular amination of hydroxyalkyl-substituted cycloalkenylsulfoximines by the carbamate method gave bicyclic oxazinanones containing an amino-substituted tertiary C atom. Cycloalkylation of the corresponding C,N-dianions with biselectrophiles afforded sulfoximine-substituted spirocycles. Monoalkylation of the C,N-dianions with functionalised electrophiles, having a double bond and acetal group, furnished the corresponding C-alkylated bicyclic sulfoximines. Displacement of the sulfoximine group of bicyclic and spirocyclic sulfoximines by

Introduction

The 1-azaspirocycle structural motif is found in a number of alkaloids and other compounds with interesting biological activities and intricate molecular architectures.^[1] This has led to the development of notable total syntheses and imaginative methods for the construction of 1-azaspirocyclic skeletons.^[1-4] Most of these methods were, however, developed for specific targets and are less suited to gain access to a broader range of 1-azaspirocycles. We became interested in a modular enantioselective synthesis of azaspirocycles Ia-c, which could serve as building blocks for the synthesis of a number of naturally occurring and non-natural 1-azaspirocycles (Scheme 1). The fused rings of Ia-c have different sizes and carry functional groups $X^{1}-X^{3}$. This should allow the annulations of rings, including either the N atom and the adjacent C atom, or the N atom and the hydroxyalkyl group. Sulfoximine-substituted bisallyltit-

haloformate reactions gave the corresponding halides (Cl, I). Alkylation of the bicyclic halides with functionalised cuprates and reduction of the sulfoximine-substituted bicycles, carrying an alkyl group at the Ca atom, gave starting materials for a step-wise construction of the heterocyclic ring. Ringclosing metathesis of a bicyclic C,N-dienyl derivative furnished the corresponding spirocycle with an unsaturated piperidine ring. Cyclisation of an acetal group containing bicyclic oxazinanone gave spirocycles containing O,N-acetal and enamide groups. The diastereoselective reaction of a spirocyclic O,N-acetal with an allylsilane furnished the corresponding spirocycle, carrying an allyl group at the C atom adjacent to the N atom. Attempts to lithiate a bicyclic carbamate at the CH₂ group adjacent to the N atom were not successful.

anium complexes IV, which will serve as the starting material for the synthesis of Ia-c, have previously been used in a modular enantioselective synthesis of oxaspirocycles.^[5] Complexes IV of different ring sizes are readily available from the corresponding allylic sulfoximines through lithiation and Li-Ti exchange (see below).^[6] Because of the availability of both enantiomers of the allylic sulfoximines,^[6,7] access to both enantiomers of the azaspirocycles Ia-c will be assured.

Titanium complexes IV serve as ring A+C*_B building blocks. In the first step, the hydroxyalkyl group and two stereogenic C atoms of Ia-c are established through regioand stereoselective reaction of IV with aldehydes, furnishing cycloalkenylsulfoximines III.^[6,8] In the second step, the amino-substituted stereogenic tertiary carbon centre of Iac is set up through an intramolecular amination of the sulfoximine-activated double bond of III by the carbamate method, leading to oxazinanone IIa.[6c,9,10] Oxazinanone IIb, which is synthetically complementary to IIa, will be generated through sulfoximine displacement by halide. In the finals steps, functionalised rings B of Ia-c are constructed by the following four different routes: (1) C,N-dianion cycloalkylation of IIa followed by sulfoximine displacement by halide, (2) alkylation of **IIb** with organometallics followed by cyclisation through N-acyliminium ion for-

[[]a] Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany E-mail: gais@rwth-aachen.de

http://www.oc.rwth-aachen.de/akgais/akgais_d.html

Present address: Heimchenweg 9, 40764 Langenfeld, Germany [‡] Present autre.[†] Deceased, 2012.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201400068.

Date: 14

Pages: 18

Scheme 1. Sulfoximine-based route to azaspirocycles.

mation, (3) alkylation of **IIb** with organometallics followed by *N*-alkylation and ring-closing metathesis (RCM), and (4) C-alkylation of **IIa** followed by sulfoximine reduction and cyclisation.

Herein, we report a sulfoximine-based modular, enantioselective synthesis of substituted azaspirocycles of type Iac, with fused rings of different sizes endowed with a range of functional groups. The synthesis takes advantage of the special features of the sulfoximine group, including chirality, carbanion stabilisation, nucleofugacity, and nucleophilicity.^[11,12]

Results and Discussion

Functionalised Cycloalkenylsulfoximines

Successive treatment of allylic sulfoximines 1 and 2 (Scheme 2) on a 20 mmol scale with 1 equiv. *n*-butyllithium (*n*BuLi) and 2.1 equiv. $CITi(OiPr)_3$ in tetrahydrofuran (THF) gave the corresponding bisallyltitanium complexes, which were admixed with $CITi(OiPr)_3$ and $Ti(OiPr)_4$.^[6a] The reactions of the bisallyltitanium complexes with acetaldehyde in the presence of titanium isopropoxides gave the

corresponding homoallylic alcohols **3** and **4** with 84 and 74% de, respectively (Scheme 2).

Scheme 2. Synthesis of hydroxyalkyl-substituted cycloalkenyl-sulfoximines.

Generally, titanium complexes derived from 1 and 2 react with aldehydes with diastereoselectivities of 98% de or higher.^[6] The apparently lower diastereoselectivities of the reactions of the bisallyltitanium complexes with acetaldehyde were most likely due to incomplete Li–Ti exchange of the corresponding lithioallylsulfoximines, the reactions of which with aldehydes have low diastereoselectivities.^[6a] Diastereomerically pure alcohols **3** and **4** were obtained in yields of 78 and 75%, respectively, through chromatography and extraction, respectively.

We have previously described the diastereoselective synthesis of further hydroxyalkyl-substituted cycloalkenylsulfoximines of type III, which carry functional groups X^1 and X^2 and have five-, six- and seven-membered rings, from IV and aldehydes (see Figure S1 in the Supporting Information).^[6,13] Therefore, various ring $A+C*_B$ building blocks of type III are available for the synthesis of Ia–c.

Amination

Stereoselective generation of the C–N bond of Ia–c was accomplished by the carbamate method,^[9] which we have successfully used for the stereoselective amination of mainly acyclic δ-hydroxy alkenylsulfoximines (see below).^[6c,10] Thus, treatment of alcohols 3 and 4 with trichloroacetyl isocyanate and subsequent hydrolysis of the corresponding N-trichloroacetyl carbamates with ammonium carbonate in methanol furnished the corresponding crude carbamates 5 and 6, respectively. The carbamates were not purified but subjected to treatment with 1.3 equiv. nBuLi in THF (Scheme 3). This procedure gave oxazinanones 7 and 8 in 79 and 77% overall yields, respectively, based on the corresponding starting alcohols 3 and 4. The synthesis of 6 was accompanied by the formation in 9% of the corresponding E-configured diastereomer, which, however, also gave oxazinanone 8. The amino-substituted stereogenic tertiary carbon centres of 7 and 8 were generated with diastereoselectivities of 98% de or higher, as revealed by ¹H NMR spectroscopic analysis.

The configuration of oxazinanone 7 was determined by X-ray crystal structure analysis (Figure 1).^[14] The heterocyclic ring of 7 adopts a boat-like conformation in which the methyl group is in pseudoequatorial position, as indicated by the dihedral angles C2–O2–C1–N1 (-13.9°), C7–N1–

Date: 14-04-14 10:47:28

Enantioselective Synthesis of Azaspirocycles

Scheme 3. Intramolecular amination of hydroxyalkyl-substituted cycloalkenylsulfoximines.

C1-O2 (-23.6°), and C7-N1-C1-O1 (156.6). The H atoms at C2 and C3 are arranged anti to each other. According to ¹H NMR spectroscopic analysis of oxazinanones 7 and 8, the heterocyclic rings in solution also preferentially adopt a conformation with the methyl groups arranged in pseudoequatorial positions (${}^{3}J_{2-H,3-H} = 10.2 \text{ Hz}$). An intramolecular H bond between the oxazinanone N1 atom and the O3 atom of the sulfoximine group further characterises the structure of 7 in the crystal. The structurally related oxazinanone 11 also exhibits an intramolecular N1-H-O bond in the crystal, whereas oxazinanone 12, the N atom of which bears a secondary C atom, has an intramolecular N-H··N bond in the crystal (Figure 2).^[6c] Presumably, formation of N-H-N bonds in 7 and 11 is unfavourable because of destabilising steric interactions between the phenyl group and either the carbocycle or the methyl group. We had already prepared, in the context of the synthesis of γ -hydroxy β amino acids, bicyclic oxazinanones 9 and 10, each with 98% de or higher, by the carbamate method.^[10] Oxazin-

Figure 1. X-ray crystal structure of bicyclic oxazinanone 7 (the numbering scheme differs from that used in the experimental part).

anone 16 could be particularly useful as a starting material en route to Ia–c, $X^2 = CO_2H$, because of the furan ring, which can be converted into the carboxy group.^[10]

Figure 2. Sulfoximine-substituted oxazinanones with intramolecular H-bonds in the crystal.

C,N-Dianion Cycloalkylation

Cycloalkylation of C,N-dianions of sulfoximines IIa should give functionalised 1-azaspirocycles Ia $[X^3 =$ S(O)(NMe)Ph] (cf. Scheme 1). We had previously studied the lithiation of sulfoximine-substituted oxazinanones of type **13** (Figure 3).^[6c,10] Double deprotonation of **13** at the NH and CH groups gave C,N-dianions 14, which were stable at ambient temperatures in solution and diastereoselectively reacted with electrophiles at the anionic C atom (50-80% de) to give the substituted sulfoximines 15. Presumably, because of the azaenolate group of 14, elimination under cleavage of the C-N bond is suppressed. Elimination would lead to the corresponding alkenylsulfoximine containing a dilithiated carbamate group. These findings led us to probe the construction of ring **B** of Ia through the synthesis and cycloalkylation of the C,N-dianions 16 and 19 (Scheme 4). Cycloalkylations of the C,N-dianion of a β -(N-Boc-amino)propylsulfone with biselectrophiles have been reported previously.^[15]

Figure 3. C,N-Dianions of sulfoximine-substituted oxazinanones.

Whereas C,N-dianions of type **14** contain a secondary C atom adjacent to the N atom, C,N-dianions **16** and **19** have tertiary C atoms. This could result in a higher propensity for elimination as compared to **14** and lead to the ultimate formation of alkenylsulfoximines **3** and **4**, respectively.

Double lithiation of sulfoximine-substituted oxazinanone 7, containing a five-membered carbocycle, with 2.2 equiv. *n*BuLi in THF at low temperatures generated the N,C-dianion 16. Gratifyingly, the dianion proved to be stable in solution at room temperature and gave, upon cycloalkylation with the C₃ bistosylate 17, spirocycle 18 with \geq 98% *de* in 75% yield. Similar double lithiation of the sulfoximine-

Scheme 4. Syntheses of spirocycles through cycloalkylations of C,N-dianions of 7 and 8.

substituted oxazinanone 8, having a six-membered carbocycle, with *n*BuLi in THF afforded the stable C,N-dianion 19, the cycloalkylation of which with the C₂ bistosylate 20, furnished spirocycle 21 with $\ge 98\% de$ in 57% yield (73% based on conversion). Finally, reaction of N,C-dianion 19 with the C₃ bistosylate 17 gave spirocycle 22 with $\ge 98\% de$ in 59% yield (72% based on conversion).

Although the yields of spirocycles 18, 21 and 22 based on conversion of the starting sulfoximines were in the same range, the yields of the isolated spirocycles 21 and 22, which are derived from 8, were significantly lower. To find an explanation for this divergence, deprotonation-deuteration experiments with sulfoximines 7 and 8 were performed. The successive treatment of sulfoximine 7 with 2.2 equiv. nBuLi in THF and CD₃CO₂D, under the same conditions used for the cycloalkylations, afforded the starting sulfoximine containing one D atom at the C_{α} atom.^[16] When sulfoximine 8 was submitted to a similar deprotonation-deuteration sequence, the recovered starting sulfoximine had D atoms incorporation at both the C_{α} atom and the C_{ortho} atom of the phenyl ring. The deprotonation of sulfoximines 7 and 8 with *n*BuLi most likely commenced with formation of the corresponding N-anions, because of the higher acidity of carbamates as compared to alkylsulfoximines.^[17] As

revealed by the deuteration experiments, further deprotonation of the N-anion of **7** gave only the C,N-dianion **16**, whereas deprotonation of the N-anion of **8** furnished a mixture of the C,N-dianion **19** and the corresponding C_{ortho} ,Ndianion. We had previously shown that *ortho*-lithiation of *S*-alkyl-*S*-phenylsulfoximines with *n*BuLi can, at low temperatures, efficiently compete with α -lithiation, depending on the structure of the sulfoximine.^[18]

Support for the assignment of the configurations of tricyclic sulfoximines **18**, **21** and **22** at the C atoms bearing the sulfoximine group came from the magnitudes of the vicinal coupling constant for H_a in the ¹H NMR spectra and from NOE experiments. Strong NOEs were recorded between H_a and H_b of **18**, **21** and **22**. In addition, strong effects were found between H_a and the Me group of **18** and **22** (Table 1).

Table 1. Selected ¹H NMR spectroscopic data and decisive NOE effects for tricyclic sulfoximines **24**, **27** and **28**.

Tricycle	${}^{3}J(H_{a},H_{d})/{}^{3}J(H_{a},H_{c})$ [Hz]	NOE
18	13.2/3.3	$H_a \leftrightarrow H_b, H_a \leftrightarrow Me$
21	11.6/8.4	$H_a \leftrightarrow H_b$
22	12.9/4.1	$H_a \leftrightarrow H_b, H_a \leftrightarrow Me$

Enantioselective Synthesis of Azaspirocycles

The configuration of sulfoximine-substituted spirocycle 18 was finally secured by X-ray crystal structure analysis (Figure 4).^[14] The oxazinanone ring of 18 adopts a boatlike conformation, in which the methyl group is in the pseudoequatorial position. The N atom of 18 is slightly pyramidalised ($\Sigma \angle N$ 352°) and the carbamate group is nonplanar, as shown by the dihedral angles C12-N1-C8-C3 (-177.0°), C1-N1-C8-C3 (35.8°) and C2-O2-C1-N1 (-19.3°). The piperidine ring adopts a chair-like conformation, containing the sulfoximine group in the pseudoequatorial position and the carbonyl group in the pseudoaxiallike position. According to ¹H NMR spectroscopic analysis, the oxazinanone ring of spirocycle 18 in solution also preferentially adopts a conformation in which the methyl group is in the pseudoequatorial position (${}^{3}J_{2-H,3-H} = 10.2 \text{ Hz}$). The piperidine ring of 18 adopts a similar conformation in solution and in the crystal.

Figure 4. X-ray crystal structure of spirocyclic sulfoximine **18** (the numbering scheme differs from that used in the experimental part).

C,N-Dianion Monoalkylation

Because of the successful cycloalkylations of the C,Ndianions 16 and 19, monoalkylation was also studied. Selective alkylations of the C,N-dianions at the C_{α} atom could set the stage for a stepwise construction of ring B of azaspirocycles Ib (cf. Scheme 1). Reaction of C,N-dianion 16 with the acetal-substituted bromide 23 gave the *C*-alkylated sulfoximine 24 with $\geq 98\% de$ in 62% yield (Scheme 5). A similar reaction of 16 with unsaturated tosylate 25 afforded the

Scheme 5. C-Alkylations of C,N-dianion 16.

Alkylations of the C,N-dianions 16 and 19 at the C atoms occurred with high diastereoselectivities. The C,Ndianion salts contain the structural elements of lithium asulfoximine carbanions^[19] and lithium azaenolates,^[20] the structures of which have been determined by crystal structure analyses and calculations. Based on these structural investigations, the chelate complexes Va/b-VIIIa/b are proposed for salts 16 and 19, which differ in respect to the coordination of the Li atoms, the presence or absence of a $C_{\alpha}\text{-Li}$ bond, the $C_{\alpha}\text{-}S$ conformation, and the configuration of the C_{α} atom (Scheme 6). The complexes should be in fast equilibrium in THF, because of expected low barriers towards C_{α} -S bond rotation and C_{α} inversion,^[19] and because of the presence of THF molecules, which can occupy vacant coordination sites at the Li atoms generated during equilibration. Complexes Va/b are presumably the most reactive towards electrophiles, because of the lack of Ca-Li bonds and the lesser shielding of the anionic C atoms (see below). The Li atom of the azaenolate moiety of Va/b is coordinated by the N atom of the sulfoximine group and, perhaps, also by the carbonyl O atom. The second Li atom of Va/b is coordinated to the O atom of the sulfoximine group. Electrophiles preferentially attack complexes Va/b from the top face to give the substituted N-anions IXa/b. Attack from the bottom face of Va/b, furnishing the epimeric N-anions, is sterically hindered by the phenyl group and the carbocyclic rings. The structurally related complexes VIa/b should be less reactive than Va/b because of shielding of the top and bottom faces of the anionic C atom by the phenyl group and carbocyclic ring, respectively.

Scheme 6. Rationalisation of the stereoselectivity of the reactions of C,N-dianion dilithium salts (coordination of the Li atoms by THF molecules has been omitted).

Because of the selective monoalkylation of 16 at the C atom, the cycloalkylations of the C,N-dianions 16 and 19

FULL PAPER

with the bistosylates presumably commenced with similar stereoselective C-alkylations. The N-anions of type IXa/b thereby formed, subsequently experienced intramolecular N-alkylations to give the spirocycles. The selective *C*-alkylation of the C,N-dianions is in line with the higher nucleophilic reactivity of carbanions as compared to carbamate anions with similar pK_b values.^[15,21]

Having obtained the spirocyclic sulfoximines 18, 21 and 22, we were interested to see whether the corresponding α sulfoximine carbanions would be stable or would suffer cleavage of the C-N bond and thus ring opening. In contrast to the lithium azaenolate group of C,N-dianions 16 and 19, the carbamate group of the spirocyclic sulfoximines ought to be a better nucleofuge in β -elimination. The synthesis of derivatives of sulfoximines 18, 21 and 22 through reactions of the carbanions with electrophiles could allow the attainment of azaspirocycles Ia and Ib, the rings B of which contain further substituents. Sulfoximine 21 was treated with *n*BuLi in THF, and the obtained carbanion 28 was kept for 12 h at room temperature and then protonated with aqueous ammonium chloride (Scheme 7). This procedure gave sulfoximine 27, having opposite configuration at the C_a atom, with $\geq 98\% de$ in 85% yield.

Scheme 7. Epimerisation of the sulfoximine-substituted spirocycle **21** through carbanion formation (coordination of the Li atoms by THF molecules has been omitted).

The lithioalkylsulfoximine **28** presumably has a pyramidalised anionic C atom and a Li atom that is coordinated to the O and N atoms of the sulfoximine group.^[19] Carbanion salt **28** should have a low configurational stability because of expected low barriers towards C_{α} inversion and C_{α} -S bond rotation.^[19] Fast equilibration of **28** thus gave the diastereomeric carbanion salt **29**. Carbanion **28** should be less stable than **29** because of destabilising steric interactions between the sulfoximine group and the cyclohexane ring. Protonation of carbanion **29** from the direction of pyramidalisation of the C_{α} atom gave epimeric sulfoximine **27**. Carbanions **28** and **29** were surprisingly stable towards cleavage of the C–N bond at room temperature.

Sulfoximine Displacement

Having synthesised 1-azaspirocycles Ia $[X^3 = S(O)-(NMe)Ph]$, displacement of the sulfoximine group by halide

was of interest to obtain further synthetically useful building blocks. In addition, a halide displacement of the sulfoximine group of IIa could yield IIb, which would provide a means for the synthesis of Ib and Ic starting by alkylation with organometallics (cf. Scheme 1). We had previously found that S-alkylsulfoximines can be converted into the corresponding alkyl halides upon reaction with haloformates.^[6c,6d,10,13,22] Treatment of sulfoximine 7 with chloroformate in dichloromethane at room temperature thus gave chloride 31 in 81% yield in addition to the R-configured sulfinamide 30 (Scheme 8). We had already described, within our γ -hydroxy β -amino acid synthesis,^[10] the synthesis of the analogous chloride, containing a six-membered carbocycle and an isopropyl group. The reaction of sulfoximine 7 with iodoformate in acetonitrile, which was prepared in situ from chloroformate and sodium iodide,^[23] furnished iodide 32 in 76% yield.

Scheme 8. Displacement of the sulfoximine group by halides.

It was of particular interest to see whether sulfoximines **18** and **26**, the C_{α} atoms of which carry two substituents, would also undergo displacement by halides. Previous attempts to achieve a conversion of the structurally related sulfoximine **35** into the corresponding chloride had failed; instead, alkene **36** was isolated in high yield (Scheme 9).^[22a] Gratifyingly, treatment of sulfoximine **26** with iodoformate in acetonitrile at room temperature gave iodide **33** with

Enantioselective Synthesis of Azaspirocycles

≥98% *de* in 76% yield. Similar reaction of the spirocyclic sulfoximine **18** with chloroformate afforded chloride **34** with ≥98% *de* in 74% yield. The configuration of **34** at the C atom bearing the Cl atom was determined by NOE experiments based on an assignment of the signals in the ¹H NMR spectrum by TOCSY experiments. Strong NOE effects were observed between H_a and H_b, and between H_a and the Me group (Table 2). Chloride **34**, like **18**, is another example of a 1-azaspirocycle of type **1a** (X³ = Cl).

Scheme 9. Elimination of sulfoximine 35 with chloroformate.

Table 2. Selected ¹H NMR spectroscopic data and decisive NOE effects of the tricyclic chloride **34**.

$^{3}J(\mathrm{H}_{\mathrm{a}},\mathrm{H}_{\mathrm{d}})$ [Hz]	$^{3}J(\mathrm{H}_{\mathrm{a}},\mathrm{H}_{\mathrm{c}})$ [Hz]	NOE
11.9	4.0	$\mathrm{H}_{\mathrm{a}}\leftrightarrow\mathrm{H}_{\mathrm{b},}\mathrm{H}_{\mathrm{a}}\leftrightarrow\mathrm{Me}$

The configuration of iodide **33** at the C atom bearing the I atom was assigned by analogy to that of **34**.

The isolation of sulfinamide **30**, which was obtained as a byproduct in the haloformate reaction, was also significant. We had already shown that this compound can be converted via (*R*)-methylphenylsulfoxide into (*R*)-*N*,*S*-dimethyl-*S*-phenylsulfoximine with \geq 98% *ee*, which is the chiral starting material for the synthesis of **IV**.^[6c,22b]

N-Methylsulfoximines, containing a methyl group, a primary or secondary alkyl group, or an allyl group at the S atom, readily undergo dealkylation under cleavage of the S-C bond upon treatment with haloformates.[6d,13,22] Although most of the sulfoximines studied contained functional groups that were capable of exerting a neighbouring group effect in the displacement, some were devoid of such a group or contain one in a sterically disabling position (see Figure S2 in the Supporting Information). The isolation of sulfinamide 30 points to the formation of S-alkyl-N-acyl aminosulfoxonium salts 38 in the first step of the haloformate reaction of sulfoximines 37 (Scheme 10). The mechanisms of the reaction of the aminosulfoxonium ion of 38 with halide ions to give alkylhalide 39 are unknown. In all the cases studied, the displacements proceeded under retention of configuration at the S atom. So far, no clear picture has emerged as to the factors determining the stereochemical course of the substitution at the C atom. Whereas some reactions had occurred under retention of

Scheme 10. Haloformate reaction of N-methylsulfoximines.

configuration (18), others had proceeded under inversion of configuration (see Figure S2 in the Supporting Information).

Alkylation of β-Aminoalkyl Halides

Iodide 32 was used as starting material for the synthesis of derivatives required for the construction of Ib and Ic through RCM and N-acyliminium ion formation, respectively. Alkene (Z/E)-41 was thus obtained in 82% yield in an Z/E ratio of 2:1 through reaction of iodide 32 with cuprate 40 in THF (Scheme 11). Similarly, acetal 43 was synthesised in 72% yield upon treatment of iodide 32 with cuprate 42 in THF.^[24] Alkylation of iodide 32 with unsaturated cuprates 44a and 44b^[25] in THF could not be achieved. Instead, the impure methyl-substituted bicycle 45 was isolated in approximately 55% yield together with a mixture of several unidentified compounds. The corresponding alkene (see below) was produced only in small amounts according to ¹H NMR spectroscopic analysis of the crude reaction mixture. For an unequivocal structure conformation of 45, the bicycle was synthesised in 74% yield through reduction of sulfoximine 7 with Raney nickel^[26] in water/THF. The failure to achieve an alkylation of 32 with cuprates 44a and 44b was surprising. For example, the primary iodide, derived from Cbz-protected norvaline, had been alkylated with cuprate **44b** in high yield.^[27]

Scheme 11. Syntheses of functionalised carbocycles from halides.

FULL PAPER

Chloride 31 was converted into nitrile 46 in 94% yield upon treatment with potassium cyanide in N,N-dimethylformamide (DMF) at 100 °C. We had already described the synthesis of the analogous nitrile, containing a six-membered carbocycle and an isopropyl group.^[10] Previous studies of the reaction of the iodide derived from sulfoximine 13 (R^1 = isopropyl, R^2 = furanyl) with potassium cyanide in DMF had shown that the synthesis of the nitrile proceeded through intermediate formation of the corresponding bicyclic N-acylaziridine.^[28] Whether the reaction of chloride 31, which carries a tertiary C atom at the N atom, with potassium cyanide takes a similar course is not known. Nitrile 46 and its analogue, containing a six-membered carbocycle, can eventually serve as starting materials for a complementary synthesis of bicycles of type 18, 21 and 22, carrying a nitrile instead of a sulfoximine group, through cycloalkylation of the corresponding C,N-dianion (cf. Scheme 4).

Sulfoximines 24, 26 and 33 were synthesised as potential intermediates in stepwise routes to azaspirocycles Ib and Ic starting from IIa (cf. Scheme 1). The failure to synthesise alkene 47, which could also be used for the stepwise route, through reaction of iodide 32 with cuprates 44a and 44b prompted an alternative synthesis of the alkene through reduction of iodide 33 (Scheme 12). Thus, iodide 33 was treated with tributyltinhydride in benzene in the presence of azobis(isobutyrylnitrile) (AIBN) at elevated temperatures, which gave alkene 47 in 85% yield. Because of the facile reduction of sulfoximine 7, reductions of sulfoximines 18 and 24 were also investigated to obtain a sulfoximinefree spirocyclic carbamate for deprotonation studies (see below), and to probe an alternative route to acetal 43. The reduction of sulfoximine 24 with Raney nickel in THF/ water gave acetal 43 in 90% yield, and a similar reduction of spirocyclic sulfoximine 18 with Raney nickel furnished spirocycle 48 in 96% yield. The route to acetal 43 from sulfoximine 7 via sulfoximine 24 is somewhat less efficient than that from 7 via iodide 32, because of the reductive degradation of the sulfoximine group.

Scheme 12. Reductions of halogen- and sulfoximine-substituted biand tricyles.

Ring-Closing Metathesis

We envisioned a synthesis of unsaturated azaspirocycles **Ic** through RCM of the corresponding dienes, derived from halide **IIb** (cf. Scheme 1). RCM has infrequently been used in the synthesis of the heterocyclic ring of azaspirocycles.^[2b,29] Its application in the synthesis of azaspirocycles **Ic** required derivatives of alkenes **26**, **33**, (*Z/E*)-**41** or **47**, containing an alkenyl group at the N atom. Treatment of the sodium salts of carbamates (*Z/E*)-**41** with allyl bromide in DMF thus afforded dienes (*Z/E*)-**49** in a ratio of 1:1 in 85% yield (Scheme 13). The reaction of dienes (*Z/E*)-**49** with 5 mol-% of the ruthenium catalyst **50**^[30] in dichloromethane at room temperature gave spirocyclic alkene **51** in 95% yield.

Scheme 13. Spirocycle synthesis through RCM.

Functionalisation of **51** at the N atom requires cleavage of the oxazinanone ring, which turned out to be rather stable towards hydrolysis. The exceptional stability of oxazinanones of this type towards bases had previously been noted.^[10,31] Cleavage was finally achieved upon treatment of **51** with aqueous caesium hydroxide in methanol at reflux for 3 d, which gave spirocyclic 1,3-amino alcohol **52** in 72% yield.

Attempted Carbamate Lithiation

The carbamate groups of **48** and **51** allow the possibility of functionalisation of the piperidine rings at the C atom adjacent to the N atom through lithiation and electrophilic incorporation, thereby providing an alternative route to azaspirocycles **Ib** with various substituents X^3 (cf. Scheme 1). Precedent for the lithiation of bicyclic oxazinanones of this type was, however, scarce.^[32,33] The successive treatment of oxazinanone **48** with *N*,*N*,*N*,*N*-tetramethylethylenediamine (TMEDA), *sec*-butyllithium (*s*BuLi) and allyl bromide in THF at -40 °C did not result in an allylation of the piperidine ring. Instead, the oxazinanone was recovered almost quantitatively (Scheme 14). When the same procedure was applied to oxazinanone **48** at 0 °C, the starting material was recovered in only 62% yield. In ad-

Enantioselective Synthesis of Azaspirocycles

Scheme 14. Attempted functionalisation of carbamate **48** through lithiation at the C atom adjacent to the N atom.

dition amides **53** and *epi***-53** were isolated as a 1:1 mixture in 24% yield. Chromatography gave the pure amides, the configurations of which were not assigned.

The reason for the failure of a lithiation of carbamate 48 is not clear. It is generally assumed that lithiation of carbamates commences with complexation of RLi by the O atom of the carbamate carbonyl group.^[34] Crucial factors for the subsequent removal of the H atom are the distance between the H atom removed and the carbonyl O atom and the dihedral angle between the H-C-N and N-C-O planes.^[33] The pertinent distances and dihedral angles of **48**, the sulfoximine-substituted analogue of 18, in the crystal are O1••H12a, 2.495 Å; O1••H12b, 3.527 Å; H12a–C12–N1/ N1-C1-O1, 40.4°, and H12b-C12-N1/-N1-C1-O1, 33.2°. If one assumes that the hexahydropyrido-oxazinanone units of 18 and 48 have similar structures, then 48 would fulfil the structural requirements for a lithiation.^[33] Whether oxazinanone 51 is a better candidate for α -lithiation, because of the allylic double bond, remains to be seen.

N-Acyliminium Ion Formation

The bicyclic derivatives **26**, **33**, **43** and **47** are potential starting materials for the synthesis of azaspirocycles **Ib** (cf. Scheme 1), the most appealing of which seemed to be acetal **43**. Therefore, acetal **43** was treated with *para*-toluenesulf-onic acid in toluene at reflux.^[35,36] This afforded the spirocyclic enamide **54** in 74% yield (Scheme 15). The complementary reaction of acetal **43** with sulfuric acid in methanol gave the spirocyclic N,O-acetal **55** with \geq 98% *de* in 69% yield. C–C bond formation at the C atom adjacent to the N atom of acetal **55** was probed through reaction with allyl-trimethylsilane in the presence of boron trifluoride in dichloromethane.^[37] Gratifyingly, substituted spirocycle **56** was obtained with \geq 98% *de* in 74% yield. As a side product, enamide **54** was isolated in 20% yield.

The configurations of spirocycles **55** and **56** at the C atoms bearing the methoxy group and allyl group, respectively, were determined by NOE experiments on the basis of an assignment of the signals in the ¹H NMR spectra by TOCSY experiments. According to the magnitudes of the vicinal coupling constants, the piperidine ring of **55** adopts a chair-like conformation, in which the methoxy group is in the pseudo-axial position (Table 3). It seems reasonable to assume that the piperidine ring of **56** adopts a similar conformation, with the allyl group in the pseudoaxial position. Decisive NOE effects were observed between H_a and the methoxy group of **55** and between H_e and H_d of **56**.

Scheme 15. Syntheses of spirocycles through *N*-acyliminium ion formation.

Table 3. 1 H NMR spectroscopic data and decisive NOE signals for tricycle sulfoximines **55** and **56**.

Tricycle	${}^{3}J(H_{a},H_{b})/{}^{3}J(H_{a},H_{c})$ [Hz]	NOE
55 56	4.0/1.8	$\begin{array}{l} OMe \leftrightarrow H_d \\ H_e \leftrightarrow H_d \end{array}$

Spirocycles **54–56** are potential starting materials, for example, for the annulation of further rings to **Ib**, including the N atom and the adjacent C atom. In addition, enamide **54** should provide possibilities for the introduction of substituents at the α - and β -positions.^[36]

The stereochemical course of the reactions leading to acetal **55** and alkene **56** is noteworthy. Presumably, the spirocyclic *N*-acyliminium ion **57** (Figure 5) is the key intermediate in the formation of both derivatives.^[38] Whereas the formation of acetal **55** could be thermodynamically directed, that of alkene **56** is expected to be kinetically directed. Formation of alkene **56**, having the *S* configuration at the C atom adjacent to the N atom, requires addition of the allylsilane from the bottom face of **57**. The spirocyclic iminium ion perhaps adopts structure **57***ax*, the tetrahydropyridinium ring of which has a half-chair-like conformation. Attack of the allylsilane at **57***ax* from the bottom face should be preferred because the pseudo-axial methyl group will hinder attack from the top face.

FULL PAPER

Date: 14-04-14 10:47:28

Pages: 18

Figure 5. Possible conformation of the bicyclic *N*-acyliminium ion **57**.

Conclusions

The developed sulfoximine route allows a modular, enantioselective synthesis of azaspirocycles, the heterocyclic and carbocyclic rings of which have different sizes and contain functional groups. The syntheses take advantage of the special features of the sulfoximine group including chirality, carbanion stabilisation, nucleofugacity, and nucleophilicity. The characteristics of the sulfoximine route are: (1) the inclusion of the carbocyclic ring in the starting allylic sulfoximines, (2) the establishment of the spirocyclic C atom through intramolecular amination, (3) the construction of the heterocyclic ring through C,N dianion cycloalkylation, ring-closing metathesis, and N-acyliminium ion formation, and (4) high diastereoselectivities of the various steps. The application of allylic sulfoximines containing a substituted ring as starting materials should also permit access to azaspirocycles functionalised on the carbocyclic rings.

Experimental Section

(*R*)-1-((1*S*,*Z*)-2-{[(*R*)-*N*-Methylphenylsulfonimidoyl]methylene}cyclopentyl)ethanol (3): To a solution of allylic sulfoximine 1 (4.71 g, 20.0 mmol) in THF (200 mL) at -78 °C was added *n*BuLi (1.60 M in *n*-hexane, 13.2 mL, 21.0 mmol). After stirring the mixture at -78 °C for 10 min, neat CITi(O*i*Pr)₃ (10.1 mL, 42.0 mmol) was added. Subsequently, the mixture was stirred at -78 °C for 10 min, warmed to 0 °C, stirred at this temperature for 45 min and then cooled to -78 °C. Acetaldehyde (5.6 mL, 100 mmol) was added and the mixture was warmed to room temperature within 12 h. The mixture was added to saturated aqueous (NH₄)₂CO₃ (50 mL) and H₂O (50 mL) and extracted with EtOAc (3 × 200 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by HPLC (Et₂O/*i*PrOH, 95:5) gave alcohol **3** (4.36 g, 78%) as a colourless solid and its (*S*,1*R*)-configured diastereomer (384 mg, 7%) as a colourless oil.

Isomer (*R*,1*S*)-3: M.p. 65 °C; [*a*]_D = +96.3 (*c* = 1.16, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.34 (d, *J* = 6.1 Hz, 3 H, Me), 1.60–1.72 (m, 3 H, CH₂, OH), 1.72–1.95 (m, 2 H, CH₂), 2.30–2.42 (m, 1 H, CH₂), 2.62–2.73 (m, 4 H, Me, CH₂), 3.54 (dq, *J* = 9.9, 6.0 Hz, 1 H, CHO), 3.61–3.69 (m, 1 H, CHCHO), 6.25 (m, 1 H, C=CH), 7.52–7.63 (m, 3 H, Ph), 7.87–7.92 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (u, CH₂), 23.8 (d, Me), 29.1 (d, Me), 30.2 (u, CH₂), 34.1 (u, CH₂), 50.6 (d, CHCHO), 69.4 (d, CO), 123.7 (d, C=CH), 128.7 (d, Ph), 129.3 (d, Ph), 132.7 (d, Ph), 139.6 (u, Ph), 163.7 (u, *C*=CH) ppm. IR (capillary): \tilde{v} = 3345 (w), 3203 (w), 3060 (w), 2965 (s), 2875 (m), 2800 (w), 2236 (w), 1628 (m), 1448 (m), 1371 (w), 1234 (s), 1146 (s), 1110 (s), 1081 (s), 1012 (m), 963 (w), 925 (m), 858 (m), 801 (m) cm⁻¹. MS (EI): *m/z* (%) = 279 (3)

Isomer (S,1R)-3: ¹H NMR (400 MHz, CDCl₃): $\delta = 1.32$ (d, J =6.0 Hz, 3 H, Me), 1.58-1.85 (m, 4 H, CH₂), 2.33-2.44 (m, 1 H, CH₂), 2.62–2.73 (m, 4 H, Me, CH₂), 3.50 (dq, J = 9.6, 6.0 Hz, 1 H, CHO), 3.66 (br. t, J = 9.0 Hz, 1 H, CHCHO), 6.14 (br. d, J = 1.1 Hz, 1 H, C=CH), 7.52-7.63 (m, 3 H, Ph), 7.79-7.85 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4 (u, CH₂), 23.6 (d, Me), 29.2 (d, Me), 30.1 (u, CH₂), 34.4 (u, CH₂), 50.3 (d, CHCHO), 68.4 (d, CHO), 122.7 (d, C=CH), 128.4 (d, Ph), 129.4 (d, Ph), 132.7 (d, Ph), 139.4 (u, Ph), 164.0 (u, C=CH) ppm. IR $(CHCl_3)$: $\tilde{v} = 3971$ (w), 3455 (m), 3184 (w), 3061 (w), 2967 (s), 2875 (s), 2803 (m), 1629 (s), 1447 (s), 1372 (m), 1302 (w), 1237 (s), 1150 (s), 1109 (s), 1081 (s), 1011 (m), 964 (m), 933 (w), 878 (s), 854 (s), 817 (m) cm⁻¹. MS (EI): m/z (%) = 279 (19) [M⁺], 262 (33), 249 (12), 235 (12), 189 (13), 187 (10), 157 (11), 156 (53), 155 (27), 154 (10), 129 (12), 126 (11), 125 (100), 123 (15), 110 (12), 109 (24), 108 (11), 107 (54), 91 (11), 81 (18).

(R)-1-((1S,Z)-2-{[(R)-N-Methylphenylsulfonimidoyl]methylene}cvclohexvl)ethanol (4): To a solution of allylic sulfoximine 2 (4.99 g, 20.0 mmol) in THF (200 mL) at -78 °C was added nBuLi (1.60 м in *n*-hexane, 13.2 mL, 21.0 mmol). After stirring the mixture at -78 °C for 10 min, neat ClTi(OiPr)₃ (10.1 mL, 42.0 mmol) was added, then the mixture was stirred at -78 °C for 10 min, warmed to 0 °C, stirred at this temperature for 45 min, and cooled to -78 °C. Acetaldehyde (5.60 mL, 100 mmol) was added and the mixture was warmed to room temperature within 12 h. The mixture was added to saturated aqueous (NH₄)₂CO₃ (50 mL) and water (50 mL) and extracted with EtOAc (3×200 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Washing with Et₂O (3×40 mL) gave alcohol 4 (4.40 g, 75%) as a colourless solid; m.p. 111 °C; $[a]_D = +11.2$ (c = 1.00, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 1.35 (d, J = 5.9 Hz, 3 H, Me), 1.27– 1.60 (m, 4 H, CH₂), 1.68-1.81 (m, 1 H, CH₂), 1.82-1.95 (m, 1 H, CH₂), 2.05–2.13 (m, 1 H, CH₂), 2.35–2.55 (m, 1 H, CH₂), 2.60 (s, 3 H, Me), 3.60–3.70 (m, 1 H, CHCHO), 3.95 (dq, J = 11.9, 5.9 Hz, 1 H, CHO), 5.27 (br. s, 1 H, OH), 6.30 (br. d, J = 2.0 Hz, 1 H, C=CH), 7.52–7.64 (m, 3 H, Ph), 7.86–7.93 (m, 2 H, Ph) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 20.3 (u, CH₂), 23.2 (d, Me), 27.4 (u, CH₂), 28.3 (u, CH₂), 29.2 (d, Me), 33.0 (u, CH₂), 45.8 (d, CHCHO), 67.1 (d, CHO), 126.7 (d, C=CH), 128.9 (d, Ph), 129.3 (d, Ph), 132.7 (d, Ph), 139.7 (u, Ph), 160.7 (u, C=CH) ppm. IR (KBr): $\tilde{v} = 3467$ (s), 3059 (m), 2934 (s), 1863 (s), 2796 (m), 1611 (s), 1447 (s), 1376 (m), 1229 (s), 1130 (s), 1070 (s), 928 (m), 853 (s), 820 (s) cm⁻¹. MS (EI): m/z (%) = 293 (3) [M⁺], 201 (12), 171 (11), 169 (16), 156 (78), 138 (11), 125 (100), 123 (28), 107 (25), 95 (24). C₁₆H₂₃NO₂S (293.4): calcd. C 65.49, H 7.90, N 4.77; found C 65.31, H 8.15, N 4.80.

(*R*)-1-((15,*Z*)-2-{[(*R*)-*N*-Methylphenylsulfonimidoyl]methylene}cyclopentyl)ethyl Carbamate (5): To a solution of alcohol 3 (1.26 g, 3.90 mmol) in CH₂Cl₂ (50 mL) was added at room temperature trichloroacetyl isocyanate (0.60 mL, 5.07 mmol). The mixture was stirred until TLC showed complete conversion (5 h) of the alcohol, then MeOH (25 mL) and (NH₄)₂CO₃ (1.87 g, 19.5 mmol) were added and the mixture was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (30 mL) was added and the mixture was extracted with CH₂Cl₂ (3 × 60 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc) gave carbamate **5** (1.06 g, 84%) as a

Enantioselective Synthesis of Azaspirocycles

colourless solid; m.p. 45 °C; $[a]_D = +17.7$ (c = 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.98-1.17$ (m, 1 H, CH₂), 1.23–1.40 (m, 5 H, Me, CH₂), 1.42–1.58 (m, 1 H, CH₂), 1.70–1.85 (m, 1 H, CH₂), 2.32–2.47 (m, 1 H, CH₂), 2.68 (s, 3 H, Me), 4.00–4.09 (m, 1 H, CHCHO), 4.90 (dq, J = 9.4, 6.2 Hz, 1 H, CHO), 6.05 (br. s, 2 H, NH₂), 6.56 (br. d, J = 1.7 Hz, 1 H, C=CH), 6.95–7.12 (m, 3 H, Ph), 8.00–8.07 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.0$ (d, Me), 21.1 (u, CH₂), 28.9 (u, CH₂), 29.1 (d, Me), 34.4 (u, CH₂), 45.8 (d, CHCHO), 69.8 (d, CHO), 123.8 (d, C=CH), 129.0 (d, Ph), 129.1 (d, Ph), 131.7 (d, Ph), 140.4 (u, Ph), 158.0 (u), 160.6 (u) ppm. IR (KBr): $\tilde{v} = 3424$ (s), 3176 (m), 3061 (w), 2965 (s), 2874 (m), 2801 (m), 1722 (s), 1608 (m), 1450 (m), 1381 (s), 1325 (s), 1236 (s), 1149 (s), 1076 (s), 852 (s) cm⁻¹. MS (EI): m/z (%) = 322 (3) [M⁺], 278 (31), 263 (17), 262 (100), 125 (30), 107 (11). HRMS: m/z calcd. for C₁₆H₂₂N₂O₃S [M⁺] 322.13512; found 322.13518.

(*R*)-1-((1*S*,*Z*)-2-{[(*R*)-*N*-Methylphenylsulfonimidoyl]methylene}cyclohexyl)ethyl Carbamate (6): To a solution of alcohol 4 (700 mg, 2.39 mmol) in CH₂Cl₂ (20 mL) was added at room temperature, trichloroacetyl isocyanate (0.37 mL, 3.11 mmol). The mixture was stirred until TLC showed complete conversion (5 h) of the alcohol, then MeOH (10 mL) and (NH₄)₂CO₃ (1.15 g, 12.0 mmol) were added and the mixture was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (20 mL) was added and the mixture was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc) gave carbamate **6** (587 mg, 73%) ($R_f =$ 0.20; EtOAc) as a colourless solid and its *E*-configured diastereomer (72 mg, 9%) ($R_f = 0.35$; EtOAc) as a colourless oil.

Isomer (Z)-6: M.p. 52–54 °C; $[a]_D = +182.1$ (c = 1.06, EtOAc). ¹H NMR (400 MHz, CDCl₃): δ = 1.06–1.20 (m, 1 H, CH₂), 1.21–1.39 (m, 4 H, Me, CH₂), 1.40–1.52 (m, 2 H, CH₂), 1.61–1.70 (m, 1 H, CH₂), 1.84–1.94 (m, 1 H, CH₂), 2.01–2.11 (m, 1 H, CH₂), 2.48 (ddt, $J = 13.5, 5.0, 1.9 \text{ Hz}, 1 \text{ H}, \text{ CH}_2$, 2.68 (s, 3 H, Me), 3.67 (m, 1 H, CHCHO), 4.90 (br. s, 2 H, NH₂), 5.08 (dq, J = 10.4, 6.0 Hz, 1 H, CHO), 6.29 (d, J = 1.6 Hz, 1 H, C=CH), 7.53–7.63 (m, 3 H, Ph), 7.91–7.97 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.9 (d, Me), 20.4 (u, CH₂), 28.2 (u, CH₂), 28.4 (u, CH₂), 29.4 (d, Me), 33.7 (u, CH₂), 41.6 (d, CHCHO), 69.7 (d, CHO), 125.6 (d, C=CH), 128.8 (d, Ph), 129.1 (d, Ph), 132.3 (d, Ph), 140.6 (u, Ph), 157.0 (u), 159.7 (u) ppm. IR (KBr): $\tilde{v} = 3480$ (s), 3172 (w), 3059 (w), 2935 (s), 2865 (s), 2801 (m), 1720 (s), 1612 (s), 1451 (s), 1381 (s), 1326 (s), 1238 (s), 1144 (s), 1111 (s), 1072 (s), 1010 (s), 921 (w), 854 (s), 816 (m) cm⁻¹. MS (EI): m/z (%) = 336 (6) [M⁺], 292 (12), 276 (25), 156 (100), 138 (16), 137 (11), 125 (50), 123 (15), 121 (13), 93 (20), 91 (14). HRMS: *m*/*z* calcd. for C₁₇H₂₄N₂O₃S [M⁺] 336.15077; found 336.15075.

Isomer (E)-6: ¹H NMR (400 MHz, CDCl₃): $\delta = 1.25$ (d, J = 6.3 Hz, 3 H, Me), 1.32-1.56 (m, 3 H, CH₂), 1.59-1.80 (m, 3 H, CH₂), 1.97-2.09 (m, 1 H, CH₂), 2.26-2.35 (m, 1 H, CHCHO), 2.64 (s, 3 H, Me), 2.96-3.06 (m, 1 H, CH₂), 4.80 (br. s, 2 H, NH₂), 4.98 (dq, J = 9.6, 6.0 Hz, 1 H, CHO), 6.44 (br. s, 1 H, C=CH), 7.50-7.59 (m, 3 H, Ph), 7.90–7.96 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.7 (d, Me), 21.3 (u, CH₂), 26.3 (u, CH₂), 27.0 (u, CH₂), 28.8 (d, Me), 29.6 (u, CH₂), 50.8 (d, CHCHO), 70.0 (d, CHO), 125.3 (d, C=CH), 128.4 (d, Ph), 129.1 (d, Ph), 132.5 (d, Ph), 140.2 (u, Ph), 156.0 (u), 160.5 (u) ppm. IR (KBr): $\tilde{v} = 3906$ (w), 3747 (w), 3675 (w), 3418 (s), 3194 (m), 3056 (w), 2936 (s), 2866 (m), 2801 (w), 2344 (w), 1798 (m), 1723 (s), 1621 (m), 1449 (m), 1384 (s), 1322 (m), 1237 (s), 1144 (s), 1108 (s), 1070 (s), 1004 (m), 923 (w), 855 (s), 819 (w) cm⁻¹. MS (EI): m/z (%) = 336 (11) [M⁺], 276 (22), 244 (21), 227 (37), 200 (15), 197 (14), 196 (46), 195 (24), 181 (10), 167 (15), 156 (100), 141 (12), 138 (14), 137 (14), 125 (94),

123 (13), 121 (14), 119 (10), 109 (12), 107 (11), 105 (12), 95 (29), 93 (26), 91 (30).

(4R,4aS,8aR)-4-Methyl-8a-{[(R)-N-methylphenylsulfonimidoyl]methyl}hexahydro-1H-benzo[d][1,3]oxazin-2(4H)-one (8): To a solution of alcohol 4 (1.94 g, 6.62 mmol) in CH₂Cl₂ (60 mL) at room temperature was added trichloroacetyl isocyanate (1.18 mL, 8.61 mmol). The solution was stirred until TLC showed complete conversion (5 h) of the alcohol. MeOH (30 mL) and (NH₄)₂CO₃ (3.18 g, 33.0 mmol) were added and the mixture was stirred at room temperature for 12 h, then H₂O (30 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Crude carbamate 6 was dissolved in THF (50 mL) and the mixture was cooled to -78 °C, then nBuLi (1.60 M in n-hexane, 5.4 mL, 8.60 mmol) was added. The mixture was warmed to room temperature within 12 h, then saturated aqueous NH₄Cl (50 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 60 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Washing of the solid residue with Et₂O (3×20 mL) gave oxazinone 8 as a colourless solid. Concentration of the mother liquor in vacuo and purification by chromatography (EtOAc/iPrOH, 95:5) afforded an additional crop of 8 as a colourless solid. Combined yield: 1.72 g (77%), m.p. 152 °C (decomp.); $[a]_{D} = -77.1$ (c = 1.08, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.04–1.21 (m, 2 H, CH₂), 1.32 (d, J = 6.3 Hz, 3 H, Me), 1.43-1.59 (m, 4 H, CH₂), 1.65-1.81 (m, 2 H, CH_2), 2.54–2.62 (m, 1 H, CH_2), 2.71 (s, 3 H, Me), 3.06 (dd, J =14.3, 1.4 Hz, 1 H, CH₂S), 3.93 (d, J = 14.6 Hz, 1 H, CH₂S), 4.58 (dq, J = 10.4, 6.3 Hz, 1 H, CHO), 7.56-7.68 (m, 4 H, Ph), 7.85-7.90 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.9 (d, Me), 19.7 (u, CH₂), 22.2 (u, CH₂), 22.8 (u, CH₂), 29.6 (d, Me), 33.5 (u, CH₂), 43.2 (d, CHCHO), 55.8 (u, CN), 62.4 (u, CH₂), 71.7 (d, CHO), 128.6 (d, Ph), 129.5 (d, Ph), 133.1 (d, Ph), 139.7 (u, Ph), 152.2 (u, CO) ppm. IR (KBr): $\tilde{v} = 3356$ (s), 3256 (m), 3059 (w), 2934 (m), 2876 (m), 2795 (w), 1707 (s), 1618 (m), 1449 (m), 1390 (m), 1324 (m), 1237 (s), 1178 (w), 1141 (m), 1102 (m), 1075 (m), 1046 (w), 1010 (m), 929 (w), 904 (w), 875 (w), 832 (m) cm⁻¹. MS (CI, CH₄): m/z (%) = 337 (100) [M⁺ + 1], 210 (14), 182 (12), 170 (27), 156 (10). C₁₇H₂₄N₂O₃S (336.5): calcd. C 60.69, H 7.19, N 8.33; found C 61.00, H 7.13, N 8.41.

(1S,7R,7aS,11aR)-7-Methyl-1-[(R)-N-methylphenylsulfonimidoyl]octahydrobenzo[d]pyrrolo[1,2-c][1,3]oxazin-5(1H)-one (21): Treatment of sulfoximine 8 (100 mg, 0.30 mmol) with nBuLi (1.60 M in *n*-hexane, 0.41 mL, 0.66 mmol) and ditosylate 20 (122 mg, 0.33 mmol) as described in GP1 and purification by chromatography (EtOAc/cyclohexane, 2:1) gave spirocycle 21 (64 mg, 57%) as a colourless solid and sulfoximine 8 (22 mg, 22%); m.p. 193 °C (decomp.); $[a]_D = +11.2$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.20-1.36$ (m, 1 H, CH₂), 1.40 (d, J = 6.3 Hz, 3 H, Me), 1.51-1.78 (m, 5 H, CH₂), 1.80-1.95 (m, 1 H, CHCHO), 2.23-2.47 (m, 3 H, CH₂), 2.64 (s, 3 H, Me), 3.24-3.52 (m, 3 H, CHS, CH₂), 3.82–3.92 (m, 1 H, NCH₂), 4.63 (dq, J = 10.4, 6.3 Hz, 1 H, CHO), 7.53–7.66 (m, 3 H, Ph), 7.76–7.81 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.9 (d, Me), 19.3 (u, CH₂), 21.6 (u, CH₂), 22.5 (u, CH₂), 25.2 (u, CH₂), 29.3 (d, Me), 29.8 (u, CH₂), 40.8 (u, NCH₂), 44.0 (d, CHCHO), 67.5 (u, NC), 71.8 (d, CHS), 73.0 (d, CHO), 128.9 (d, Ph), 129.4 (d, Ph), 132.8 (d, Ph), 139.0 (u, Ph), 152.5 (u, CO) ppm. IR (KBr): v = 3055 (w), 2933 (s), 2864 (m), 2800 (w), 1688 (s), 1422 (s), 1378 (w), 1332 (m), 1267 (w), 1217 (m), 1143 (m), 1105 (m), 1075 (m), 994 (w), 957 (w), 881 (w), 855 (m) cm⁻¹. MS (EI): m/z (%) = 362 [M⁺], 285 (24), 284 (41), 241 (18), 240 (60), 208 (17), 207 (97), 206 (10), 183 (13), 182 (100), 164 (34), 163 (28), 162 (24), 153 (11), 148 (22), 138 (25), 136 (11), 135 (28), 134 (22), 125 (26), 122 (15), 120 (15), 109 (11), 108 (12), 107

FULL PAPER

(18), 106 (12), 95 (15), 91 (11), 81 (11), 80 (12). $C_{19}H_{26}N_2O_3S$ (362.5): calcd. C 62.96, H 7.23, N 7.73; found C 62.80, H 7.37, N 7.70.

(1S,8R,8aS,12aR)-8-Methyl-1-[(R)-N-methylphenylsulfonimidoyl]octahydro-1*H*-benzo[*d*]pyrido[1,2-*c*][1,3]oxazin-6(2*H*)-one (22): Treatment of oxazinone 8 (100 mg, 0.30 mmol) with nBuLi (1.60 M in n-hexane, 0.41 mL, 0.66 mmol) and ditosylate 23 (127 mg, 0.33 mmol) as described in GP1 and purification by chromatography (EtOAc/cyclohexane, 2:1) gave spirocycle 22 (66 mg, 59%) as a colourless solid and sulfoximine 8 (18 mg, 18%); m.p. 157-158 °C (decomp.); $[a]_{D} = -48.1$ (c = 0.90, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.24–1.42 (m, 1 H, CH₂), 1.47–1.72 (m, 7 H, CH₂), 1.69 (d, J = 6.8 Hz, 3 H, Me), 1.88–1.98 (m, 1 H, CH₂), 2.09–2.22 (m, 2 H, CH₂), 2.37-2.46 (m, 1 H, CH₂), 2.57 (s, 3 H, Me), 2.91-3.01 (m, 1 H, NCH₂), 3.55 (dd, J = 12.9, ${}^{3}J = 4.1$ Hz, 1 H, CHS), 3.70–3.78 (m, 1 H, CH), 4.11–4.19 (m, 1 H, NCH₂), 4.26 (dq, J = 6.8, 4.4 Hz, 1 H, CHO), 7.53-7.64 (m, 3 H, Ph), 7.72-7.77 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.0 (u, CH₂), 21.8 (u, CH₂), 22.0 (u, CH₂), 22.1 (d, Me), 23.6 (u, CH₂), 27.1 (u, CH₂), 27.2 (u, CH₂), 29.8 (d, Me), 39.06 (u, NCH₂), 39.12 (u, CH), 61.9 (u, CN), 66.8 (d, CHS), 77.5 (d, CHO), 129.3 (d, Ph), 129.5 (d, Ph), 132.6 (d, Ph), 137.3 (u, Ph), 154.5 (u, CO) ppm. IR (KBr): v = 3422 (m), 2932 (m), 2960 (m), 2792 (w), 1673 (s), 1444 (m), 1400 (m)(s), 1261 (m), 1228 (m), 1141 (s), 1100 (m), 1074 (m), 1051 (m), 937 (w), 861 (m) cm⁻¹. MS (EI): m/z (%) = 376 (23) [M⁺], 221 (12), 209 (20), 182 (16), 179 (15), 178 (100), 177 (43), 176 (13), 162 (23), 150 (16), 149 (29), 148 (21), 139 (31), 136 (10), 134 (13), 125 (20), 124 (11), 122 (11), 109 (19), 108 (13), 107 (28), 106 (13), 97 (14). HRMS: m/z calcd. for C₂₀H₂₈N₂O₃S [M⁺] 373.18207; found 376.18208.

 $(4R,4aS,7aR)-7a-{(1S)-3-(1,3-Dioxolan-2-yl)-1-[(R)-N-methyl$ phenylsulfonimidoyl|propyl}-4-methylhexahydrocyclopenta[d][1,3]oxazin-2(1H)-one (24): To a solution of sulfoximine 7 (1.50 g, 4.64 mmol) in THF (150 mL) was added at -50 °C, nBuLi (1.60 M in n-hexane, 6.4 mL, 10.2 mmol). The mixture was warmed to -10 °C within 1 h, cooled to -50 °C, and then treated with bromide 23 (0.60 mL, 5.12 mmol). The mixture was warmed to room temperature within 12 h, then saturated aqueous NH₄Cl (150 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 100 mL) and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc then EtOAc/iPrOH, 9:1) gave sulfoximine 24 (1.28 g, 65%) as a colourless oil and sulfoximine 7 (152 mg, 10%); $[a]_{\rm D} = -80.6$ (c = 1.16, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.30–1.45 (m, 1 H, CH₂), 1.32 (d, J = 6.0 Hz, 3 H, Me), 1.53–1.67 (m, 3 H, CH₂), 1.75-1.90 (m, 3 H, CH₂), 1.97-2.12 (m, 3 H, CH, CH₂), 2.72-2.87 (m, 1 H, CH₂), 2.76 (s, 3 H, Me), 3.34 (br. d, J = 7.7 Hz, 1 H, CHS), 3.74–3.99 (m, 5 H, CHO, CH₂O), 4.66 (t, J = 4.1 Hz, 1 H, CHO₂), 7.24 (br. s, 1 H, NH), 7.54–7.66 (m, 3 H, Ph), 7.82–7.88 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.2 (d, Me), 20.5 (u, CH₂), 22.2 (u, CH₂), 26.7 (u, CH₂), 29.7 (d, Me), 32.8 (u, CH₂), 39.1 (u, CH₂), 46.6 (d, CH), 64.7 (u, CH₂), 65.0 (u, CH₂), 68.2 (u, CN), 70.4 (d, CHS), 74.8 (d, CHO), 103.5 (d, CHO₂), 129.4 (d, CH), 129.6 (d, CH), 133.1 (d, Ph), 139.7 (u, Ph), 155.2 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3377$ (w), 3275 (w), 2957 (m), 2883 (m), 1710 (s), 1446 (m), 1392 (m), 1322 (m), 1235 (s), 1138 (s), 1078 (m), 861 (w) cm⁻¹. MS (CI, isobutane): m/z (%) = 423 (3) [M⁺ + 1], 269 (14), 268 (84), 224 (15), 206 (24), 181 (10), 156 (100).

(4*R*,4a*S*,7aR)-4-Methyl-7a-{(1*S*)-1-[(*R*)-*N*-methylphenylsulfonimidoyl]pent-4-en-1-yl}hexahydrocyclopenta[*d*][1,3]oxazin-2(1*H*)-one (26): To a solution of sulfoximine 7 (100 mg, 0.31 mmol) in THF (10 mL) at -50 °C, was added *n*BuLi (1.60 M in *n*-hexane, 0.43 mL, 0.68 mmol). The mixture was warmed to -10 °C within 1 h, cooled to -50 °C, and then treated with tosylate 25 (77 mg, 0.34 mmol). Subsequently, the mixture was warmed to room temperature within 12 h, then saturated aqueous NaHCO₃ (10 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 30 mL) and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc) gave sulfoximine 26 (80 mg, 68%) as a colourless oil; $[a]_{D} = -113.7$ (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.30-2.20$ (m, 10 H, CH, CH₂), 1.30 (d, J = 6.2 Hz, 3 H, Me), 2.76 (s, 3 H, Me), 2.86 (m, 1 H, CH₂), 3.07 (dd, J = 7.2, 1.2 Hz, 1 H, CHS), 3.96 (dq, J= 10.3, 6.2 Hz, 1 H, CHO, 4.92 (m, 2 H, CH=CH₂), 5.54 (m, 1 H, CH=CH₂), 7.22 (br. s, 1 H, NH), 7.54–7.66 (m, 3 H, Ph), 7.82– 7.88 (m, 2 H, Ph) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.0 (d, Me), 22.0 (u, CH₂), 25.32 (u, CH₂), 26.3 (u, CH₂), 29.6 (d, Me), 33.6 (u, CH₂), 38.8 (u, CH₂), 46.8 (d, CH), 68.0 (u, CH₂), 68.2 (u, CN), 69.3 (d, Me), 74.6 (d, CHS), 74.8 (d, CHO), 117.0 (u, CH=CH₂), 129.4 (d, CH), 129.6 (d, CH), 133.1 (d, CH), 136.2 (d, CH), 139.8 (u, Ph), 155.1 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3376$ (w), 3233 (w), 2956 (m), 2880 (m), 1703 (s), 1444 (m), 1387 (m), 1323 (m), 1230 (s), 1138 (s), 1075 (m), 1025 (m), 913 (m), 860 (m) cm⁻¹. MS (EI): m/z (%) = 377 (3) [M⁺ + 1], 251 (5), 223 (11), 222 (16), 183 (16), 182 (100), 180 (14), 178 (29), 167 (19), 156 (21), 145 (21), 136 (23), 125 (23). HRMS: m/z calcd. for $C_{20}H_{28}N_2O_3S$ [M⁺] 376.18151; found 376.18200.

(1*R*,7*R*,7a*S*,11a*R*)-7-Methyl-1-[(*R*)-*N*-methylphenylsulfonimidoyl]octahydrobenzo[*d*]pyrrolo[1,2-*c*][1,3]oxazin-5(1*H*)-one (27)

Synthesis through Cycloalkylation of C,N-Dianion 21 in the Presence of Excess *n*BuLi: To a solution of oxazinone 14 (100 mg, 0.30 mmol) in THF (5 mL) at -78 °C was added *n*BuLi (1.60 M in *n*-hexane, 0.56 mL, 0.90 mmol). The mixture was warmed to -10 °C within 1 h, then cooled to -50 °C and treated with ditosylate 22 (244 mg, 0.67 mmol). The mixture was warmed to room temperature within 12 h, then saturated aqueous NH₄Cl (5 mL) was added and the mixture was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc) gave spirocycle 27 (73 mg, 67%) as a colourless solid.

Synthesis through Isomerisation of Sulfoximine 21: To a solution of sulfoximine 21 (68 mg, 0.19 mmol) in THF (4 mL) at -50 °C was added nBuLi (1.60 M in n-hexane, 0.14 mL, 0.23 mmol). The mixture was warmed to room temperature within 12 h, then saturated aqueous NH₄Cl (5 mL) was added and the mixture was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc) gave spirocycle 27 (58 mg, 85%) as a colourless solid; m.p. 184–186 °C; $[a]_D = -88.4$ (c = 0.92, CH₂Cl₂). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.16-1.40 \text{ (m, 3 H, CH}_2)$, 1.45 (s, 3 H, Me), 1.48-1.62 (m, 1 H, CH₂), 1.63-1.81 (m, 2 H, CH₂), 1.82-1.93 (m, 1 H, CH₂), 2.05–2.32 (m, 3 H, CH₂), 2.70 (s, 3 H, Me), 2.99–3.09 (br. d, J = 10.6 Hz, 1 H, CHCHO), 3.36 (dt, J = 9.7, J = 2.2 Hz, 1 H, NCH₂), 3.50 (d, J = 7.2 Hz, 1 H, CHS), 4.04 (q, J = 9.4 Hz, 1 H, NCH₂), 4.68 (dq, J = 10.6, J = 6.2 Hz, 1 H, CHO), 7.55–7.66 (m, 3 H, Ph), 7.79–7.87 (m, 2 H, Ph) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 18.7 (d, Me), 19.9 (u, CH₂), 23.8 (u, CH₂), 24.4 (u, CH₂), 25.5 (u, CH₂), 29.2 (d, Me), 35.9 (u, CH₂), 28.2 (d, CHCHO), 44.0 (u, NCH₂), 66.7 (u, CN), 68.1 (d, CHS), 73.1 (d, CHO), 129.5 (d, Ph), 129.7 (d, Ph), 133.0 (d, Ph), 138.3 (u, Ph), 152.9 (u, CO) ppm. IR (KBr): $\tilde{v} = 3371$ (w), 2943 (m), 2807 (w), 2243 (w), 1688 (s), 1419 (s), 1330 (w), 1250 (m), 1197 (w), 1140 (m), 1074 (m), 914 (m), 867 (w) cm⁻¹. MS (EI): m/z (%) = 362 (9) $[M^+]$, 183 (11), 182 (100), 164 (14), 163 (11). $C_{19}H_{26}N_2O_3S$ (362.5): calcd. C 62.96, H 7.23, N 7.73; found C 62.90, H 7.11, N 7.62.

Enantioselective Synthesis of Azaspirocycles

(4R,4aS,7aR)-7a-(Chloromethyl)-4-methylhexahydrocyclopenta-[d][1,3]oxazin-2(1H)-one (31): 1-Chloroethyl chloroformate $(304 \,\mu\text{L}, 2.82 \,\text{mmol})$ was added at room temperature to a solution of sulfoximine 7 (700 mg, 2.17 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred at room temperature until TLC indicated almost complete conversion of the sulfoximine (4 h). Concentration in vacuo and purification by chromatography (EtOAc/cyclohexane, 2:1) afforded chloride **31** (356 mg, 81%) as a colourless solid. $R_{\rm f}$ = 0.55 (33), 0.90 (30) (EtOAc), m.p. 118–120 °C; $[a]_D = +1.1$ (c = 1.02, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 1.39 (d, J = 6.2 Hz, 3 H, Me), $1.48-2.12 \text{ (m}, 7 \text{ H}, \text{ CH}, \text{ CH}_2$), 3.49 (d, J =11.4 Hz, 1 H, CH₂Cl), 3.56 (d, J = 11.1 Hz, 1 H, CH₂Cl), 4.02 (dq, J = 9.6, 6.2 Hz, 1 H, CHO), 6.19 (br. s, 1 H, NH) ppm. ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 19.1 (d, \text{Me}), 23.0 (u, \text{CH}_2), 28.3 (u, \text{CH}_2),$ 37.9 (u, CH₂), 46.2 (d, CH), 52.7 (u, CH₂Cl), 65.0 (u, NC), 75.9 (d, CHO), 156.2 (u, CO) ppm. IR (KBr): $\tilde{v} = 3337$ (m), 3248 (m), 3132 (m), 2976 (s), 2940 (m), 2889 (m), 1704 (s), 1457 (m), 1431 (m), 1391 (s), 1321 (s), 1281 (m), 1213 (w), 1162 (w), 1119 (w), 1086 (m), 1054 (m), 1014 (m), 975 (w), 938 (w), 865 (w) cm⁻¹. MS (CI, CH₄): m/z (%) = 204 (100) [M⁺ + 1]. C₉H₁₄ClNO₂ (203.1): calcd. C 53.08, H 6.93, N 6.88; found C 53.16, H 6.95, N 6.75.

(4R,4aS,7aR)-7a-(Iodomethyl)-4-methylhexahydrocyclopenta-[d][1,3]oxazin-2(1H)-one (32): To a mixture of sulfoximine 7 (500 mg, 1.55 mmol) and NaI (1.16 g, 7.75 mmol) in CH₃CN (7 mL) at room temperature was added 1-chloroethyl chloroformate (338 µL, 3.10 mmol). The mixture was stirred at room temperature until TLC indicated almost complete conversion of the sulfoximine (3 h). Concentration in vacuo and purification by chromatography (EtOAc/cyclohexane, 4:1) afforded iodide 32 (348 mg, 76%) as a brown solid. $R_{\rm f} = 0.45$ (32), 0.90 (30) (EtOAc); M.p. 85 °C; $[a]_D = +2.0$ (c = 0.93, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.39 (d, J = 6.3 Hz, 3 H, Me), 1.49–1.58 (m, 1 H, CH₂), 1.59-1.70 (m, 1 H, CH₂), 1.75-1.87 (m, 2 H, CH₂), 1.94-2.08 (m, 3 H, CHCHO, CH₂), 3.35 (d, J = 10.4 Hz, 1 H, CH₂I), 3.41 $(d, J = 10.4 Hz, 1 H, CH_2I), 4.02 (dq, J = 10.2, 6.3 Hz, 1 H, CHO),$ 5.92 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.1 (u, Me), 20.7 (u, CH₂I), 23.0 (u, CH₂), 28.1 (u, CH₂), 40.1 (u, CH₂), 47.4 (d, CHCHO), 63.5 (u, CN), 76.2 (d, CHO), 155.3 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3250$ (m), 3123 (m), 2956 (s), 2879 (m), 1712 (s), 1455 (m), 1393 (s), 1323 (s), 1205 (m), 1092 (m), 1059 (m), 1007 (m), 968 (w), 918 (w), 873 (w) cm⁻¹. MS (EI): m/z (%) = 295 (1) [M⁺], 154 (100), 110 (45), 81 (11). C₉H₁₄INO₂ (295.1): calcd. C 36.63, H 4.78, N 4.75; found C 36.53, H 4.85, N 4.61.

(4R,4aS,7aR)-7a-[(S)-1-Iodopent-4-en-1-yl]-4-methylhexahydrocyclopenta[d][1,3]oxazin-2(1H)-one (33): To a solution of sulfoximine 26 (600 mg, 1.59 mmol) in MeCN (10 mL) at room temperature were added NaI (715 mg, 4.77 mmol) and 1-chloroethyl chloroformate (455 mg, 3.18 mmol) and the mixture was stirred for 3 h at room temperature. Concentration in vacuo and purification by chromatography (EtOAc) gave a mixture of iodide 33 and EtOAc in a ratio of 76:24 containing 403 mg (76%) of the iodide; $[a]_{\rm D} = -24.9 \ (c = 1.00, \ {\rm CHCl_3/EtOAc}).$ ¹H NMR (300 MHz, CDCl₃): δ = 1.26 (EtOAc), 1.39 (d, J = 6.2 Hz, 3 H, Me), 1.50– 2.20 (m, 10 H, CH, CH₂), 2.05 (EtOAc), 2.43 (m, 1 H, CH₂), 3.98 (dq, J = 10.7, 6.1 Hz, 1 H, CHO), 4.04 (dd, J = 9.1, 2.2 Hz, 1 H, CHI), 4.12 (EtOAc), 5.04 (m, 1 H, CH=CH₂), 5.11 (m, 1 H, CH=CH₂), 5.65 (br. s, 1 H, NH), 5.71 (m, 1 H, CH=CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.4 (d, Me), 21.0 (EtOAc), 22.8 (u, CH₂), 29.4 (u, CH₂), 33.6 (u, CH₂), 34.2 (u, CH₂), 45.2 (u, CH₂), 46.4 (d, CH), 52.3 (d, CH), 60.5 (EtOAc), 68.2 (u, CN), 76.4 (d, CHO), 116.6 (u, CH=CH₂), 136.3 (d, CH=CH₂), 156.4 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3245$ (m), 3121 (w), 2944 (m), 1713 (s), 1447 (m), 1388 (m), 1324 (m), 1220 (w), 1089 (m), 1041 (w) cm⁻¹.

MS (EI, 70 eV): m/z (%) = 350 (3) [M⁺ + 1], 264 (3), 222 (36), 178 (18), 154 (100), 135 (26), 110 (100). HRMS: m/z calcd. for $C_{13}H_{20}INO_2S$ [M⁺] 349.05332; found 349.05390.

(4R,4aS,7aS)-7a-(But-2-enyl)-4-methylhexahydrocyclopenta-[d][1,3]oxazin-2(1H)-one (41): To a suspension of CuI (1.16 g, 6.07 mmol) in THF (3 mL at -30 °C) was added 1-propenylmagnesium bromide (0.50 M in THF, 24.3 mL, 12.1 mmol). The turbid mixture was stirred for 30 min at this temperature whereby it became yellow-brown. Subsequently, the mixture containing cuprate 40 was added to a solution of iodide 32 in THF (3 mL) at -30 °C. The mixture, which successively became red, orange and finally yellow-brown, was stirred for 2 h at -30 °C. It was then warmed to room temperature within 12 h, whereby it became black. Saturated aqueous (NH₄)₂CO₃ (30 mL) and concentrated aqueous NH₃ (10 mL) were added and the aqueous phase was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography (EtOAc/cyclohexane, 1:1) gave alkene 41 as an Z/E mixture in a ratio of 2:1 (208 mg, 82%) as a colourless oil.

Isomer (Z)-41: ¹H NMR (300 MHz, CDCl₃): $\delta = 1.33$ (d, J = 6.2 Hz, 3 H, Me), 1.41–1.52 (m, >1 H, CH₂), 1.60–2.00 (m, >9 H, CH₂, CH, Me), 2.05–2.38 (m, 2 H, CH₂CH=CH), 3.97 (dq, J = 10.1, 6.0 Hz, >1 H, CHO), 5.35–5.50 (m, >1 H, CH=CH), 5.72 (tdq, J = 10.9, 6.7, 1.2 Hz, 1 H, CH=CHMe), 6.10 (br. s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.1$ (d, Me), 19.2 (d, Me), 22.6 (u, CH₂), 27.7 (u, CH₂), 38.5 (u, CH₂), 39.3 (u, CH₂CH=CHMe), 47.0 (d, CHCHO), 64.2 (u, CN), 76.0 (d, CHO), 123.7 (d, CH=CHMe), 129.0 (d, CH=CHMe), 156.3 (u, CO) ppm.

Isomer (E)-41: ¹H NMR (300 MHz, CDCl₃): δ (in part) = 1.32 (d, J = 6.2 Hz, 3 H, Me), 5.51–5.66 (m, 1 H, CH=CHMe), 6.04 (br. s, 1 H, NH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 18.1 (d, Me), 19.2 (d, Me), 22.5 (u, CH₂), 27.5 (u, CH₂), 39.0 (u, CH₂), 44.5 (u, CH₂CH=CHMe), 46.7 (d, CHCHO), 63.8 (u, CN), 75.9 (d, CHO), 124.4 (d, CH=CHMe), 131.3 (d, CH=CHMe), 156.3 (u, CO) ppm. IR (capillary; *Z/E*-mixture): \tilde{v} = 3851 (m), 3743 (m), 3251 (m), 3121 (w), 2949 (m), 2353 (s), 1710 (s), 1549 (m), 1461 (w), 1394 (m), 1318 (m), 1083 (m) cm⁻¹. MS (EI; *Z/E*-mixture): *m/z* (%) = 210 (19) [M⁺ + 1], 209 (0.3) [M⁺], 154 (63), 110 (100), 93 (13). C₁₂H₁₉NO₂ (209.1) (*Z/E*-mixture): calcd. C 68.87, H 9.15, N 4.75; found C 69.25, H 9.08, N 7.05.

(4*R*,4a*S*,7a*S*)-7a-[3-(1,3-Dioxolan-2-yl)propyl]-4-methylhexahydrocyclopenta[*d*][1,3]oxazin-2(1*H*)-one (43)

Synthesis through Cuprate Reaction of Iodide 32: To a solution of 2-(2-bromoethyl)-1,3-dioxolane (0.32 mL, 2.72 mmol) in THF (20 mL) at -78 °C, was added tBuLi (1.60 M in n-pentane, 3.63 mL, 5.44 mmol). The mixture was stirred at this temperature for 2 h, then it was added to a solution of CuI (259 mg, 1.36 mmol) in THF (5 mL) and Me_2S (1 mL) at –30 °C. The mixture was stirred at this temperature for 30 min, whereby it became black. The mixture containing cuprate 42 was then added to a solution of iodide 32 (100 mg, 0.34 mmol) in THF (2 mL) at -30 °C. The mixture was warmed to room temperature within 2 h. TLC showed a complete conversion of the iodide. Saturated aqueous (NH₄)₂CO₃ (10 mL) and concentrated NH₃ (10 mL) were added, the mixture was extracted with EtOAc (3×20 mL), and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc) gave acetal 43 (66 mg, 72%) as a colourless oil.

Synthesis through Reduction of Sulfoximine 24: Sulfoximine **24** (1.21 g, 2.86 mmol) was added to a suspension of Raney nickel (prepared from 10.0 g Ni/Al alloy) in THF and water and the mix-

FULL PAPER

ture was stirred for 24 h at room temperature. The suspension was filtered through Celite and NaCl was added to the filtrate. The aqueous layer was extracted with EtOAc (2×50 mL) and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc) gave acetal **43** (692 mg, 90%) as a colourless oil; $[a]_D = +11.8$ (c = 1.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.35 (d, J = 6.0 Hz, 3 H, Me), 1.40-1.97 (m, 13 H, CH₂), 3.82-3.87 (m, 2 H, CH₂O), 3.93–4.01 (m, 3 H, CHO, CH₂O), 4.84 (t, J = 4.7 Hz, 1 H, CHO₂), 5.83 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.1 (u, CH₂), 19.2 (d, Me), 22.6 (u, CH₂), 27.7 (u, CH₂), 33.7 (u, CH₂), 39.9 (u, CH₂), 41.6 (u, CH₂), 46.7 (d, CH), 64.1 (u, CN), 64.8 (u, CH₂O), 75.9 (d, CHO), 104.0 (d, CHO₂), 156.1 (u, CO) ppm. IR $(CHCl_3)$: $\tilde{v} = 3247$ (m), 3115 (w), 2954 (s), 2882 (m), 1706 (s), 1458 (m), 1404 (m), 1317 (m), 1220 (m), 1137 (m), 1048 (m), 941 (w) cm⁻¹. MS (EI): m/z (%) = 269 (5) [M⁺], 226 (17), 154 (82), 153 (20), 136 (20), 127 (10), 110 (100), 99 (12), 93 (11). HRMS: m/z calcd. for C₁₄H₂₃NO₃ [M⁺] 269.16271; found 269.16283.

(4*R*,4a*S*,7a*R*)-4,7a-Dimethylhexahydrocyclopenta[*d*][1,3]oxazin-2(1*H*)-one (55)

Isolation in an Attempted Synthesis of Alkene 47: To a solution of 4-bromobut-1-ene (0.42 mL, 4.07 mmol) in THF (5 mL) at -78 °C was added tBuLi (1.60 M in n-pentane, 5.40 mL, 8.16 mmol). The mixture was stirred at this temperature for 2 h, then it was added to a solution of CuI (388 mg, 2.04 mmol) in THF (5 mL) and Me₂S (1 mL) at -30 °C. The mixture was stirred at this temperature for 30 min, whereby it became black. Then the mixture containing cuprate 44a was added to a solution of iodide 32 (150 mg, 0.51 mmol) in THF (2 mL) at -30 °C. The mixture was warmed to room temperature within 2 h. TLC showed complete conversion of 32. Saturated aqueous (NH₄)₂CO₃ (10 mL) and conc. NH₃ (10 mL) were added, the mixture was extracted with EtOAc, and the combined organic layers were dried (MgSO₄). Concentration in vacuo and chromatography (EtOAc) gave a colourless oil (54 mg), which contained oxazinone 55 in approximately 55% yield according to ¹H NMR spectroscopy. Similar results were obtained when iodide 32 was treated with cuprate $44b^{[28]}$ under these conditions.

Synthesis through Reduction of Sulfoximine 7: Sulfoximine 7 (310 mg, 0.961 mmol) was added to a suspension of Raney nickel (prepared from 3.30 g Ni/Al alloy) in THF and water and the mixture was stirred for 24 h at room temperature. The suspension was filtered through Celite and brine was added to the filtrate. The aqueous layer was extracted with EtOAc (2×50 mL) and the combined organic phases were dried (MgSO₄). Removal of the solvent in vacuo and purification by chromatography (EtOAc) gave oxazinone 45 (120 mg, 74%) as a colourless oil; m.p. 76–78 °C; $[a]_{D}$ = +31.2 (c = 1.20, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.22$ (s, 3 H, Me), 1.27 (d, J = 6.3 Hz, 3 H, Me), 1.34-1.44 (m, 1 H, CH₂), 1.50–1.73 (m, 5 H, CH, CH₂), 1.85–1.96 (m, 1 H, CH₂), 3.93 (dq, J = 10.2, 6.3 Hz, 1 H, CHO), 6.76 (br. s, 1 H, NH) ppm.¹³C NMR (100 MHz, CDCl₃): δ = 19.2 (d, Me), 22.5 (u, CH₂), 27.3 (u, CH₂), 29.5 (d, Me), 41.0 (u, CH₂), 48.5 (d, CH), 61.1 (u, CN), 76.0 (d, CHO), 156.1 (u, CO) ppm. IR (KBr): $\tilde{v} = 3247$ (m), 3112 (m), 2963 (m), 2878 (m), 1705 (s), 1412 (m), 1324 (m), 1223 (w), 1174 (w), 1084 (m), 1058 (m), 979 (w) cm⁻¹. MS (EI): m/z (%) = 169 (22) $[M^+]$, 154 (33), 127 (100), 126 (19), 112 (45), 110 (56), 97 (11), 96 (63), 83 (16), 82 (30), 81 (13). HRMS: m/z calcd. for C₉H₁₅NO₂ [M⁺] 169.11028; found 169.11033.

2-[(4*R***,4a***S***,7a***S***)-4-Methyl-2-oxooctahydrocyclopenta[***d***][1,3]oxazin-7a-yl]acetonitrile (46): KCN (234 mg, 3.56 mmol) was added at room temperature to a solution of chloride 31** (365 mg, 1.80 mmol) in DMF (9 mL). The resulting mixture was heated with stirring at 100 °C for 2 h. Removal of the solvent in vacuo and purification by chromatography (EtOAc) gave nitrile **46** (329 mg, 94%) as a colourless solid; m.p. 120 °C; $[a]_{D} = +27.6$ (c = 1.03, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.43$ (d, J = 6.4 Hz, 3 H, Me), 1.52–2.15 (m, 7 H, CH, CH₂), 2.63 (d, J = 16.8 Hz, 1 H, CH₂CN), 2.71 (d, J = 16.6 Hz, 1 H, CH₂CN), 3.97–4.09 (m, 1 H, CHO), 7.12 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 19.2$ (d, Me), 23.0 (u, CH₂), 28.3 (u, CH₂), 31.1 (u, CH₂CN), 40.0 (u, CH₂), 47.4 (d, CH), 62.2 (u, CN), 76.2 (d, CHO), 116.8 (u, CH₂CN), 156.2 (u, CO) ppm. IR (KBr): $\tilde{v} = 3294$ (s), 3116 (w), 2961 (m), 2934 (m), 12254 (w), 1081 (m), 1052 (m), 1026 (m), 943 (w), 865 (w) cm⁻¹. MS (EI): m/z (%) = 194 (0.5) [M⁺], 154 (72), 121 (14), 110 (100), 107 (11), 93 (11), 82 (15). C₁₀H₁₄N₂O₂ (194.2): calcd. C 61.84, H 7.27, N 14.42; found C 61.69, H 7.22, N 14.33.

(4R,4aS,7aR)-7a-(Pent-4-en-1-vl)-4-methylhexahydrocyclopenta-[d][1,3]oxazin-2(1H)-one (47): To a solution of iodide 33 (200 mg, 0.57 mmol) containing a small amount of EtOAc and AIBN (2 mg) in benzene (20 mL) at room temperature was added HSnBu₃ (498 mg, 1.71 mmol). After the mixture was kept at 60 °C for 4 h, it was concentrated in vacuo. The residue was dissolved in a mixture of MeCN (30 mL) and n-hexane (20 mL). The n-hexane phase was washed with MeCN (40 mL) and the combined MeCN phases were concentrated in vacuo. Purification by chromatography (EtOAc/cyclohexane, 1:1) gave oxazinone 47 (109 mg, 85%) as a colourless oil; $[a]_D = +26.5$ (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.36$ (d, J = 6.0 Hz, 3 H, Me), 1.40–2.00 (m, 11 H, CH, CH₂), 2.04 (m, 1 H, CH₂), 3.96 (dq, J = 9.9, 6.2 Hz, 1 H, CHO), 5.09 (m, 2 H, CH=CH₂), 5.75 (m, 1 H, CH=CH₂), 6.00 (br. s, 1 H, NH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.3 (d, Me), 22.6 (u, CH₂), 22.8 (u, CH₂), 27.8 (u, CH₂), 33.7 (u, CH₂), 40.0 (u, CH₂), 41.3 (u, CH₂), 46.9 (d, CH), 64.7 (u, CN), 76.0 (d, CHO), 115.1 (u, CH=*C*H₂), 138.1 (d, *C*H=CH₂), 156.6 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3237$ (w), 3119 (w), 2937 (m), 2883 (m), 1703 (s), 1454 (m), 1397 (s), 1312 (m), 1224 (w), 1089 (m), 1057 (m), 991 (w), 909 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 224 (28) $[M^+ + 1]$, 182 (36), 162 (16), 154 (95), 138 (28), 110 (100). HRMS: m/z calcd. for C₁₃H₂₁NO₂ [M⁺] 223.15668; found 223.15673.

(3aS,4R,11aS)-4-Methyloctahydrocyclopenta[d]pyrido[1,2-c][1,3]oxazin-6(1H)-one (48): Sulfoximine 18 (162 mg, 0.447 mmol) was added to a suspension of Raney nickel (prepared from 1.54 g Ni/ Al alloy) in THF and water and the mixture was stirred for 24 h at room temperature. The suspension was filtered through Celite and brine (15 mL) was added to the filtrate. The aqueous phase was extracted with EtOAc (2×20 mL) and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc) gave spirocycle 48 (90 mg, 96%) as a colourless oil; $[a]_D = +18.5 (c = 1.04, CH_2Cl_2)$. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.27$ –1.38 (m, 4 H, Me, CH₂), 1.39–1.84 (m, 10 H, CH, CH₂), 1.91–2.03 (m, 1 H, CH₂), 2.24–2.36 (m, 1 H, CH₂), 2.75–2.85 (m, 1 H, NCH₂), 3.91 (dq, J = 10.7, 6.3 Hz, 1 H, CHO), 4.21–4.30 (m, 1 H, NCH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.7 (d, Me), 20.8 (u, CH₂), 22.3 (u, CH₂), 24.4 (u, CH₂), 26.9 (u, CH₂), 34.2 (u, CH₂), 36.8 (u, CH₂), 42.8 (u, NCH₂), 51.4 (d, CH), 65.4 (u, CN), 74.0 (d, CHO), 154.9 (u, CO) ppm. IR (KBr): $\tilde{v} = 2929$ (s), 2877 (m), 1679 (s), 1517 (w), 1449 (m), 1415 (s), 1374 (w), 1332 (m), 1266 (s), 1178 (m), 1147 (w), 119 (m), 1071 (m), 1042 (m), 977 (m), 893 (w) cm⁻¹. MS (EI): m/z (%) = 209 (41) $[M^+]$, 168 (10), 167 (100), 166 (17), 152 (74), 150 (17), 136 (31), 122 (19), 108 (15), 97 (19). HRMS: m/z calcd. for $C_{12}H_{19}NO_2$ [M⁺] 209.14158; found 209.14167.

(4*R*,4a*S*,7a*S*)-1-Allyl-7a-(but-2-enyl)-4-methylhexahydrocyclopenta[*d*][1,3]oxazin-2(1*H*)-one (49): To a solution of alkene (*Z*/*E*)-

Enantioselective Synthesis of Azaspirocycles

41 (208 mg, 0.99 mmol) in DMF (5 mL) at room temperature was added NaH (50% in mineral oil, 63 mg, 1.31 mmol). The mixture was stirred for 30 min and allyl bromide (113 μ L, 1.31 mmol) was added. After the mixture was stirred for 12 h at room temperature, it was concentrated in vacuo. Purification by chromatography (EtOAc/cyclohexane, 1:2) gave diene **49** as an *Z/E* mixture in a ratio of 2:1 (211 mg, 85%) as a colourless oil.

Isomer (*Z*)-49: ¹H NMR (300 MHz, CDCl₃): δ (in part) = 1.30 (d, *J* = 6.2 Hz, >3 H, Me), 1.38–1.51 (m, >1 H, CH₂), 1.61 (br. d, *J* = 6.9 Hz, 3 H, Me), 1.70–2.13 (m, >6 H, CH, CH₂), 2.21–2.44 (m, >2 H, CH₂CH=CHMe), 3.50–3.64 (m, >1 H, NCH₂), 3.82–3.93 (m, >1 H, CHO), 4.15–4.27 (m, >1 H, NCH₂), 5.07–5.22 (m, >2 H, CH=CH₂), 5.23–5.36 (m, >1 H, CH=CHMe), 5.60–5.73 (m, 1 H, CH=CHMe), 5.86–6.01 (m, >1 H, CH=CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): δ (in part) = 13.3 (d, Me), 18.8 (d, Me), 23.1 (u, CH₂), 28.2 (u, CH₂), 35.6 (u, CH₂CH=CHMe), 39.5 (u, CH₂), 47.2 (u, NCH₂), 47.9 (d, CHCHO), 69.4 (u, CN), 74.6 (d, CHO), 115.9 (u, CH=CH₂), 123.6 (d, CH=CHMe), 128.2 (d, CH=CHMe), 134.8 (d, CH=CH₂), 156.5 (u, CO) ppm.

Isomer (E)-49: ¹H NMR (300 MHz, CDCl₃): δ (in part) = 1.63 (br. d, J = 5.2 Hz, 3 H, Me), 5.46–5.58 (m, 1 H, CH=CHMe) ppm. ¹³C NMR (75 MHz, CDCl₃): δ (in part) = 18.1 (d, Me), 28.3 (u, CH₂), 39.4 (u, CH₂), 41.8 (u, CH₂CH=CHMe), 47.1 (u, NCH₂), 47.6 (d, CH), 74.7 (d, CHO), 124.4 (d, CH=CHMe), 130.7 (d, CH₂CH=CH₂) ppm. IR (capillary; *Z/E*-mixture): \tilde{v} = 3080 (w), 3018 (w), 2956 (m), 2880 (m), 1701 (s), 1538 (w), 1438 (m). 1397 (m), 1309 (m), 1237 (m), 1106 (m), 1067 (m), 970 (m), 920 (m) cm⁻¹. MS (EI; *Z/E*-mixture): *m/z* (%) = 250 (4) [M⁺ + 1], 195 (13), 194 (100), 150 (67). HRMS: *m/z* calcd. for C₁₅H₂₃NO₂ [M⁺] (*Z/E*-mixture) 250.18053; found 250.18070.

(3aS,4R,11aS)-4-Methyl-2,3,3a,4,8,11-hexahydrocyclopenta[d]pyrido[1,2-c]-[1,3]oxazin-6(1H)-one (51): To a solution of diene (Z/E)-42 (211 mg, 0.85 mmol) in CH₂Cl₂ (85 mL, 0.01 M) at room temperature, was added catalyst 50 (37 mg, 0.042 mmol). After the mixture was stirred at room temperature for 1 h, TLC showed complete conversion of the diene. DMSO (0.2 mL) was added and the mixture was stirred at room temperature for 1 h. Concentration in vacuo and purification by chromatography (Et₂O) gave spirocycle **51** (166 mg, 95%) as a colourless oil; $[a]_{D} = -72.2$ (c = 1.58, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ = 1.35 (d, J = 6.3 Hz, 3 H, Me), 1.43–1.92 (m, 5 H, CH, CH₂), 1.95–2.19 (m, 4 H, CH₂), 3.51-3.60 (m, 1 H, NCH₂), 3.99 (dq, J = 9.9, 6.3 Hz, 1 H, CHO), 4.65–4.75 (m, 1 H, NCH₂), 6.65–6.79 (m, 2 H, CH=CH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.9 (d, Me), 22.4 (u, CH₂), 27.8 (u, CH₂), 36.3 (u, CH₂), 37.3 (u, CNCH₂CH=CH), 41.9 (u, NCH₂), 50.3 (d, CHCHO), 63.1 (u, CN), 74.3 (d, CHO), 122.9 (d, CH), 124.2 (d, CH), 154.6 (u, CO) ppm. IR (capillary): $\tilde{v} = 3859$ (w), 3364 (m), 2964 (s), 1693 (s), 1609 (m), 1413 (s), 1308 (m), 1265 (m), 1198 (w), 1128 (m), 1067 (m) cm⁻¹. MS (EI): m/z (%) = 207 (100) [M⁺], 192 (18), 164 (11), 163 (12), 162 (62), 150 (17), 148 (17), 146 (13), 134 (23), 124 (12), 120 (37), 107 (13), 106 (21), 95 (11), 94 (13), 93 (11), 81 (12), 80 (17). HRMS: m/z calcd. for C₁₅H₂₇NO₂ [M⁺] 207.12593; found 207.12606.

(*R*)-1-[(1*S*,5*S*)-6-Azaspiro[4.5]dec-8-en-1-yl]ethanol (52): A mixture of oxazinone 51 (113 mg, 0.546 mmol), CsOH·H₂O (1.373 g, 8.18 mmol), MeOH (3 mL) and H₂O (3 mL) was heated at reflux for 3 d. The mixture was cooled to room temperature and adjusted to pH 7.0 by the careful addition of concentrated aqueous HCl. MeOH was removed in vacuo and the residue was lyophilised. The remaining colourless solid was triturated with CHCl₃/MeOH (1:1) (3 × 10 mL) and the combined organic phases were dried (MgSO₄) and concentrated in vacuo. Purification by chromatography

(CHCl₃/MeOH/NEt₃, 90:10:1) gave amino alcohol **52** (71 mg, 72%) as a colourless oil; $[a]_{D} = -33.0$ (c = 1.62, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃): δ = 1.23 (d, J = 8.9 Hz, 3 H, Me), 1.27–1.60 (m, 2 H, CH₂), 1.64–1.85 (m, 5 H, CH, CH₂), 1.86–1.98 (m, 1 H, NCH₂), 2.61 (br. d, *J* = 17.8 Hz, 1 H, NCH₂), 3.52 (br. s, 2 H, CCH₂CH=CH), 3.90 (dq, J = 9.9, 6.2 Hz, 1 H, CHO), 5.30 (br. s, 2 H, OH, NH), 5.64–5.80 (m, 2 H, CH=CH) ppm. ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 23.0 \text{ (d, Me)}, 23.5 \text{ (u, CH}_2), 29.5 \text{ (u, CH}_2),$ 36.1 (u, CH₂), 37.9 (u, NCH₂), 40.6 (u, NCCH₂CH=CH), 56.7 (d, CHCHO), 62.3 (u, CN), 68.7 (d, CHO), 122.9 (d, CH), 125.4 (d, CH) ppm. IR (capillary): $\tilde{v} = 3950$ (w), 3902 (w), 3813 (w), 3729 (w), 3664 (w), 3369 (s), 3024 (m), 2958 (s), 2801 (m), 2726 (w), 2676 (w), 2560 (w), 2470 (w), 2401 (w), 1629 (s), 1569 (s), 1452 (s), 1330 (m), 1260 (w), 1219 (m), 1175 (w), 1137 (s), 1109 (m), 1062 (s), 1010 (m), 958 (m), 931 (m), 881 (m), 812 (m) cm⁻¹. MS (EI): m/z $(\%) = 181 (40) [M^+], 180 (100), 162 (61), 120 (13), 108 (37), 106$ (11), 95 (11), 94 (10). HRMS: m/z calcd. for $C_{11}H_{19}NO [M^+]$ 181.14666; found 181.14664.

1-{(1*S*,5*S*)-1-[(*R*)-1-Hydroxyethyl]-6-azaspiro[4.5]decan-6-yl}-2methylbutan-1-one (53): To a solution of oxazinone 48 (100 mg, 0.48 mmol) and TMEDA (72 μ L, 0.48 mmol) in THF (7 mL) at 0 °C, was added *sec*BuLi (1.40 M in cyclohexane, 0.51 mL, 0.72 mmol). The mixture was stirred at this temperature for 40 min, then allyl bromide (62 μ L, 0.717 mmol) was added and the mixture was stirred at 0 °C for 2 h. Saturated aqueous NH₄Cl (10 mL) was added, the mixture was extracted with EtOAc (3 × 10 mL), and the combined organic phases were dried (MgSO₄). Removal of the solvents in vacuo and chromatography (EtOAc/cyclohexane, 1:2, then EtOAc) gave a mixture of amides 53 and *epi*-53 in a ratio of 1:1 (31 mg, 24%) and 42 (62 mg, 62%). Small amounts of the pure amides 53 and *epi*-53 were obtained by chromatography (EtOAc/ cyclohexane, 1:2). $R_f = 0.75$ (53), 0.63 (*epi*-53), 0.33 (48) (Et₂O).

Isomer 59: ¹H NMR (300 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.4 Hz, 3 H, CH_2CH_3), 1.07 (d, J = 6.7 Hz, 3 H, $CHCH_3$), 1.14 (d, J =6.2 Hz, 3 H, Me), 1.26–1.48 (m, 3 H, CH₂), 1.50–1.76 (m, 9 H, CH, CH₂), 1.78-1.90 (m, 1 H, CH₂), 1.97-2.16 (m, 2 H, CH₂), 2.39-2.53 (m, 1 H, CH₂), 2.50–2.63 (m, 1 H, CHMe), 3.54–3.70 (m, 2 H, NCH₂), 3.72–3.85 (m, 1 H, CHO) ppm. ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 12.1$ (d, CH_2CH_3), 17.1 (u, CH_2), 17.2 (d, $CHCH_3$), 22.8 (u, CH₂), 23.9 (d, Me), 24.3 (u, CH₂), 27.1 (u, CH₂), 30.4 (u, CH₂), 34.2 (u, CH₂), 37.4 (u, CH₂), 39.3 (d, CHMe), 41.9 (u, NCH₂), 60.4 (d, CH), 68.6 (u, NC), 69.6 (d, CHO), 176.7 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3423$ (m), 2943 (s), 2869 (s), 1723 (w), 1618 (s), 1463 (s), 1427 (s), 1371 (w), 1321 (w), 1228 (m), 1148 (m), 1116 (m), 1062 (m), 971 (w), 924 (w), 869 (w) cm⁻¹. MS (EI): m/z $(\%) = 267 (15) [M^+], 249 (31), 210 (30), 184 (14), 182 (34), 181 (33),$ 180 (44), 169 (10), 168 (62), 166 (45), 138 (24), 110 (60), 98 (42), 97 (100), 84 (31).

Isomer *epi*-**53**: ¹H NMR (300 MHz, CDCl₃): $\delta = 0.86$ (t, J = 7.7 Hz, 3 H, CH₂CH₃), 1.09 (d, J = 6.9 Hz, 3 H, CHCH₃), 1.15 (d, J = 6.2 Hz, 3 H, Me), 1.28–1.46 (m, 4 H, CH₂), 1.48–1.74 (m, 8 H, CH, CH₂), 1.77–1.90 (m, 1 H, CH₂), 1.99–2.17 (m, 2 H, CH₂), 2.46–2.63 (m, 2 H, CHMe, CH₂), 3.50–3.82 (m, 3 H, CHO, NCH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.1$ (d, CH₂CH₃), 17.0 (u, CH₂), 17.7 (d, CHCH₃), 22.6 (u, CH₂), 24.1 (d, Me), 24.4 (u, CH₂), 27.3 (u, CH₂), 30.7 (u, CH₂), 34.2 (u, CH₂), 37.6 (u, CH₂), 39.4 (d, CHMe), 41.5 (u, NCH₂), 60.6 (d, CH), 68.6 (u, NC), 69.5 (d, CHO), 176.5 (u, CO) ppm. IR (CHCl₃): $\tilde{v} = 3409$ (m), 2943 (s), 2869 (s), 1618 (s), 1463 (s), 1430 (s), 1372 (m), 1320 (m), 1147 (m), 1117 (m), 1059 (m), 974 (w), 924 (w), 868 (w) cm⁻¹. MS (EI): *m/z* (%) = 267 (18) [M⁺], 249 (28), 210 (34), 184 (14), 182 (34), 181 (34), 180 (44), 169 (10), 168 (67), 166 (45), 138 (22), 110 (60), 98 (41), 97 (100), 84 (31). Date: 14-04-14 10:47:28

Pages: 18

FULL PAPER

(3aS,4R,11aS)-4-Methyl-2,3,3a,4,10,11-hexahydrocyclopenta[d]pyrido[1,2-c][1,3]oxazin-6(1H)-one (54): To a solution of acetal 43 (105 mg, 0.390 mmol) in toluene (2 mL) was added p-toluenesulfonic acid (7 mg, 0.04 mmol) and the mixture was stirred and heated at reflux for 1 h. Saturated aqueous NaHCO₃ (5 mL) was added, the aqueous layer was extracted with EtOAc (3×10 mL), and the combined organic layers were dried (MgSO₄). Removal of the solvents in vacuo and purification by chromatography (EtOAc/cyclohexane, 1:1) gave enamide 54 (60 mg, 74%) as a colourless solid; m.p. 99–102 °C; $[a]_{D} = +67.3$ (c = 1.15, CH₂Cl₂). ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3): \delta = 1.38 \text{ (d, } J = 6.2 \text{ Hz}, 3 \text{ H}, \text{ Me}), 1.48-1.90$ (m, 7 H, CH, CH₂), 1.93–2.09 (m, 2 H, CH₂), 2.09–2.14 (m, 2 H, CH₂), 4.18 (dq, J = 9.6, 6.2 Hz, 1 H, CHO), 5.04–5.13 (m, 1 H, NCH=CH), 6.86–6.93 (dt, J = 8.4, 2.0 Hz, 1 H, NCH=CH) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 19.1 (d, Me), 19.3 (u, CH₂), 20.5 (u, CH₂), 25.7 (u, CH₂), 30.9 (u, CH₂), 33.7 (u, CH₂), 48.0 (d, CH), 63.5 (u, CN), 74.1 (d, CHO), 108.8 (d, NCH=CH), 125.7 (d, NCH=CH) ppm. IR (KBr): $\tilde{v} = 3061$ (w), 2965 (m), 2903 (m), 1673 (s), 1516 (w), 1459 (w), 1406 (s), 1373 (m), 1315 (s), 1205 (w), 1168 (w), 1124 (m), 1054 (m), 977 (w), 945 (w), 912 (w), 809 (w) cm⁻¹. MS (EI): m/z (%) = 207 (100) [M⁺], 163 (12), 162 (47), 148 (85), 135 (20), 134 (98), 120 (26), 108 (21), 95 (43), 94 (28), 91 (12), 82 (16), 80 (15). C₁₂H₁₇NO₂ (207.1): calcd. C 69.54, H 8.27, N 6.76; found C 69.63, H 7.88, N 6.61.

(3aS,4R,8S,11aS)-8-Allyl-4-methyloctahydrocyclopenta[d]pyrido-[1,2-c][1,3]oxazin-6(1H)-one (56): To a solution of acetal 55 (31 mg, 0.129 mmol) in CH₂Cl₂ (4 mL) at -78 °C was added BF₃·OEt₂ (98 µL, 0.774 mmol) and allyltrimethylsilane (123 µL, 0.774 mmol). The mixture was warmed to room temperature within 5 h, then saturated aqueous NaHCO₃ (10 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried (MgSO₄) and the solvents were removed in vacuo. ¹H NMR spectroscopy of the crude product showed the presence of a mixture of alkene 56 ($\geq 98\%$ de) and enamide 54 in a ratio of 3:1. Separation by chromatography (n-pentane/iPrOH, 16:1) gave 56 (23 mg, 71%) as a colourless oil and 54 (6 mg, 22%) as a colourless solid. $R_{\rm f} = 0.50$ (56), 0.40 (54) (*n*-pentane/*i*PrOH, 16:1); $[a]_{D} = -7.1$ (c = 0.56, CH₂Cl₂). ¹H NMR (500 MHz, C₆D₆): $\delta = 0.72$ (ddt, J = 13.1, 4.0, 1.5 Hz, 1 H, CH₂), 0.84–0.94 (m, 1 H, CH₂), 0.99 (d, J = 6.1 Hz, 3 H, Me), 1.00–1.14 (m, 3 H, CH₂), 1.15-1.48 (m, 7 H, CH₂, CH), 1.67-1.75 (m, 1 H, CH₂), 2.04-2.13 (m, 1 H, CH₂CH=CH₂), 2.28-2.36 (m, 1 H, CH₂CH=CH₂), 3.51 (dq, J = 9.8, 6.4 Hz, 1 H, CHO), 5.00-5.07 (m, 2 H, CH=CH₂),5.07-5.12 (m, 1 H, CHN), 5.80-5.90 (m, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, C_6D_6): $\delta = 15.5$ (u, CH_2), 18.6 (d, Me), 20.7 (u, CH₂), 23.9 (u, CH₂), 26.7 (u, CH₂), 35.3 (u, CH₂), 35.6 (u, CH₂), 38.3 (u, CH₂CH=CH₂), 50.1 (d, CH), 51.4 (d, NCH), 63.4 (u, NC), 71.5 (d, CHO), 116.3 (u, CH=CH₂), 136.7 (d, CH=CH₂), 153.1 (u, CO) ppm. IR (KBr): $\tilde{v} = 3074$ (w), 2938 (s), 1680 (s), 1452 (w), 1405 (s), 1369 (m), 1308 (m), 1276 (m), 1128 (m), 1089 (m), 997 (w), 916 (m) cm⁻¹. MS (EI): m/z (%) = 250 (37) [M⁺ + 1], 249 (1) [M⁺], 209 (13), 208 (100), 165 (12), 164 (93), 147 (23), 121 (37), 108 (11), 105 (14), 93 (19), 82 (10). HRMS: m/z calcd. for C₁₅H₂₃NO₂ [M⁺] 249.17288; found 249.17276.

Supporting Information (see footnote on the first page of this article): General information and general experimental procedures. Experimental procedures, analytical data and spectroscopic data for compounds **7**, **18**, **34** and **55**. Figure S1 showing previously synthesised cycloalkenylsulfoximines of type **III** together with references. Figure S2 showing sulfoximines, which had undergone haloformate reactions. Copies of the ¹H and ¹³C NMR spectra of all compounds.

Acknowledgments

Financial support of this work by the Deutsche Forschungsgemeinschaft (DFG) (SFB 380 and GK 440) is gratefully acknowledged. The authors thank Björn Sommer for technical assistance.

- a) M. A. Jilal Miah, T. Hudlicky, J. W. Redd, in: *The Alkaloids*. (Ed.: G. A. Cordell), Academic, San Diego, **1998**, vol. 51, p. 199–269; b) D. L. J. Clive, M. Yu, J. Wang, V. S. C. Ye, S. Kang, *Chem. Rev.* **2005**, *105*, 4483–4514; c) S. M. Weinreb, *Chem. Rev.* **2006**, *106*, 2531–2549; d) A. Sinclair, R. A. Stockmann, *Nat. Prod. Rep.* **2007**, *24*, 298–326; e) D. L. J. Clive, *Strategies and Tactics in Organic Synthesis* (Ed.: M. Harmata), Elsevier Ltd., **2012**, vol. 8, 25–54; f) T. Taniguchi, H. Ishibashi, *Heterocycles* **2013**, *87*, 527–545.
- [2] a) S. A. A. El Bialy, H. Braun, L. F. Tietze, *Synthesis* 2004, 2249–2262; b) G. Dake, *Tetrahedron* 2006, 62, 3467–3492.
- [3] For recent total Synthesis see: a) D. Liu, H. P. Acharya, M. Yu, J. Wang, V. S. C. Yeh, S. Kang, C. Shunzhen, M. S. Jachak, D. L. J. Clive, J. Org. Chem. 2009, 74, 7417-7428; b) M. A. Perry, M. D. Morin, S. H. Wolckenhauer, S. D. Rychnovsky, J. Am. Chem. Soc. 2010, 132, 9591-9593; c) M. Fujitani, M. Tsuchita, K. Okano, T. Kentaro, I. Kiyosei, M. Ihara, H. Tokuyama, Synlett 2010, 822-826; d) S.-L. Mei, G. Zhao, Eur. J. Org. Chem. 2010, 1660-1668; e) A. M. Meyer, C. E. Katz, S.-W. Li, D. Vander Velde, J. Aube, Org. Lett. 2010, 12, 1244–1247; f) T. J. Donohoe, P. M. Brian, G. C. Hargaden, T. J. C. O'Riordan, Tetrahedron 2010, 66, 6411-6420; g) Y. Adachi, N. Kamel, S. Yokoshima, T. Fukuyama, Org. Lett. 2011, 13, 4446-4449; h) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774-4777; i) Z. W.-D. Li, W.-G. Duo, C.-H. Zhuang, Org. Lett. 2011, 13, 3538-3541; j) M. A. Perry, M. D. Morin, B. W. Slafer, S. D. Rychnovsky, J. Org. Chem. 2012, 77, 3390-3400; k) D. M. Dalton, T. Rovis, Org. Lett. 2013, 15, 2346-2349; 1) K.-J. Xiao, J.-M. Luo, X.-E. Xia, Y. Wang, P.-Q. Huang, Chem. Eur. J. 2013, 19, 13075-13086; m) P. Xing, Z. Huang, Y. Jin, B. Jiang, Synthesis 2013, 45, 596–600; n) S. Xu, D. Unabara, D. Uemura, H. Arimoto, Chem. Asian J. 2014, 9, 367-376.
- [4] For recent methods, see: a) S.-L. Mei, G. Zhao, Eur. J. Org. Chem. 2010, 1660–1668; b) J. C. Killen, J. Leonard, V. K. Aggarwal, Synlett 2010, 579–582; c) A. C. Flick, M. J. A. Caballero, H. I. Lee, A. Padwa, J. Org. Chem. 2010, 75, 1992–1996; d) B. Stevenson, W. Lewis, J. Dowden, Synlett 2010, 672–674; e) J. Zou, D. W. Cho, P. S. Mariano, Tetrahedron 2010, 66, 5955–5961; f) L. I. Palmer, J. R. de Alaniz, Angew. Chem. Int. Ed. 2011, 50, 7167–7170; Angew. Chem. 2011, 123, 7305–7308; g) X. Jiang, X. Shi, S. Wang, T. Sun, Y. Cao, R. Wang, Angew. Chem. Int. Ed. 2012, 51, 2084–2087; Angew. Chem. 2012, 124, 2126–2129; h) A. J. Hodges, J. P. Adams, A. D. Bond, A. B. Holmes, N. J. Press, S. D. Roughly, J. H. Ryan, S. Saubern, C. J. Smith, M. D. Turnbull, A. F. Newton, Org. Biomol. Chem. 2012, 10, 8963–8974; i) K.-J. Xiao, J.-M. Luo, X.-E. Xia, Y. Wang, P-Q. Huang, Chem. Eur. J. 2013, 19, 13075–13086.
- [5] a) M. Lejkowski, P. Banerjee, J. Runsink, H.-J. Gais, Org. Lett.
 2008, 10, 2713–2726; b) M. Lejkowski, P. Banerjee, G. Raabe, J. Runsink, H.-J. Gais, Eur. J. Org. Chem. 2014, 529–553.
- [6] a) H.-J. Gais, R. Hainz, H. Müller, P. R. Bruns, N. Giesen, G. Raabe, J. Runsink, S. Nienstedt, J. Decker, M. Schleusner, J. Hachtel, R. Loo, C.-W. Woo, P. Das, *Eur. J. Org. Chem.* 2000, 3973–4009; b) L. R. Reddy, H.-J. Gais, C.-W. Woo, G. Raabe, *J. Am. Chem. Soc.* 2002, 124, 10427–10434; c) H.-J. Gais, R. Loo, D. Roder, P. Das, G. Raabe, *Eur. J. Org. Chem.* 2003, 1500–1526; d) H.-J. Gais, L. R. Reddy, G. Babu, G. Raabe, *J. Am. Chem. Soc.* 2004, 126, 4859–4864; e) M. Lejkowski, P. Banerjee, S. Schüller, A. Münch, J. Runsink, C. Vermeeren, H.-J. Gais, *Chem. Eur. J.* 2012, 18, 3529–3548.
- [7] J. Brandt, H.-J. Gais, *Tetrahedron: Asymmetry* **1997**, *8*, 909–912.

- [8] For the synthesis and reactions of sulfoximine-substituted monoallyltitanium complexes, which carry a chiral group at the N atom, with aldehydes, see: M. Reggelin, B. Junker, T. Heinrich, S. Slavik, P. Buehle, J. Am. Chem. Soc. 2006, 128, 4023– 4034 and previous work cited therein.
- [9] a) M. Hirama, T. Shigemoto, T. Yamazaki, S. Itô, J. Am. Chem. Soc. 1985, 107, 1797–1798; b) M. Hirama, S. Itô, Heterocycles 1989, 28, 1229–1247.
- [10] F. Köhler, H.-J. Gais, G. Raabe, Org. Lett. 2007, 9, 1231– 1234.
- [11] a) S. G. Pyne, Sulfur Rep. 1992, 12, 57–89; b) M. Mikołajczyk, J. Drabowicz, P. Kiełbasiński, Chiral Sulfur Reagents Applications in Asymmetric Synthesis and Stereoselective Synthesis CRC Press, Boca Raton, 1997; c) S. G. Pyne, Sulfur Rep. 1999, 21, 281–334; d) M. Reggelin, C. Zur, Synthesis 2000, 1–64; e) H.-J. Gais, in: Asymmetric Synthesis with Chemical and Biological Methods (Eds.: D. Enders, K.-E. Jaeger), Wiley-VCH, Weinheim, Germany, 2007, p. 75–115; f) H.-J. Gais, Heteroat. Chem. 2007, 18, 472–481; g) M. Harmata, e-EROS Enzyclopedia of Reagents for Organic Synthesis, Wiley, New York, 2007; h) C. Worch, A. C. Mayer, C. Bolm, in: Organosulfur Chemistry in Asymmetric Synthesis (Eds.: T. Toru, C. Bolm), Wiley-VCH, Weinheim, Germany, 2008, p. 209–232.
- [12] For a preliminary report of a portion of this work, see: A. Adrien, H.-J. Gais, F. Köhler, J. Runsink, G. Raabe, Org. Lett. 2007, 9, 2155–2158.
- [13] A. Rajender, H.-J. Gais, Org. Lett. 2007, 9, 579-582.
- [14] CCDC-976034 (for 13) and -976035 (for 24) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.ac.uk/data_request/cif.
- [15] R. Pauly, N. A. Sasaki, P. Potier, *Tetrahedron Lett.* 1994, 35, 237–240.
- [16] Presumably, the D atom at the N atom of the oxazinone group was exchanged by a H atom during workup.
- [17] a) F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456–463; b) X.-M. Zhang, F. G. Bordwell, J. Org. Chem. 1994, 59, 6456–6458.
- [18] M. Wessels, V. Mahajan, S. Bosshamer, G. Raabe, H.-J. Gais, *Eur. J. Org. Chem.* 2011, 2431–1449.
- [19] a) H.-J. Gais, I. Erdelmeier, H. J. Lindner, J. Vollhardt, Angew. Chem. Int. Ed. Engl. 1986, 25, 938–939; Angew. Chem. 1986, 98, 914–915; b) H.-J. Gais, U. Dingerdissen, C. Krüger, K. Angermund, J. Am. Chem. Soc. 1987, 109, 3775–3776; c) H.-J. Gais, D. Lenz, G. Raabe, Tetrahedron Lett. 1995, 36, 7437– 7440; d) J. F. K. Mueller, R. Batra, B. Spingler, M. Zehnder, Helv. Chim. Acta 1996, 79, 820–826; e) J. F. K. Mueller, M. Neuburger, M. Zehnder, Helv. Chim. Acta 1997, 80, 2182–2190; f) A. W. Giesen, Ph. D. Thesis, RWTH Aachen, Germany, 1998; g) J. F. K. Müller, M. Neuburger, B. Spingler, Angew. Chem. Int. Ed. 1999, 38, 3549–3552; Angew. Chem. 1999, 111, 3766–3769; h) J. F. K. Müller, R. Batra, J. Organomet. Chem. 1999, 584, 27–32; i) J. F. K. Müller, Chimia 1999, 53, 215–216; j) J. F. K. Mueller, Eur. J. Inorg. Chem. 2000, 789–799.
- [20] a) T. Maetzke, C. P. Hidber, D. Seebach, J. Am. Chem. Soc. 1990, 112, 8248–8250; b) T. Maetzke, D. Seebach, Organometallics 1990, 9, 3032–3037; c) G. Boche, C. Boie, F. Bosold, K.

Harms, M. Marsch, Angew. Chem. Int. Ed. Engl. 1994, 33, 115–117; Angew. Chem. 1994, 106, 90–91; d) M. Feigl, G. Martinek,
W. H. B. Sauer, Chem. Eur. J. 1996, 2, 9–18; e) M. G. Davidson,
R. P. Davies, P. R. Raithby, R. Snaith, Chem. Commun. 1996, 1695–1696; f) S. R. Boss, R. Haigh, D. J. Linton, P. Schooler,
G. P. Shields, A. E. H. Wheatly, Dalton Trans. 2003, 1001–1008;
g) X. Hu, C. Lu, B. Wu, H. Ding, B. Zhao, Y. Yao, Q. Shen,
J. Organomet. Chem. 2013, 732, 92–101.

- [21] M. Breugst, T. Tokuyasu, H. Mayr, J. Org. Chem. 2010, 75, 5250–5258.
- [22] a) R. Loo, *Ph. D. Thesis*, RWTH Aachen, Germany, **1999**; b)
 H.-J. Gais, G. S. Babu, M. Günter, P. Das, *Eur. J. Org. Chem.* **2004**, 1464–1473; c) S. K. Tiwari, H.-J. Gais, A. Lindenmaier,
 G. S. Babu, G. Raabe, L. R. Reddy, F. Köhler, M. Günter, S. Koep, V. B. R. Iska, *J. Am. Chem. Soc.* **2006**, *128*, 7360–7373;
 d) S. Acikalin, G. Raabe, J. Runsink, H.-J. Gais, *Eur. J. Org. Chem.* **2011**, 5991–6008.
- [23] H. M. R. Hoffmann, L. Iranshahi, J. Org. Chem. 1984, 49, 1174–1176.
- [24] S. Brandaenge, O. Dahlman, B. Lindqvist, A. Maahlen, L. Moerch, Acta Chem. Scand. B 1984, 38, 837–844.
- [25] G. D. Annis, L. A. Paquette, J. Am. Chem. Soc. 1982, 104, 4504–4506.
- [26] C. W. Schroeck, C. R. Johnson, J. Am. Chem. Soc. 1971, 93, 5305–5306.
- [27] H. Takahata, H. Bandoh, T. Momose, *Heterocycles* 1995, 41, 1797–1804.
- [28] F. Köhler, Ph. D. Thesis, RWTH Aachen, Germany, 2008.
- [29] a) D. Tanner, L. Hagberg, A. Poulsen, *Tetrahedron* 1999, 55, 1427–1440; b) D. L. Wright, J. P. Schulte, M. A. Page, Org. Lett. 2000, 2, 1847–1850; c) H. Suzuki, N. Yamazaki, C. Kibayashi, *Tetrahedron Lett.* 2001, 42, 3013–3015; d) A. S. Edwards, R. A. J. Wybrow, C. Johnstone, H. Adams, J. P. A. Harrity, Chem. Commun. 2002, 1542–1543.
- [30] G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746–1787.
- [31] M. Inoue, H. Sakazaki, H. Furuyama, M. Hirama, Angew. Chem. Int. Ed. 2003, 42, 2654–2657; Angew. Chem. 2003, 115, 2758–2761.
- [32] S. Bera, Heterocycles 2005, 65, 2901–2916.
- [33] K. M. B. Gross, P. Beak, J. Am. Chem. Soc. 2001, 123, 315-321.
- [34] M. C. Whisler, S. MacNeil, V. Sniechus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206–2225; Angew. Chem. 2004, 116, 2256– 2276.
- [35] P. N. M. Botman, F. J. Dommerholdt, R. de Gelder, Q. B. Broxterman, H. E. Schoemaker, F. P. J. T. Rutjes, R. H. Blaauw, Org. Lett. 2004, 6, 4941–4944.
- [36] Y. Nishikawa, M. Kitajima, N. Kogure, H. Takayama, *Tetrahedron* **2009**, *65*, 1608–1617.
- [37] L. Le Corre, J.-C. Kizirian, C. Levraud, J.-L. Boucher, V. Bonnet, H. Dhimane, Org. Biomol. Chem. 2008, 6, 3388–3398.
- [38] a) W. N. Speckamp, M. J. Moolenaar, *Tetrahedron* 2000, 56, 3817–3856; b) A. Yazici, S. G. Pyne, *Synthesis* 2009, 339–368; c) A. Yazici, S. G. Pyne, *Synthesis* 2009, 513–541.

Received: January 17, 2014 Published Online: ■ **FULL PAPER**

Date:

Date: 14-04-14 10:47:28

Pages: 18

Spiro Compounds

A modular, enantioselective synthesis of azaspirocycles was devised based on the special features of sulfoximines, including chirality, carbanion stabilization, nucleofugacity, and nucleophilicity. Key steps are intramolecular amination, C,N-dianion cycloalkylation, sulfoximine displacement, *N*-acyliminium ion formation, and ringclosing metathesis.

A. Köhler (née Adrien), G. Raabe, J. Runsink, F. Köhler, H.-J. Gais* 1–18

Sulfoximine-Based Modular Enantioselective Synthesis of Azaspirocycles Featuring Sulfoximine Displacement, Dianion Cycloalkylation, RCM and *N*-Acyliminium Ion Formation

Keywords: Ring-closing metathesis / Nucleophilic substitution / Carbanions / Spiro compounds / Enantioselectivity / Sulfoximine