Preparation of Functionalized Polyhalogenated Tetraarylporphyrins by Selective Substitution of the p-Fluorines of meso-Tetra-(pentafluorophenyl)porphyrins

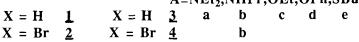
Pierrette Battioni^a, Olivier Brigaud^a, Hervé Desvaux^b, Daniel Mansuy^{a*} and Ted G. Traylor^c

^aLaboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, associé au CNRS, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France.

^bService de Chimie Moléculaire, CEN Saclay/CEA, 91191 Gif sur Yvette, France.

^CDepartment of Chemistry,D-006, University of California, San Diego, La Jolla, Cal. 92093, USA.


Key words : metalloporphyrins ; nucleophilic aromatic substitutions.


<u>Abstract</u>: Reaction of various nucleophiles, such as primary and secondary amines in refluxing DMF, alkoxides in alcohol or THF and thiols in the presence of NEt3 in DMF, with meso-tetra-(pentafluorophenyl)porphyrin (or its Zn(II) and Fe(III) complexes) led to the selective replacement of the p-fluorine substituents of the starting porphyrin by NR_2 , OR or SR groups, in yields between 70 and 90%. The same regioselectivity was obtained by reaction of meso-tetra-(pentafluorophenyl) octabromoporphyrin with n-propylamine. Reaction with KCN gave a more complex reaction mixture.

Transition metal complexes of polyhalogenated meso-tetraarylporphyrins are particularly stable and interesting oxidation catalysts¹. In that context, it would be very important to have a general and easy access to functionalized polyhalogenated tetraarylporphyrins from a commercially available and simple porphyrin. Selective nucleophilic substitutions on the C₆F₅ groups of meso-tetra-(pentafluorophenyl)porphyrin, TF₅PPH₂, appeared as an attractive solution to this problem, since nucleophilic substitutions on some pentafluoroarenes were known to selectively occur with replacement of the p-F atoms². First data very recently published about the formation of T(p-Me₂N)F4PPH₂ [for meso-tetra-(2,3,5,6-tetrafluoro-4-dimethylamino)phenylporphyrin] from TF₅PPH₂ in refluxing DMF³ indicated that this kind of substitution, presumably by dimethylamine formed by decomposition of DMF was possible. However, the authors indicated that the direct reaction of (CH₃)₂NH with TF₅PPH₂ gave a mixture of products³. The present paper describes proper conditions for the p-F substituents of the C₆F₅ groups of TF₅PPH₂ by various nucleophiles. Moreover, it gives a first idea of the scope of this reaction, since it shows that (i) the introduction of electron-donating substituents (from amine, alcohol or thiol nucleophiles) occurs with high yields and selectivity whereas that of electron-withdrawing substituents (from CN⁻ for instance) gives complex mixtures, and (ii) the substitution of p-F atoms by amines is successful not only with

TF₅PPH₂ but also with various polyfluorinated metalloporphyrins including one which bears Br substituents on its pyrrole rings (Fig.1).

Reaction of Zn(TF5PP) (200 mg) with diethylamine in a 10 ml refluxing NHEt2-DMF(1:1) mixture overnight led, after removal of DMF under vacuum and a single column chromatography (neutral Al₂O₃), to almost only one crystalline product (86% yield). The elemental analysis (C,H,N) and mass spectrum (table 1) of this product indicated that it was derived from the substitution of four F atoms of Zn(TF5PP) by NEt₂ groups. Its ¹H and ¹⁹F NMR spectra clearly showed it to be the Zn(II) complex of porphyrin **3a**, Zn(**3a**), with a singlet for the 8 pyrrole protons at 9.01 ppm and only two sets of ¹⁹F signals for the ortho and meta fluorine atoms (table 1). In a very similar manner, the Zn complexes of porphyrins **3b**, **3c**, **3d** and **3e** were obtained by reaction of Zn(TF5PP) respectively with nPrNH₂ in DMF, 5 eq. of EtO⁻ in EtOH, 100 eq. of PhOH in the presence of 30 eq. of Na in THF, and 8 eq. of nBuSH in a DMF-NEt3 mixture (2:1) (all reactions in refluxing solvent), in yields between 80 and 90% after a single column chromatography. ¹H and ¹⁹F NMR spectra of the corresponding reaction mixtures showed in each case the almost exclusive formation of the product deriving from the substitution of the four p-F atoms of the starting porphyrin by the nucleophile.

<u>Fig.1</u>. Reaction of polyfluorinated porphyrins with various nucleophiles (free base porphyrins : 1 - 4(M = 2H), their metal complexes : M(1 - 4)).

Substitution of the four p-F atoms of the TF5PP moiety was also accomplished upon reaction of NHEt2 with TF5PPH2 itself or with other metal complexes such as Fe(TF5PP)Cl (table 1). Interestingly enough, this substitution of the four p-F atoms was also the only reaction observed between nPrNH2 and the Zn complex of meso-tetra-(pentafluorophenyl)-octabromoporphyrin, 2, 4 in refluxing DMF, the Zn complex of 4b being obtained in a 80% yield (table 1).

However, it is noteworthy that no reaction was observed between Zn(TF5PP) and the tertiary amine NEt3 in refluxing DMF and that the reaction of Zn(TF5PP) with excess EtOH or EtO⁻ in DMF at 80°C led to complex mixtures. Moreover, reaction of KCN (4 eq. relative to the porphyrin) with Zn(TF5PP) in DMF led to a mixture Table 1: Spectral Characteristics and Yields of Formation of Porphyrins 2 and 4 or of their Metal Complexes.

		U.Vvisible ^a		lH NMR b	19F NMR b	ИR b		
volupiex	Soret	Q bands	pyr	А	ortho ^c	meta ^c	Mass u	Yieldc
Zn(<u>3a</u>)	419	505(sh)545 576(sh)	9.01	3.53(q,16H)	-140.5	-150.0	1250	86
30	110	511 542 585 555	o Onf	1.36(t,24H)				ç
24	417	CC0 08C 54C 11C	8.921	(Hol, 10H)	-140.2	-150.2	1187	82
				1.35(t,24H)				
Fe(<u>3a</u>)CI	418	507 570 637 740	80.21	4.52(s,16H)			1276	50
		_		2.00(s,24H)				
Zn(<u>3b</u>)	422	510(sh)548 577(sh)	8.99	3.75(sb,4H)3.23(t,8H)	-141.0	-161.5	1194	83
				1.65(h,8H)1.00(t,12H)				
Zn(<u>3c</u>)	416	505(sh)548 577(sh)	9.20	4.66(q,8H)	-141.5	-159.4	1141	85
				1.62(t,12H)				
Zn(<u>3d</u>)	416	505(sh) 545 579(sh)	9.06	7.52(m,8H)	-137.7	-154.5	1333	90
				7.3(m,12H)				
Zn(<u>3e</u>)	417	505(sh) 545 579(sh)	9.00	3.25(t,8H) 1.85(qt,8H)	-134.8	-137.7	1317	85
				1.65(h,8H 1.05(t,12H)				
Zn(<u>4b</u>)	478	598 656	none	4.23(sb,4H) 3.6(t,8H)	-141.8	-162.1		80
				1.80(h,8H) 1.10(t,12H)				

pyrrole (pyr) H appeared as a singlet (8H), s = singlet, t = triplet, q = quadruplet, qt = quintuplet, h = hextuplet, sb = hroad singlet. c) or tho and meta F as doublets of doublets a) in CH2Cl2 except for Zn(3c) in acetone; λ in nm. b) in CDCl3 except for Zn(3c) in CD3COCD3; δ in ppm relative to SiMe4 for ¹H and to CFCl3 for ¹⁹F. In all cases, (8F each). d) chemical ionization by NH3; isotopic cluster corresponding to [M + 1]⁺ always observed (the indicated figures correspond to the highest peak of this cluster) together with that of [M + NH4]⁺ in some cases. e) yield of purified product. f) pyrrole NH at -2.85(s,2H), of products. The ¹H and ¹⁹F NMR and mass spectra of a major product⁷ indicated that it was derived from the substitution of four fluorine atoms of the same C₆F₅ group by CN⁻ and thus had a structure very different from those of the Zn complex of porphyrins <u>3</u>.

Altogether these data show that the reaction of a nucleophile with Zn(TF5PP) begins by a substitution of the more reactive p-F atom of an electron-deficient C6F5 group². The following of the reaction depends on the nature of the introduced group. After introduction of an NR₂, OR or SR substituent, the corresponding meso-C6F4NR₂ (OR or SR) group becomes less reactive than the 3 other C6F5 groups towards nucleophiles. Therefore, further substitutions occur on the C6F5 groups leading to symmetric porphyrins <u>3</u>. On the contrary, after a first introduction of an electron-withdrawing substituent like CN, the obtained C6F4CN group is much more reactive than the C6F5 groups toward the nucleophile⁸ and further substitutions occur on the same meso-aryl group.

Thus, reaction of proper nucleophiles with TF5PP derivatives provides a simple and general access to functionalized meso-tetraarylporphyrins containing various electron-donating substituents (OR, NR2, SR) in pposition of their meso-aryl groups. High yields of these functionalized polyhalogenated porphyrins are obtained in one step from a commercially available porphyrin. This nucleophilic aromatic substitution remains highly regioselective if various metal complexes of TF5PPH2 and even tetra-(pentafluorophenyl) porphyrins bearing eight Br substituents on the tetrapyrrole ring are used. Application of this reaction to the preparation of various biomimetic oxidation catalysts is underway.

References and Notes

- For a review article on metalloporphyrin oxidation catalysts, see for instance : a) Mc Murry, T.J.; Groves, J.T. in Cytochrome P-450 Structure, Mechanism and Biochemistry, ed. Ortiz de Montellano, P.R., Plenum Press, New York and London, 1986, pp. 1-28; b) Meunier, B. Bull. Soc. Chim. Fr., 1986, II, 4, 578-594; c) Bruice, T.C. Ann. N.Y. Acad. Sci, 1986, 471, 83-98; d) Mansuy, D.; Battioni, P.; Battioni, J.P. Eur. J. Biochem., 1989, 184, 267-285; e) Mansuy, D. Pure and Appl. Chem., 1990, 62, 741-746.
- 2. Chambers, R.D.; Close, D.; Williams, D.L.H.; J. Chem. Soc. Perkin II, 1980, 778-780.
- 3. Kadish, K.M.; Araullo-Mc Adams, C.; Han, B.C.; Franzen, M.M. J. Am. Chem. Soc., 1990, 112, 8364-8368.
- 4. Zn (TF5PBr8P), Zn(2), was prepared by a method using N-bromosuccinimide previously described by Callot (5) and Traylor et al. (6) modified by the use of CF3COOH. Its spectral (UV-visible, ¹H and ¹⁹F NMR, mass spectrum) and analytical data are in complete agreement with its structure (publication in preparation).
- 5. Callot, H.J. Bull. Soc. Chim. Fr., 1974, 1492-1496.
- 6. Traylor T.G.; Tsuchiya, S. Inorg. Chem., 1987, 26, 1336-1339.
- 7. We did not try to obtain it in a completely pure state. However, its mass spectrum with a molecular ion at 1064, its ¹H NMR spectrum in CD₃COCD₃ with 3 broad pyrrole signals (9.23, 9.28 and 9.3 ppm) and its ¹⁹F NMR spectrum with 3 sets of signals as in C₆F₅ groups (-165, -156.4 and -139.6 ppm) indicated a structure with three C₆F₅ and one C₆F(CN)4 meso-aryl groups.
- In aromatic nucleophilic substitutions, CN groups are much more activating substituents than F groups : Miller, J. Aromatic Nucleophilic Substitution, Chapter 4, Elsevier Publishing Company : Amsterdam, London, New York, 1968, pp. 61-132.

(Received in France 23 March 1991)