INTRAMOLECULAR MICHAEL AND ANTI-MICHAEL ADDITIONS OF THIOLATE TO CONJUGATED ACETYLENIC KETONES

Wolf-Dieter Rudorf⁺ and Ralf Schwarz

Department of Chemistry, Martin Luther University Halle-Wittenberg, Halle/Saale, DDR-4050, German Democratic Republic

Abstract. The reaction of acetylenic ketones $\underline{1}$ with carbon disulfide in the basic system sodium hydride/dimethylformamide and subsequent intramolecular cyclization to 4H-thiopyran-4-ones $\underline{3}$ and $\underline{3}(2H)$ -thiophenones $\underline{4}$ are reported.

For some time we have been interested in intramolecular additions of sulfur nucleophiles to C,C double¹ or C,C triple bonds² as precursors to a variety of sulfur heterocycles. The reactions appear to have considerable synthetic potential. As a further versatile route to these compounds, we studied the reaction of methyl phenylethynyl ketone <u>1a</u> and ethyl phenylethynyl ketone <u>1b</u> with carbon disulfide in the basic system sodium hydride/ dimethylformamide. As shown in Scheme 1, the primarily formed but not isolated monosodium salt <u>2</u> leads by intramolecular nucleophilic addition and alkylation to a mixture of Michael and anti-Michael products <u>3</u> and <u>4</u>, respectively. All reactions were carried out at room temperature. The formation of <u>4a-d</u> provides additional exceptions³⁻⁵ to the usual expectation⁶ that α , β -unsaturated carbonyl systems do not add nucleophiles at C_{α} . In the mixture obtained from <u>2</u> Michael adduct <u>3</u> was in considerable excess over its anti-Michael addition product <u>4</u> (ca. 4:1 mixture, determined by ¹H NMR).⁷

In the nucleophilic addition on a conjugated acetylenic ketone at C_{β} an energetically unfavorable geometry of an allenic enolate within a sixmembered ring would be required. The fact that the reactions took a course mainly to a six-membered ring is in accordance with the recently proposed stereoelectronically controlled pathway for similar intramolecular processes. On the other hand the formation of some anti-Michael isomer <u>4</u> by addition at C_{α} indicates that a phenyl ring is indeed capable of stabilizing a developing anion.

The structures are consistent with spectroscopic data.⁹ Whereas the expected carbonyl stretching vibration for α , β -unsaturated ketones is found in the region at 1645-1655 cm⁻¹ for compounds <u>4</u> it is shifted in the isomeric thiopyranones <u>3</u> to 1600-1605 cm⁻¹.

4267

Scheme 1

No.	R	R'	Yield [%]	mp [°C]	¹ H NMR (CDCl ₃ /HMDS int.) ^{a)} [ppm]
<u>38</u>	Н	сн ₃	55	72-74	2.57 (s, SCH ₃); 6.83 (d, -CH=); 7.01 (d, -CH=, ⁴ J=1.22 Hz); 7.31-7.60 (m, 5H arom)
<u>3b</u>	Η	° ₆ ^H 5−CH ₂	46	87-88	4.23 (s, SCH ₂); 6.94 (d, -CH=); 7.02 (d, -CH=, ⁴ J=1.22 Hz); 7.30-7.52 (m, 10H arom)
<u>30</u>	Н	$p-Br-C_6H_4-CH_2$	72	91–92	4.16 (s, SCH ₂); 6.92 (d, -CH=); 7.01 (d, -CH=, ⁴ J=1.20 Hz); 7.16-7.54 (m, 9H arom)
<u>3đ</u>	CH3	CH3	43	81-82	2.24 (s, CH ₃); 2.59 (s, SCH ₃); 7.10 (s, -CH=); 7.25-7.55 (m, 5H arom)
<u>4a</u>	Н	сн ₃	13	135-136	2.60 (s, SCH ₃); 6.18 (s, -CH≈); 7.39-7.59 (m, 5H arom); 7.62 (s, -CH≈)
<u>4b</u>	Η	с ₆ н ₅ -сн ₂	11	104–105	4.45 (s, SCH ₂); 6.28 (s, -CH≈); 7.20-7.60 (m, 10H arom); 7.63 (s, -CH=)
<u>4c</u>	Н	p-Br-C ₆ H ₄ -CH ₂	18	139-140	4.24 (s, SCH ₂); 6.21 (s, -CH=); 7.22-7.63 (m, 9H arom); 7.67 (s, -CH=)
<u>4d</u>	CH3	сн3	11	109–111	1.88 (s, CH ₃); 2.63 (s, SCH ₃); 7.25-7.55 (m, 5H arom); 7.63 (s, -CH=)

Table 1. 2-Alkylthio-6-phenyl-4H-thiopyran-4-ones <u>3a-d</u> and 5-Alkylthio-2-benzylidene-3(2H)-thiophenones <u>4a-d</u>

a) <u>4b</u>: in acetone-d₆

In the ¹H NMR spectra the olefinic proton of the benzylidene group in <u>4</u> (\int 7.62-7.67 ppm) shows a significant downfield shift whereas the H₅signal in <u>3</u> appears at \int 6.8-7.1 ppm. In addition, the doubtless assignment of the ring size is possible via ¹³C,¹H-spin-spin-coupling owing to the very characteristic vicinal coupling between the carbonyl carbon atom and the exocyclic olefinic proton in the five-membered ring <u>4</u>.¹⁰

References and Notes

- 1. M. Augustin, G. Jahreis, W.-D. Rudorf, Synthesis 472 (1977).
- 2. W.-D. Rudorf, R. Schwarz, Heterocycles <u>24</u>, 3459 (1986).
- 3. G.W. Klumpp, A.J.C. Mierop, J.J. Vrielink, A. Brugman, M. Schakel, J. Am. Chem. Soc. 107, 6740 (1985).
- 4. S.H. Rosenberg, H. Rapoport, J. Org. Chem. 50, 3879 (1985).
- 5. C.L. Bumgardner, J.E. Bunch, M.-H. Whangbo, J. Org. Chem. <u>51</u>, 4082 (1986).
- 6. J. March, Advanced Organic Chemistry, 2nd ed.; McGraw-Hill: New York, 1977, p 679.
- 7. The following procedure was used: Sodium hydride (15 mmol) is added to a solution of acetylenic ketone <u>1</u> (15 mmol) in dry DMF (50 ml) at room temperature. After 2 h alkyl halide (15 mmol) is added and stirring is continued for 3 h. The mixture is poured into ice-water (400 ml). <u>3</u> and <u>4</u> are separated by using column chromatography (Al₂O₃, CH₂Cl₂) and recrystallized from petroleum ether.
- 8. J.-F. Lavallée, G. Berthiaume, P. Deslongchamps, F. Grein, Tetrahedron Lett. <u>27</u>, 5455 (1986).
- 9. Satisfactory elemental analyses and exact mass molecular weights were obtained for all new compounds.
 - <u>3a</u>: ¹³C NMR (CDCl₃): √ 16.23; 124.78; 126.43; 126.72; 129.30; 130.75; 135.53; 152.65; 154.90; 180.36 ppm.
 - <u>4a</u>: ¹³C MMR (CDCl₃): **d** 16.36; 116.06; 129.10; 130.16; 130.50; 130.67; 132.19; 134.10; 172.05; 188.10 ppm.
- 10. E. Kleinpeter, R. Schwarz, W.-D. Rudorf, Z. Chem., in press.

(Received in Germany 4 May 1987)