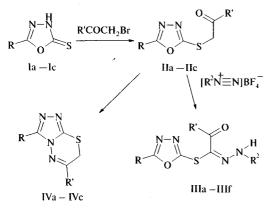
ANTIMICROBIAL AND TUBERCULOSTATIC ACTIVITY OF 5-ARYL(HETARYL)-1,3,4-OXADIAZOLE-2-THIONES AND THEIR DERIVATIVES


A. N. Krasovskii,¹ A. K. Bulgakov,¹ A. P. Andrushko,¹ I. A. Krasovskii,¹ A. M. Dyachenko,² A. A. Bokun,³ N. A. Kravchenko,¹ and A. M. Demchenko¹

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 34, No. 3, pp. 13 - 14, March, 2000.

Original article submitted May 24, 1999.

As is known, some 5-R-1,3,4-oxadiazole-2-thione derivatives possess antimicrobial properties [1-3] and some 1,3,4-oxadiazole derivatives are used as antituberculous drugs [4-10].

In the search for new antimicrobial and tuberculostatic agents, we have employed the interaction of 5-aryl(hetaryl)-1,3,4-oxadiazole-2-thiones (Ia – Ic) [11] with substituted phenacyl bromides to obtain a series of new 5-aryl(hetaryl)-2-(phenacylthio)-1,3,4-oxadiazoles (IIa – IIc).

I: $R = 3-BrC_6H_4$ (a), 4-pyridyl (b), $C_6H_5CH_2$ (c). II: $R = 3-BrC_6H_4$ (a, b), 4-pyridyl (c); $R' = C_6H_5$ (a), $4-O_2NC_6H_4$ (b), $4-ClC_6H_4$ (c). III: $R = 3-BrC_6H_4$ (a, b), 4-pyridyl (c, d, c), $C_6H_5CH_2$ (f); $R' = C_6H_5$ (a), $4-O_2NC_6H_4$ (b), $4-ClC_6H_4$ (c, d, e, f); $R^2 = 4-O_2NC_6H_4$ (a, d), $4-CH_3OC_6H_4$ (b, c, f), $4-BrC_6H_4$ (c). IV: $R = 3-BrC_6H_4$ (a, b), 4-pyridyl (c); $R' = C_6H_5$ (a), $4-O_2NC_6H_4$ (b), $4-ClC_6H_4$ (c). IV: $R = 3-BrC_6H_4$ (a, b), 4-pyridyl (c); $R' = C_6H_5$ (a), $4-O_2NC_6H_4$ (b), $4-ClC_6H_4$ (c).

We have established for the first time that compounds IIa – IIc exhibit the properties of CH-acids and readily react with active methylene groups in aryldiazonium borofluorides to form the corresponding arylhydrazoes (IIIa – IIIf). At the same time, reactions of compounds IIa – IIc with a hydrazine hydrate solution according to [11] led to 7H-s-triazolo-[3,4-b][1,3,4]thiadiazines (IVa – IVc) [12, 13].

Purity and identity of the synthesized compounds were checked and the proposed structures were confirmed by data of elemental analyses and the results of IR and ¹H NMR spectroscopic measurements (Table 1).

EXPERIMENTAL CHEMICAL PART

The IR spectra were measured on an UR-20 spectrophotometer (Germany) using samples pelletized with KBr. The ¹H NMR spectra were recorded on a Bruker-300 (300 MHz) spectrometer using DMSO-d₆ as the solvent and TMS as the internal standard.

The initial 5-aryl(hetaryl)-1,3,4-oxadiazole-2-thiones (Ia – Ic) were synthesized as described in [14, 15].

5-Aryl(hetaryl)-2-(phenacylthio)-1,3,4-oxadiazoles

(IIa – IIc). To a solution of 0.01 mole of compound I(a - c)in 30 ml of a 80% aqueous ethanol solution with 0.6 g KOH was added 0.01 mole of the corresponding α -halogenoketone in 30 ml of ethanol and the mixture was kept at 18 – 20°C for 15 – 18 h, after which the precipitated product was filtered.

5-Aryl(hetaryl)-2-(α -arylhydrazonophenacylthio)-1,3,4oxadiazoles (IIIa – IIIf). To a solution of 0.01 mole of compound II(a – c) and 1 g of anhydrous sodium acetate in a mixture of 30 ml of CH₃COOH and 5 ml of acetic anhydride was added a suspension of 0.01 mole of aryldiazonium borofluorides in a mixture of 20 ml of CH₃COOH and 5 ml of acetic anhydride. The reaction mixture was kept at $18 - 20^{\circ}$ C for 20 – 24 h in the dark, after which the precipitated product was filtered.

¹ Technological Institute, Chernigov, Ukraine.

² Bashkir State Medical University, Ufa, Bashkortostan, Russian Federation.

³ Institute of Agricultural Microbiology, Ukrainian Academy of Agricultural Technology and Science, Chernigov, Ukraine.

Compound	Yield, %	М.р., °С	Empirical formula	IR spectrum: λ_{max} , cm ⁻¹	Proton chemical shift δ, ppm		
					SCH ₂ (s)	=N-NH- (s)	H _{arom} (m)
IIa	84	118.5 - 119	C ₁₆ H ₁₁ BrN ₂ O ₂ S	1670	5.22	_	7.50 - 8.08
IIb	87	147 - 148.5	C ₁₆ H ₁₀ BrN ₃ O ₄ S	1672	5.26	_	7.53 - 8.42
IIc	85	150 - 151	$C_{15}H_{10}CIN_3O_2S$	1678	5.20	-	7.65 - 8.81
IIIa	73	267 - 268	$C_{22}H_{14}BrN_5O_4S$	1650, 3126, 2985		11.55	7.49 – 8.41
IIIb*	67	210-210.5	C ₂₃ H ₁₆ BrN ₅ O ₅ S	1650, 3130, 2990	-	11.58	7.10 - 8.40
IIIc	74	245 - 245.5	C ₂₁ H ₁₃ BrClN ₅ O ₂ S	1650, 3210, 2980	_	11.65	7.68 - 8.77
IIId	76	262 - 262.5	C21H13CIN6O4S	1660, 3126, 2986	_	11.76	7.73 - 8.79
IIIe*	67	227 - 227.5	C22H16CIN5O3S	1660, 3168, 3000	-	11.56	7.11 - 8.75
IIIf*	65	204 - 205	C24H16CIN4O3S	1660, 3184, 3030	_	10.78	7.09 - 8.18
IVa	79	224 - 225	C ₁₆ H ₁₁ BrN ₄ S		4.45		7.53 - 8.22
IVb	78	242 - 243	$C_{16}H_{10}BrN_5O_2S$		4.51	_	7.55 - 8.40
IVc	82	246 - 247	C ₁₅ H ₁₀ ClN ₅ S		4.32	-	7.56 - 8.75

TABLE 1. Yields and Physicochemical Characteristics of the Synthesized Compounds

* Signal of OCH, protons, 3.83 ppm (s).

** Signal of OCH₂ protons, 3.81 ppm (s) and signal of CH₂ protons, 3.53 ppm (s).

7H-s-Triazolo[3,4-b][1,3,4]thiadiazines (IVa – IVc). To a solution of 0.01 mole of compound II(a - c) in 30 ml of acetic acid was added 0.02 mole of 98.9% hydrazine hydrate. The mixture was boiled for 4 h and cooled, after which the precipitated product was filtered.

Compounds IIa – IIc, IIIe – IIIf, and IVa – IVc appear as crystalline substances insoluble in water and soluble in most of the common organic solvents (acetone, acetic acid, DMF, etc.). Compounds IIa – IIc and IVa – IVc are colorless, while compound IIIb is red and compounds IIIa and IIIc – IIIf and IVa – IVc have a yellow-orange color.

EXPERIMENTAL BIOLOGICAL PART

The antimicrobial activity of the synthesized compounds was determined by the conventional method of double serial dilutions in a meat-extract broth. The stock solutions, prepared by dissolving 100 µg of each compound in 1 ml of the plain broth, were diluted to an initial working concentration of 12.5 µg/ml. Then, sequential half-diluted solutions were placed into tubes and test microbe cultures were added to a load of 2.5×10^5 CFU/ml. The tests were performed with clinical strains of *E. coli*, *P. vulgaris*, *Anthracoides*, *St. aureus*, *Citrobacter*, *Enterobacter*, and *Ps. aeruginosa*. The cultures were incubated for 72 h at 37°C and for 48 h at 25°C.

The antimicrobial activity was judged by inhibition of the test culture growth after incubation for 1, 2, 3, or 5 days. The bactericidal activity was determined by additional tests, whereby the media with no visible growth were inoculated onto dishes with a meat-extract agar and into tubes with the meat-extract broth. These samples were incubated over three days and the results were evaluated after 24, 48, or 72 h [16]. The tuberculostatic activity of compounds IIa, IIIc – IIIf, and IVc *in vitro* was studied by the method of serial dilutions using the Levenstein – Jensen dense egg culture medium. Prior to coagulation of the medium, the test compounds were added to a concentration of 25, 5, 1, and 0.2 µg/ml [17]. The tests were performed with the following cultures: *M. tuberculosis* (strain 192), *M. bovinus* (strain Vallee), and *M. Avium* (strain 14141). The initial culture suspensions were referenced to the bacterial turbidity standard corresponding to 500×10^6 BCG microbial bodies per ml, diluted 1 : 10 with a physiological solution, and introduced (0.2 ml) into each test tube containing the culture medium with (or without, for the control) substances studied. The samples were incubated at 37° C for a time period corresponding to the optimum incubation time for each culture studied (7 to 30 days).

It was found that the compounds studied exhibited no significant antibacterial activity (MTD > $100 - 200 \mu g/ml$). Some inhibition of the growth of tuberculosis mycobacteria was observed in the presence of compound IVc.

REFERENCES

- 1. K. Misra Hemant, Arch. Pharm., 316(6), 487 493 (1983).
- M. Y. Yousif, A. M. Ismael, A. A. El-Emam, and M. M. El-Kerdavy, J. Chem. Soc. Pac., 8(2), 183 – 190 (1986).
- S. G. Donia, M. M. H. Arief, and A. A. El-Savy, J. Chem. Soc. Pac., 7(3), 225 – 230 (1985).
- 4. E. P. Nesynov and A. P. Grekov, Usp. Khim., 33(10), 1184 1197 (1964).
- 5. J. Brooks, P. Charlton, P. Macey, et al., J. Chem. Soc., 452 (1950).
- 6. D. Peak and T. Watkins, J. Chem. Soc., 3292 (1951).
- F. Milan, F. Leonard, R. Meltzer, and J. King, J. Am. Pharm. Assoc., 42, 457 (1953).
- 8. H. Konig, W. Seifken, and H. Offe, Ber., 87, 825 (1954).

- 9. M. Movrin and D. Maysinger, Pharmazie, 38(8), 561 (1983).
- 10. D. Pancechowska-Ksepko, H. Foks, E. Landowska, et al., *Acta Pol. Pharm.*, **43**(2), 116 123 (1986).
- 11. Tadashi Sasaki, Eikoh Ito, and Ikuo Shimizu, *J. Org. Chem.*, **47**, 2757 2760 (1982).
- N. Ergenc, N. Ulusoy, G. Capan, et al., Arch. Pharm., 329(8/9), 427 – 430 (1996).
- 13. T. N. Yanborosov, N. N. Kasimova, A. V. Milyutin, et al., *Khim.- Farm. Zh.*, **29**(7), 29 31 (1995).
- 14. A. Weisberger (ed.), Five and Six-Membered Compounds with Nitrogen and Oxygen, in: The Chemistry of Heterocyclic Compounds, Interscience, New York (1962).
- 15. G. Mekushkene, P. Vainilavichus, A. Getukhaim, and R. Shematovich, *Khim. Geterotsikl. Soedin.*, No. 5, 700 705 (1993).
- 16. G. N. Pershin, *Methods of Experimental Chemotherapy* [in Russian], Meditsina, Moscow (1971).
- 17. T. N. Yashchenko and I. S. Mecheva, *Practical Guide to the Laboratory Investigation of Tuberculosis* [in Russian], Meditsina, Moscow (1973).