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Abstract: A palladium-catalyzed coupling process of dibenzobar-
relene with annelated aryl halides leads to special benzocy-
clobutenes, resembling Diels–Alder adducts of antiaromatic
benzocyclobutadienes with anthracene. Moderate steric pressure in
intermediary five-membered palladacycles seems to be decisive for
this type of transformation.
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Norbornene (1),1 norbornadiene (2)2 and acenaphthylene
(3)3 have been extensively studied as strained, highly re-
active alkene components in palladium-catalyzed domino
coupling processes, which deviate from the classical Heck
reaction, since the ‘normal’ b-H-elimination step is pro-
hibited because of stereochemical requirements.4 Nor-
bornene (1), in particular, turned out to be very useful as
catalytic template in the Catellani reaction, which is es-
sentially based on the reversibility of the carbopalladation
step.5

We became interested in palladium-catalyzed annelation
reactions of the structurally related dibenzobarrelene (4;
Figure 1)6 in order to overcome a preparative obstacle:
while disubstituted alkynes have been successfully ap-
plied for the synthesis of polycyclic ring systems via pal-
ladium-catalyzed annelation processes with aryl halides7

and vinyl halides8, terminal alkynes, and of course the
parent acetylene,9 bearing acidic alkynyl hydrogens prefer
to react in a Sonogashira-type fashion.10 We envisioned,
that dibenzobarrelene (4) could serve as an ‘acetylene an-
nelation synthon’ when applied in a palladium-catalyzed
annelation and retro-Diels–Alder sequence,2a,3c and wish
to report on our initial results with 4 as coupling compo-
nent, focusing on the efficient formation of annelated ben-
zocyclobutenes.11

With the 4-bromobenzoic acid ester 5a, the initial plan in-
deed worked out under Jeffery conditions:12 the function-
alized phenanthrene 6 was isolated with acceptable yield,

and its structure was confirmed by analysis of two-dimen-
sional NMR spectra including HMBC, HMQC and
NOESY; somewhat surprisingly deviating from substitu-
tion patterns observed before for annelation reactions us-
ing norbornene.13 Anthracene was found as by-product,
obviously resulting from the anticipated retro-Diels–Al-
der step. In the case of 2-bromo- and 2-iodo-p-xylene14

(7a and 7b) the formation of the phenanthrene moiety sur-

Figure 1 Olefin components for palladium-catalyzed coupling 
reactions

1 2 3 4

Table 1 Coupling Reactions at Dibenzobarrelene (4)a

Entry Aryl halideb Molar ratio of 
halide/4

T (°C) Product (yield)

1  5a 4.9:1 100  6 (63%)

2  7a 3:1 100  8 (8%)

3  7a 3:1 140  8 (59%)

4  7a 1:3 140  8 (80%)

5  7b 3:1 100  8 (36%)

6  7b 1:3 140  8 (80%)

7  9a 3:1 100 10 (40%)

8  9b 1:5 100 10 (36%)

9  9b 3:1 100 10 (44%)

10 11a 3:1 140 12 (37%)

11 13a 2.3:1 100 14 (21%)

12 13b 1:3 100 14 (40%)

a Reaction conditions: DMF, Pd(OAc)2 (5 mol%), K2CO3, n-Bu4NBr, 
3 d, 100 °C or 140 °C.
b For a, X = Br; for b, X = I.
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prisingly failed. Instead, the highly strained annelated
benzocyclobutene 8 was the result of the palladium-cata-
lyzed domino process in up to 80% yield. For the iodide
7b a reaction temperature of 100 °C was sufficient
(Table 1, entry 5); in the case of the less reactive bromide
7a, 140 °C turned out to be superior (entries 3 and 4). Ap-
plying dibenzobarrelene (4) in excess offers the advantage
of minimizing by-products; however, using an excess of
the readily accessible aryl halides14 should be more feasi-
ble.

Presumably the four-membered ring formation is favored
by steric influence15 of the ortho-methyl group. The ther-
mal stability of this product is explained by the fact that a

retro-Diels–Alder reaction would deliver an energetically
disfavored antiaromatic benzocyclobutadiene.

This methodology could also be applied to other polycy-
clic aromatic hydrocarbons 9, 11, and 13, bromo- or iodo-
substituted in peri position, to afford the desired benzocy-
clobutenes 10, 12, and 14 (Figure 2). These findings are
somewhat surprising, since the peri-annelated coupling
components offer the opportunity to form the regioiso-
meric five-membered ring products in principle, as ob-
served before with acenaphthylene (3) as alkene
component.3a However, for the mechanistic interpreta-
tion, one can conclude that the formation of the five-mem-
bered palladacyclic intermediates16 (such as 15, Figure 3)
is favored compared to the six-membered analogues (such
as 16, Figure 3). This conclusion is in accord with the typ-
ical selectivity of an electrophilic aromatic substitution: a

Figure 2 Aryl halides (a: X = Br, b: X = I) and resulting ring
systems from palladium-catalyzed domino processes with dibenzo-
barrelene (4)
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Figure 3 Intermediary palladacycles 15 and 16
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1-alkyl-substituted naphthalene is more reactive in the 2-
position than in the 8-position in terms of a SEAr reaction.

The five-membered palladacycles undergo reductive
elimination to four-membered carbocycles, rather than
oxidatively adding a second equivalent of a somewhat
sterically demanding aryl halide: the steric influence of an
annelated benzene ring in ortho position or an ortho-
methyl group seems to be sufficient, both, for disfavoring
a second oxidative addition step and for supporting the re-
ductive elimination step by steric pressure.15

9-Bromoanthracene (17a) as coupling component is an
especially interesting case (Scheme 1) since the formation
of a six-membered palladacycle 24 (Scheme 2) as inter-
mediate is structurally predetermined: the resulting anne-
lated five-membered carbocycle 18 was indeed isolated as
the main product with 48% yield. Surprisingly, a diaste-
reoisomeric mixture of annelated benzocyclobutenes 19,
obviously 1:2 domino products, was found as by-product
in a substantial amount (28% yield).

The mechanistic coherence of products 18 and 19 is ana-
lyzed in Scheme 2: a C–H activation step in the peri posi-
tion in carbopalladation product 22 leads to the six-
membered palladium(IV) palladacycle 23,17 which either
is deprotonated and consecutively transformed to 18, or
reacts in a reductive elimination step to palladium(II) in-
termediate 25 in the sense of a palladium migration.18 The
second equivalent of barrelene 4 is then inserted again by
carbopalladation. In the cyclopalladated intermediate 26,
steric pressure15 activates the reductive elimination to
four-membered carbocycles 19. In comparison, the cou-
pling reaction of 9-bromoanthracene (17a) with nor-
bornene gave the analogous 1:2 domino products 20 (81%
yield), whereas with acenaphthylene (3) the formally
‘simple’ Heck product 21 was obtained (84% yield), pre-
sumably by a different mechanism circumventing the ste-
reochemical requirements as explained previously.2a

For the benzocyclobutenes 10, 12, 14 and 19 single crys-
tals were obtained by diffusion of methanol into a dichlo-
romethane solution and their constitution was proved by
X-ray crystal structure analyses (Figure 4).19 The bond
lengths of the C–C bonds connecting the cyclobutene
moiety with the 9,10-positions of the dihydrophenan-
threne unit are minimally elongated in the range of 153.5–
157.4 pm.

In conclusion, annelated benzocyclobutenes are readily
formed by a palladium-catalyzed coupling process of
dibenzobarrelene (4) based on the steric influence of ortho
substituents in aryl halides as coupling components.20 In
ongoing studies, we will test these coupling products as a
source for antiaromatic benzocyclobutadienes21 under the
conditions of flash vacuum pyrolysis. The successful syn-
thesis of the functionalized phenanthrene 6 via a domino
coupling retro-Diels–Alder sequence starting from a
para-substituted aryl halide motivates for further studying
scope and limitations of this type of domino process.
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d = 14.53 (2 × q), 14.58 (q), 61.27 (t), 61.41 (t), 61.61 (t), 
123.54 (d), 124.72 (d), 125.51 (d), 127.39 (d), 128.11 (s), 
128.50 (d), 129.27 (s), 129.86 (d, phenylene), 129.98 (d), 
130.09 (s), 130.28 (d, phenylene), 130.90 (d), 131.33 (s), 
133.40 (s), 133.65 (s), 140.44 (s), 144.75 (s), 166.49 (2 × s), 
166.57 (s), one singlet was superimposed.
Compound 8: colorless solid; mp 126 °C. 1H NMR (400 
MHz, CDCl3): d = 2.18 (s, 6 H), 3.66 (dd, J = 1.4, 2.6 Hz, 2 
H), 4.58 (dd, 2 H), 6.67 (s, 2 H), 6.92 (dd, J = 3.2, 5.4 Hz, 2 
H), 7.09 (dd, J = 3.2, 5.3 Hz, 2 H), 7.21 (dd, J = 3.2, 5.4 Hz, 
2 H), 7.40 (dd, J = 3.2, 5.3 Hz, 2 H). 13C NMR (101 MHz, 
CDCl3): d = 16.63 (q), 46.02 (d), 47.67 (d), 124.05 (d), 
124.54 (d), 125.81 (d), 126.00 (d), 128.22 (d), 129.37 (s), 
140.54 (s), 143.14 (s), 143.44 (s). MS (EI, 70 eV): m/z (%) = 
308.7 (5) [M+], 307.7 (19) [M+ – 1], 178.8 (15), 177.8 (100), 
130.9 (7), 129.9 (58).
Compound 10: colorless solid; mp 156 °C. 1H NMR (400 
MHz, CDCl3): d = 3.81 (t, J = 4.3 Hz, 1 H), 3.94 (t, J = 4.3 
Hz, 1 H), 4.63 (d, J = 3.8 Hz, 1 H), 4.76 (d, J = 4.0 Hz, 1 H), 
6.65 (t, J = 8.0 Hz, 1 H), 6.67 (t, J = 8.0 Hz, 1 H), 6.88 (d, 
J = 7.3 Hz, 1 H), 7.02 (d, J = 7.3 Hz, 1 H), 7.08 (d, J = 8.1 
Hz, 1 H), 7.16–7.21 (m, 2 H), 7.34 (t, J = 8.2 Hz, 1 H), 7.41–
7.50 (m, 4 H), 7.68 (d, J = 8.1 Hz, 1 H), 7.77 (d, J = 8.1 Hz, 
1 H). MS (EI, 70 eV): m/z (%) = 331 (3), 330 (13), 203 (2), 
178 (13), 163 (2), 153 (13), 152 (100), 151 (6).
Compound 12: colorless solid; mp 265 °C. 1H NMR (200 
MHz, CDCl3): d = 3.97 (d, J = 4.0 Hz, 2 H), 4.80 (d, J = 4.0 
Hz, 2 H), 6.56–6.64 (m, 2 H), 6.87–6.95 (m, 2 H), 7.19–7.24 
(m, 2 H), 7.45–7.64 (m, 6 H), 7.83 (d, J = 7.1 Hz, 2 H), 8.54 
(d, J = 7.8 Hz, 2 H). MS (EI, 70 eV): m/z (%) = 380 (15), 202 
(100), 187 (2), 178 (4), 152 (1).
Compound 14: yellow solid; mp 287 °C. 1H NMR (400 
MHz, CDCl3): d = 4.10 (t, J = 4.8 Hz, 1 H), 4.23 (t, J = 4.8 
Hz, 1 H), 4.77 (d, J = 4.0 Hz, 1 H), 4.89 (d, J = 4.0 Hz, 1 H), 
6.50 (t, J = 7.3 Hz, 1 H), 6.61 (t, J = 7.3 Hz, 1 H), 6.88 (d, 
J = 7.3 Hz, 1 H), 6.98 (d, J = 7.3 Hz, 1 H), 7.19–7.24 (m, 2 
H), 7.45–7.51 (m, 2 H), 7.72 (s, 1 H), 7.89–7.94 (m, 3 H), 
8.02–8.14 (m, 4 H). MS (FAB): m/z (%) = 405 (35), 404 
(71), 226 (21).
Compound 18: yellow solid; mp 265 °C. 1H NMR (400 
MHz, CDCl3): d = 4.31 (dd, J = 3.5, 7.3 Hz, 1 H), 4.63 (dd, 
J = 2.8, 7.3 Hz, 1 H), 4.76 (d, J = 3.5 Hz, 1 H), 5.16 (d, J = 
3.0 Hz, 1 H), 6.44 (‘t’, J = 7.3 Hz, 1 H), 6.50 (dd, J = 1.3, 7.3 
Hz, 1 H), 6.61 (‘t’, J = 7.3 Hz, 1 H), 6.86 (d, J = 7.3 Hz, 1 
H), 7.21–7.26 (m, 2 H), 7.30 (d, J = 6.6 Hz, 1 H), 7.37 (‘t’, 

J = 8.3 Hz, 1 H), 7.45–7.57 (m, 4 H), 7.60 (‘t’, J = 6.6 Hz, 1 
H), 7.99 (d, J = 8.3 Hz, 1 H), 8.01 (s, 1 H), 8.42 (dd, J = 0.8, 
8.6 Hz, 1 H). 13C NMR (101 MHz, CDCl3): d = 49.13 (d), 
50.17 (d), 51.35 (d), 51.45 (d), 117.37 (d), 122.44 (d), 122.75 
(d), 124.15 (d), 124.23 (d), 124.27 (d), 124.37 (d), 124.92 
(d), 124.94 (d), 125.01 (d), 125.31 (d), 125.38 (d), 126.25 
(d), 126.33 (d), 127.07 (s), 127.49 (d), 129.31 (s), 130.06 (d), 
133.78 (s), 139.04 (s), 139.91 (s), 140.17 (s), 141.19 (s), 
143.78 (s), 144.20 (s), 146.72 (s). MS (EI): m/z (%) = 380 
(5.7) [M+], 202 (87.1), 178 (100), 108 (6.4), 59 (19.3), 43 
(16.4), 29 (6.4).
Compound 19: slightly yellow fluorescent solid; 
decomposition started at 160 °C. MS (EI): m/z (%) = 406 
(15) [M+ – Manthracene], 228 (29), 202 (6), 178 (100) 
[M+

anthracene], 152 (10), 89 (7), 76 (6), 45 (8).
Compound 20: Diastereoisomeric mixture; yellow solid; mp 
168 °C; six times fractionated crystallization with i-PrOH 
gave one pure diastereoisomer. 1H NMR (400 MHz, CDCl3): 
d = 0.91–1.01 (m, 2 H), 1.29–1.35 (m, 2 H), 1.47–1.59 (m, 3 
H), 1.63–1.89 (m, 6 H), 1.94–2.02 (m, 1 H), 2.32–2.38 (m, 1 
H), 2.45–2.60 (m, 4 H), 2.67 (s, 1 H), 3.20 (d, J = 3.5 Hz, 1 
H), 3.73 (d, J = 3.5 Hz, 1 H), 4.43 (t, J = 8.3, 8.6 Hz, 1 H), 
7.17 (d, J = 8.3 Hz, 1 H), 7.35–7.44 (m, 2 H), 7.89 (d, J = 8.3 
Hz, 1 H), 7.94–7.99 (m, 1 H), 8.32 (s, 1 H), 8.62–8.69 (m, 1 
H). 13C NMR (101 MHz, CDCl3): d = 28.12 (t), 28.24 (t), 
29.18 (t), 31.53 (t), 32.78 (t), 36.30 (d), 37.10 (d), 37.57 (d), 
39.63 (t), 39.72 (t), 44.30 (d), 44.42 (d), 49.21 (d), 54.14 (d), 
120.43 (d), 124.01 (d), 124.31 (d), 126.67 (d), 128.78 (d), 
129.64 (s), 130.01 (d), 130.26 (s), 130.51 (d), 131.79 (s), 
132.34 (s), 137.31 (s), 140.46 (s), 144.15 (s). MS (EI): m/z 
(%) = 364 (100) [M+], 323 (8), 283 (9), 270 (16), 253 (36), 
239 (25), 229 (17), 202 (11), 67 (9), 49 (11), 41 (8).
Compound 21: orange-red solid; mp 222 °C. 1H NMR (200 
MHz, CDCl3): d = 7.17 (d, J = 6.8 Hz, 1 H), 7.24 (s, 1 H), 
7.28–7.55 (m, 5 H), 7.67 (dd, J = 6.8, 8.1 Hz, 1 H), 7.79–7.97 
(m, 3 H), 8.09 (d, J = 9.9 Hz, 4 H), 8.55 (s, 1 H). 13C NMR 
(50 MHz, CDCl3): d = 124.30 (d), 124.45 (d), 125.38 (d), 
125.42 (d), 127.07 (d), 127.31 (d), 127.36 (d), 127.72 (d), 
127.93 (d), 128.14 (d), 128.47 (s), 128.52 (d), 128.73 (s), 
130.72 (s), 130.95 (d), 131.03 (s), 131.62 (s), 139.63 (s), 
140.68 (s), 141.69 (s). MS (EI): m/z (%) = 328 (100) [M+], 
163 (20), 149 (5.4), 43 (5.7), 27 (8.6).
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