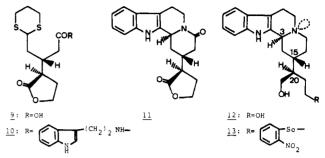
- (11) (a) Lane, R. W.; Ibers, J. A.; Frankel, R. B.; Papaefthymiou, G. C.; Holm, R. H. J. Am. Chem. Soc. 1977, 99, 84. (b) Berg, J. M.; Hodgson, K. O.; Holm, R. H. Ibid. 1979, 101, 4586.
- (12) Noodleman, L. J. Chem. Phys., submitted for publication. Calculation of J within Xα-MO theory is discussed in Ginsberg, A. P. J. Am. Chem. Soc. 1980, 102, 111.
- (13) Case, D. A., personal communication.
- (14) Fellow of the Alfred P. Sloan Foundation, 1978-1980.

Joe G. Norman, Jr.,*¹⁴ P. Barry Ryan, Louis Noodleman Department of Chemistry, University of Washington Seattle, Washington 98195 Received February 14, 1980

Synthesis of (\pm) -Antirhine from (\pm) -Norcamphor


Sir:

Antirhine (1),¹ the major alkaloid of Antirhea putaminosa, is an unique yohimbonoid variant with cis C/D ring juncture and only two congeners, hunterburnine α - and β -methochlorides² (10-hydroxyantirhine α - and β -methochloride), have been isolated so far. Although a structurally simple compound, 1 has not previously been synthesized, probably owing to difficulty in the stereocontrolled construction of the three chiral centers, the centers at C₃ and C₁₅ with the less stable anti relationship, and the center at C₂₀ bearing vinyl and hydroxymethyl moieties.³ We describe here the first stereoselective synthesis of (±)-antirhine (1), starting from (±)-norcamphor⁴ (2).

Ozonization of the bicyclic δ -lactone 4 [prepared stereoselectively from (±)-norcamphor (2) via 3 (75.4% overall yield)^{4c}] in methanol (-78 °C), followed by direct reduction with sodium borohydride in the same flask (-78 °C to room temperature) furnished the oily γ -lactone 6⁵ [79.9% yield; IR (neat) 3400, 1755 cm⁻¹; mass spectrum m/e 171 (M⁺ + 1) 153 (100%)] spontaneously through the δ -lactone 5. Oxidation of 6 with Jones reagent gave the keto lactone 7, mp 78-80 °C, in 79.8% yield: IR (Nujol) 1750, 1725 cm⁻¹; mass spectrum m/e168 (M⁺), 140 (100%). Regioselective thioketalization was achieved by treatment of the pyrrolidine enamine derived from keto lactone 7 with trimethylene dithiotosylate⁶ in the presence of triethylamine, affording the α -diketone monothioketal 8, mp 142-144 °C, in 51.8% yield: IR (Nujol) 1755, 1720 cm⁻¹; mass spectrum m/e 272 (M⁺), 272 (100%).

Base cleavage⁷ of **8** (KOH-*t*-BuOH, 60 °C, 1 h) and acid workup produced the carboxylic acid **9**, amorphous foam, in quantitative yield: IR (Nujol) 3400-2400, 1758, 1710 cm⁻¹; NMR (CDCl₃) δ 3.94-4.55 (3 H, m), 10.36 (1 H, s, disappeared with D₂O); mass spectrum *m/e* 290 (M⁺), 119 (100%). Treatment of **9** with ethyl chloroformate in the presence of triethylamine⁸ (CH₂Cl₂, room temperature, 4 h) gave the crude mixed anhydride, which on condensation with tryptamine (CH₂Cl₂, room temperature) afforded the secondary amide **10**, amorphous foam, in 76.8% overall yield: IR (Nujol) 3250, 1752, 1640 cm⁻¹; NMR (CDCl₃) δ 3.57 (2 H, br t), 4.13 (3 H, m), 6.05–6.50 (1 H, br q, disappeared with D₂O), 6.96–7.90 (5 H, m), 8.88 (1 H, s, disappeared with D₂O); mass spectrum *m/e* 432 (M⁺), 143 (100%).

On hydrolysis of the dithiane group, by treatment of 10 with methyl iodide in aqueous acetonitrile at room temperature9,10 $(\sim 48 \text{ h})$, cyclization occurred to furnish the lactam 11, mp 214-217 °C, in 36.8% yield: IR (Nujol) 3140, 1759, 1608 cm^{-1} ; NMR (CDCl₃ + CF₃CO₂H) δ 4.00-4.46 (2 H, m), 4.78-5.28 (2 H, m), 7.05-7.70 (4 H, m), 8.72 (1 H, br s); mass spectrum m/e 324 (M⁺), 184 (100%). Reduction (LiAlH₄, boiling THF, 3.5 h) of the lactam 11 gave the aminodiol 12 with the anti C_3 - C_{15} relationship, mp 215-218 °C, in 92.5% yield: IR (Nujol) 3170 cm^{-1} ; NMR (CDCl₃) δ 3.40-3.98 (4 H, m), 4.15 (3 H, br s, 2 H, disappeared with D₂O), 6.90-7.60 (4 H, m), 9.02 (1 H, br s, disappeared with D₂O); mass spectrum m/e 314 (M⁺), 225 (100%). Support for the assignment of the stereochemistry at C_3 and C_{15} was obtained from spectral examination. As expected, the IR spectrum did not exhibit Bohlmann bands, while the NMR spectrum exhibited the C₃ H as a multiplet centered at δ 4.15, both indicating the cis B/C configuration owing to the anti C_3 - C_{15} relationship.^{3b,11,12}

Treatment of the diol 12 with 1 molar equiv of o-nitrophenyl selenocyanate and tri-n-butylphosphine¹³ (THF, room temperature, 2 h) allowed selective selenylation at the desired position to give the monoselenide 13, mp 175-177 °C, in 39.2% yield (64.3% yield based on recovered 12): IR (CHCl₃) 3470, 3280, 1590, 1330 cm⁻¹; NMR (CDCl₃) δ 4.21 (1 H, br s), 6.95-7.70 (7 H, m), 8.27 (1 H, d, J = 7.6 Hz), 8.73 (1 H, br s, disappeared with D_2O ; mass spectrum m/e 498 (M⁺), 225 (100%). The selenide 13, upon oxidation with m-chloroperbenzoic acid (1.3 equiv, CH₂Cl₂, -20 °C to room temperature) afforded (±)-antirhine (1), mp 100-102 °C (lit., ¹112-114 °C), in 71.7% yield, which had R_f values and IR, NMR, and mass spectra identical with those of the natural product.¹⁴ Since chiral norcamphor has been obtained,¹⁵ the present method is potentially useful for a chiral synthesis of antirhine (1).

Acknowledgment. We thank the Ministry of Education, Japan, for supporting this work.

References and Notes

- (1) Johns, S. R.; Lamberton, J. A.; Occolowitz, J. L. Aust. J. Chem. 1967, 20, 1463.
- (2) Bartlett, M. F.; Korzun, B.; Sklar, R.; Smith, A. F.; Taylor, W. I. J. Org. Chem. 1963, 28, 1445.
- (3) For syntheses of (±)-dihydroantirhine, see: (a) Sawa, Y. K.; Matsumura, H. *Tetrahedron* **1969**, *25*, 5319. (b) Kimura, T.; Ban, Y. *Chem. Pharm. Bull.* **1969**, *17*, 296. (c) Wenkert, E.; Sprague, P. W.; Webb, R. L. J. Org. Chem. **1973**, *38*, 4305. (d) Chevolot, L.; Husson, H.-P.; Potier, P. *Tetrahedron* **1975**, *31*, 2491. (e) Ficini, J.; Guingant, A.; d'Angelo, J. J. Am. Chem. Soc. **1979**, *101*, 1318.
- (4) (±)-Norcamphor (2) has already been successfully used as a synthon for the preparation of some medicinally important aikaloids: (a) Takano, S.; Hatakeyama, S.; Ogasawara, K. *Tetrahedron Lett.* 1978, 2519. (b) Takano, S.; Takahashi, Y.; Hatakeyama, S.; Ogasawara, K. *Heterocycles* 1979, *12*, 765. (c) Takano, S.; Takahashi, M.; Hatakeyama, S.; Ogasawara, K. *J. Chem. Soc., Chem. Commun.* 1979, 556.

© 1980 American Chemical Society

Communications to the Editor

- (5) All new compounds reported in this work gave satisfactory spectral and analytical analyses
- (6) Woodward, R. B.; Pachter, I. J.; Scheinbaum, M. L. Org. Synth. 1974, 54, 33. 39.
- Cf. Marshall, J. A.; Seitz, D. E. J. Org. Chem. 1974, 39, 1814.
- (8) Cf. Ishizumi, K.; Koga, K.; Yamada, S. Chem. Pharm. Bull. 1968, 16, 492.
- Takano, S.; Hatakeyama, S.; Ogasawara, K. J. Am. Chem. Soc. 1976, 98, (9) 3022; 1979, 101, 6414. (10) Heating at reflux temperature shortened the reaction time but led to pre-
- dominant formation of an undesired isomer of the cyclization product. (11) Crabb, P. A.; Newton, R. F.; Jackson, D. *Chem. Rev.* **1971**, *71*, 107. (12) Uskokovic, M.; Bruderer, H.; von Planta, C.; Williams, T.; Brossi, A. *J. Am.*
- Chem. Soc. 1964, 86, 3364.
- (13) Grieco, P. A.; Gilman, S.; Nishizawa, M. J. Org. Chem. 1976, 41, 1485.
- (14) We are greatly indebted to Professor J. Ficini (Université Pierre et Marie Curie, Paris), Professors H.-P. Husson and P. Potier (Institute de Chimie des Substances Naturelles, Gif/Yvette), and Professor J. A. Lamberton (CSIRO Chemical Research Laboratories, Melbourne) for generously
- providing a sample of natural antirhine. (15) (a) Brown, H. C.; Ayyangar, N. R.; Zweifel, G. *J. Am. Chem. Soc.* **1964**, *86*, 397. (b) Hill, R. K.; Edwards, A. G. *Tetrahedron* **1965**, *21*, 1501. (c) McDonald, R. N.; Steppel, R. N. J. Am. Chem. Soc. 1969, 91, 782. (d) Takano, S.; Iwata, H.; Ogasawara, K. Heterocycles 1978, 9, 845.

Seiichi Takano,* Mikoto Takahashi, Kunio Ogasawara

Pharmaceutical Institute, Tohoku Universitv Aobayama, Sendai 980, Japan Received December 20, 1979

2,5-Di-N-chlorothioimino-3,4-dicyanothiophene: A Novel Monomer of Unusual Molecular and Solid-State Structure

Sir:

The title compound (1) was a molecule we sought as a possible monomer for the preparation of polymers of unsaturated sulfur-nitrogen-carbon backbone.¹ These polymers are of interest because they are expected to exhibit high electronic conductivity in the solid state in analogy² to $(SN)_x$. Here we describe the preparation and some properties of this heterocycle and its unique solid-state structure.

The S-chlorosulfurimino functional group is rare^{3,4} and was isolated only in the case of highly electronegatively substituted small molecules.⁵ It was, therefore, uncertain whether the title compound could be prepared and isolated for complete characterization. Fortunately, the mild conditions shown in eq⁶ 1

$$\frac{NC}{H_2N} CN + 3SCI_2 \rightarrow CISN + 4HCI + S (1)$$

afforded 1 in good yield as red crystals: IR (KBr) 2230 (vw), 1530 (s), 1500 (s), 1345 (s), 1240 (w), 892 (s), 841 (s), 820 (m) cm⁻¹; MS (*m/e*) 296 (P + 2), 294 (P), 259 (P - Cl), 224 (P -Cl₂), 192 (P - SCl₂), 146 (P - NSCl₂), etc. Anal. Calcd for

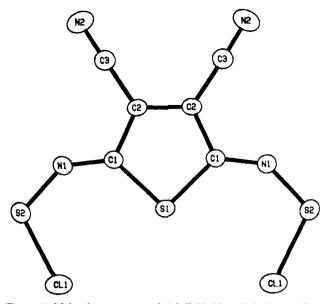


Figure 1. Molecular structure of 2,5-di-N-chlorothioimino-3,4-dicyanothiophene.

C₆Cl₂N₂S₃: C, 24.41; Cl, 24.07; N, 18.98; S, 32.54. Found: C, 24.21; Cl, 23.93; N, 18.66; S, 32.83. Since attempts to determine its ¹³C NMR spectrum failed owing to low solubility in most appropriate solvents and molecular weight determinations in solution again failed because of the instability of the compound in suitable solvents, we had to resort to X-ray structure determination.7

Data were collected on a $0.2 \times 0.2 \times 0.2$ mm crystal mounted on a glass fiber. The orthorhombic C-centered (space group Cmcm) solid with extinctions $hkl (h + k \neq 2n)$; h0l (h= $2n, l \neq 2n$) had the following cell constants: a = 6.327 (3), b = 9.678 (8), c = 17.337 (17) Å; $\alpha = \beta = \gamma = 90^{\circ}$; V =1061.7 Å³; $\lambda = 0.710730$ Å (based on computer centering of 25 reflections followed by least-squares refinement of the setting angles). Calculated density was 1.847 g/cm³ for four molecules per unit cell of above dimensions.8

Intramolecular bond angles and bond distances are shown in Table I; molecular and solid-state structures are shown in Figures 1 and 2. The most striking features of the molecular structure are planarity and the inward folding of the S-Cl bonds such that the S-1 to Cl-1 distance (cf. Table I and Figure 1) of 3.29 Å is 0.26 Å shorter than the sum of Van der Waals radii for S and Cl.9

The solid-state structure reveals uniform stacks along the a axis and sheets along the b-c plane. The closest intermolecular contact (3.110 Å) is between Cl-1 and N-2 of two molecules within a sheet in the b direction (cf. Figure 2).

Although compound 1 could be considered an acid chloride

Table I^a

Bond Distances in Ångstroms									
atom 1	atom 2	distance	atom 1	atom 2	distance	atom 1	atom 2	distance	
S-1	Cl-1	3.290(1)	N-1	C-1	1.283 (2)	C-2	C-2	1.363 (3)	
S-1	C-1	1.775 (1)	N-2	C-3	1.136 (2)			- ()	
S-2	Cl-1	2.049 (1)	C-1	C-2	1.439 (2)				
S-2	N-1	1.583 (1)	C-2	C-3	1.431 (2)				

Bond Angles in Degrees											
atom 1	atom 2	atom 3	angle	atom 1	atom 2	atom 3	angle	atom 1	atom 2	atom 3	angle
C-1	S-1	C-1	91.3 (1)	S-1	C-1	C-2	110.2 (1)	C-2	C-2	C-3	123.39 (9)
Cl-1	S-2	N-1	111.29	N-1	C-1	C-2	120.8 (1)	N-2	C-3	C-2	178.5 (2)
S-2	N-1	C-1	138.5(1)	C-1	C-2	C-2	114.13 (8)				
S-1	C-1	N-1	129.0(1)	C-1	C-2	C-3	122.5 (1)				

^a Numbers in parentheses are estimated standard deviations in the least significant digits.