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Total Synthesis of (�)-Conophylline and (�)-Conophyllidine**
Yuki Han-ya, Hidetoshi Tokuyama, and Tohru Fukuyama*

(�)-Conophylline (1), isolated from Tabernaemontana divar-
icata in 1992,[1] is a bis(indole) alkaloid consisting of two
pentacyclic aspidosperma skeletons (Figure 1). This com-

pound acts as a potent inhibitor of the ras function[2] and,
furthermore, has been found to induce beta-cell differentia-
tion in rat pancreatic acinar carcinoma cells and in cultured
fetal rat pancreatic tissue.[3] Thus, this compound has the
potential to be a lead compound in the development of novel
drugs for cancer chemotherapy as well as for regeneration
therapy used for the treatment of diabetes mellitus type 1. As
a result of the important biological activity as well as the
complex structure possessing a unique connectivity between
its two segments, conophylline has attracted considerable
attention from the synthetic community as a challenging
target.[4] Herein, we report the first total synthesis of (�)-
conophylline (1) and its congener, (�)-conophyllidine (2),[1b]

in a convergent route utilizing the Polonovski–Potier-type
coupling reaction.

A convergent and potentially biomimetic synthesis of 1
should consist of the construction of the central dihydroben-
zofuran ring at the final stage of the synthesis. Scheme 1

represents our synthetic strategy for the construction of the
dihydrofuran moiety. We envisioned that if we could generate
an iminium ion regioselectively in the lower-half (segment 5),
the electron-rich aromatic ring of the upper-half (segment 4)
would attack the iminium ion to form the C3–C10’ linkage
with a subsequent intramolecular epoxide opening to furnish
the dihydrofuran structure with the requisite stereochemistry.
Husson, Lounasmaa, and co-workers reported their seminal
work on the regiochemical issue of the Polonovski–Potier
reaction[5] in which vincadifformine (6) gave the 5a-cyano
compound 8 via the iminium ion at C5–N4, whereas the
reaction of epipandoline (9) bearing a hydroxy group at C14
provided the 3-cyano compound 11 via an iminium ion at C3–
N4 (Scheme 2).[6] On the basis of these observations as well as
the potential cyclopropane-like role of the epoxide in
stabilizing the adjacent carbocation, we hoped that a substrate
having an epoxide at C14–C15 might also generate the C3–N4

Figure 1. Structures of (�)-conophylline (1) and (�)-conophyllidine
(2).

Scheme 1. Synthetic strategy for the central part of (�)-conophylline
(1).

Scheme 2. Regiochemistry of Polonovski–Potier reaction reported by
Husson, Lounasmaa, and co-workers.[6] Reagents and conditions:
a) p-O2N-C6H4CO3H, CHCl3, 0 8C; b) TFAA, CH2Cl2, 0 8C!RT; c) KCN,
CH2Cl2/H2O (4:1), TFA/CH3CO2K, pH 4, RT, 50 % (3 steps); d) aq
H2O2, EtOH/CH2Cl2 (1:1), 60 8C; e) TFAA, CH2Cl2, 0 8C!RT; f) KCN,
CH2Cl2/H2O (4:1), TFA/CH3CO2K, pH 4, RT, 30 % (3 steps). TFA = tri-
fluoroacetic acid, TFAA= trifluoroacetic anhydride.
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iminium ion 5. For the synthesis of both the upper and lower
aspidosperma indole segments, we planned to modify our
previously established route to (�)-tabersonine[7] utilizing a
combination of the tin-mediated indole synthesis[8] and the
biomimetic cascade reaction for the formation of an aspido-
sperma skeleton.[7, 9]

The synthesis of indole 12, the intermediate to the lower
segment, commenced with the nitration of the commercially
available phenol 13 and the silylation of the sterically less-
hindered phenolic hydroxy group to give 14, which was then
converted into mesylate 15 by a three-step sequence
(Scheme 3). The ester was then elongated by reduction to
the aldehyde and subsequent Wittig reaction to give cinna-
mate 16. Next, the nitro group was transformed into an
isocyano group by a conventional three-step sequence. The
isocyanide 17 thus obtained was subjected to the tin-mediated
radical cyclization[8] to produce 2-stannylindole, which was
then converted into 2-iodoindole 18 by in situ treatment with
iodine.[10] Then, reduction of the ester, protection of the
resultant alcohol as THP ether, and Boc protection of the
indole nitrogen atom gave 19. Finally, introduction of the

substituent at the 2 position by Stille coupling[11] with the 2-
stannylacrylate derivative 20[12] and removal of the THP
group furnished the indole intermediate 12.

We then constructed the aspidosperma skeleton by the
intramolecular Michael addition/Mannich reaction cascade.
Dinitrobenzenesulfonamide 21, which was prepared by our
previously reported route,[9] was coupled with alcohol 12 by
using a Mitsunobu protocol (Scheme 4).[13] Next, both

removal of the Boc group and hydration of the enol ether
were effected by treatment with TFA to give lactol 23. After
removal of the DNs group,[14] the reaction mixture was stirred
at 50 8C to promote sequential reactions involving cyclic
enamine formation, Michael addition of the enamine to a,b-
unsaturated ester, and Mannich reaction of the indole to the
resultant iminium ion to furnish the desired 25 as the sole
isomer. Finally, regioselective dehydration and stereoselec-
tive epoxidation in the presence of perchloric acid[15]

furnished the desired lower segment 27. The structure of 27
was unambiguously confirmed by transformation into (�)-
taberhanine (28)[16] in a one-pot removal of both the mesyl
and Troc groups under conditions reported by Carreira and
co-workers[17] in which excess LDA was used.

Scheme 3. Synthesis of the indole segment 12. Reagents and condi-
tions: a) HNO3, AcOH, RT; b) TBDPSCl, 2,6-lutidine, THF/DMF (4:1),
0 8C!RT, 42% (2 steps); c) tBuOK, Me2SO4, THF/DMF (3:1), 0 8C!
RT, 96%; d) TBAF, THF, RT; e) MsCl, Et3N, CH2Cl2, 0 8C!RT, 60%
(2 steps); f) DIBAL-H, CH2Cl2, �78 8C; g) TPAP, NMO, 4� M.S.,
CH2Cl2, RT; h) Ph3P=CHCO2Et, toluene, RT, 61% (3 steps); i) Zn,
AcOH, CH2Cl2, 0 8C!RT; j) HCO2H, Ac2O, CH2Cl2, 0 8C; k) POCl3, Py,
CH2Cl2, 0 8C, 64% (3 steps); l) nBu3SnH, AIBN, CH3CN, reflux; I2, RT
81% (2 steps); m) DIBAL-H, CH2Cl2, �78!0 8C; n) DHP, CSA,
CH2Cl2, RT; o) Boc2O, DMAP, CH3CN, 0 8C!RT, 94 % (3 steps);
p) [BnPd(PPh3)2Cl] , CuI, (2-furyl)3P, methyl 2-(tributylstannyl)acrylate
(20), DMF/HMPA (2:1), 80 8C, 63%; q) CSA, MeOH, RT, 98%.
AIBN = azobisisobutyronitrile, Boc= tert-butoxycarbonyl, CSA= 10-
camphorsulfonic acid, DHP =3,4-dihydro-2H-pyrane, DIBAL-H= diiso-
butylaluminum hydride, DMAP=N,N-dimethyl-4-aminopyridine,
DMF= N,N-dimethylformamide HMPA=hexamethylphosphoric tri-
amide, Ms = methanesulfonyl, M.S.= molecular sieves, NMO= N-
methylmorpholine-N-oxide, TBDPS= tert-butyldiphenylsilyl, TBAF =
tetra-n-butylammonium fluoride, THF = tetrahydrofuran,
TPAP= tetrapropylammonium perruthenate.

Scheme 4. Synthesis of the lower-segment 27. Reagents and condi-
tions: a) PPh3, DEAD, benzene, 0C8!RT, 76 %; b) TFA, Me2S, CH2Cl2,
RT; c) pyrrolidine, MeOH/CH3CN (5:1), 0!60 8C, 65% (2 steps);
d) PPh3, CCl4, 2-methyl-2-butene, CH3CN, 60 8C, 35%; e) tBuOK,
TrocCl, DMAP, THF, 0 8C; f) mCPBA, aq HClO4, MeOH, 0!50 8C,
42% (2 steps); g) LDA, THF, �78!0 8C, 60%. DEAD= diethyl azodi-
carboxylate, DNs= 2,4-dinitrobenzenesulfonyl, LDA = lithium
diisopropylamide, mCPBA= meta-chloroperbenzoic acid, Troc = 2,2,2-
trichloroethoxycarbonyl.
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With the lower segment of (�)-conophylline (1) in hand,
we then synthesized the upper segment 29 from 7-mesyloxy-
tabersonine 31, which was synthesized from indole derivative
30 and sulfonamide 21 in a similar manner as described in
Scheme 4. After protection of enamine 31 with a Troc group,
stereoselective epoxidation was carried out by treatment with
mCPBA (Scheme 5).[15] Finally, removal of the Troc group
and switching of the mesyl group to an allyl group afforded
the upper segment 29.

Having synthesized the requisite upper and lower seg-
ments, we then turned our attention to the coupling reaction
of the two segments (Scheme 6). For the crucial generation of
the iminium ion, we examined the Polonovski–Potier-type
reaction.[5] Thus, mCPBA oxidation of the lower-segment 27
provided the N-oxide 33 as a mixture of diastereomers, which
was then treated with TFAA in the presence of the upper-
segment 29. Fortunately, the desired coupling product 34 was
obtained as a single isomer in 50 % yield based on 29. Upon
palladium-mediated removal of the allyl group, a spontaneous
ring closure proceeded to furnish the dihydrofuran ring. This
result unambiguously indicated that regioselective elimina-
tion of the O-acyl N-oxide proceeded to generate the iminium
ion at C3–N4 and the subsequent nucleophilic attack of the
upper-segment 29 occurred from the a face to give 34. Finally,
the Ms group on the phenolic hydroxy group and the Troc
group were successfully removed using excess LDA[17] to
furnish (�)-conophylline (1). All of the data regarding the
synthetic conophylline were identical to those reported for
the natural compound.[1]

Synthetic utility of the regio- and diastereoselective
Polonovski–Potier-type reaction and the one-pot deallyl-
ation/cyclization cascade established for the synthesis of
(�)-conophylline (1) proved to be applicable to the synthesis
of conophyllidine (2 ; Scheme 7). Thus, the crude N-oxide 33
was subjected to the coupling reaction with the upper-
segment 36, which was prepared from 31 by switching the
protective group from an Ms group to an allyl group, giving
the desired coupling product 37 in 55 % yield. Finally, the
endgame sequence involving formation of the dihydrofuran
ring initiated by the palladium-mediated deallylation and
removal of both the Ms and Troc groups under Carreira�s
conditions[17] provided (�)-conophyllidine (2).[1b]

In conclusion, efficient total syntheses of (�)-conophyl-
line (1) and (�)-conophyllidine (2) have been accomplished
by using a newly developed coupling strategy of two
aspidosperma indole segments through the regio- and diaste-

Scheme 5. Synthesis of the upper-segment 29. Reagents and condi-
tions: a) NaH, TrocCl, DMAP, THF/DMF (3:1), 0 8C; b) mCPBA, aq
HClO4, MeOH, 0!50 8C, 80% (2 steps); c) Zn, aq KH2PO4, THF,
60 8C; d) 1m KOH, MeOH, 50 8C; e) AllylBr, K2CO3, DMF, 60 8C, 82%
(3 steps).

Scheme 6. Completion of the total synthesis of (�)-conophylline (1).
Reagents and conditions: a) mCPBA, CH2Cl2, 0 8C; b) TFAA, CH2Cl2, 08C!
RT, 50% (2 steps); c) [Pd(PPh3)4] , pyrrolidine, CH2Cl2, RT, 76%; d) LDA,
THF, �78!0 8C, 72%.

Scheme 7. Completion of the total synthesis of (�)-conophyllidine (2).
Reagents and conditions: a) 1m KOH, MeOH, 50 8C; b) AllylBr, K2CO3,
DMF, 60 8C, 82 % (2 steps); c) mCPBA, CH2Cl2, 0 8C; d) TFAA, CH2Cl2,
0 8C!RT, 55% (2 steps); e) [Pd(PPh3)4] , pyrrolidine, CH2Cl2, RT, 72 %;
d) LDA, THF, �78!0 8C, 67 %.
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reoselective Polonovski–Potier reaction and the dihydrofuran
ring formation.
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