

ENZYMATIC α (2-3)SIALYLATION OF NON-NATURAL TYPE-I (LEWIS^c) DISACCHARIDES WITH RECOMBINANT SIALYL-TRANSFERASE

Gabi Baisch, Reinhold Öhrlein*, Markus Streiff

NOVARTIS PHARMA AG, Schwarzwaldallee 211, CH-4002 Basle, Switzerland

Received 13 October 1997; accepted 26 November 1997

ABSTRACT

Recombinant $\alpha(2-3)$ sialyl-transferase from rat liver is used to sialylate a series of type-I (Lewis^c) disaccharides on a preparative scale. The enzyme tolerates a broad array of N-acetyl replacements of the N-glucosamine subunit ranging from small and large lipophilic groups to charged and heterocyclic amides. © 1998 Elsevier Science Ltd. All rights reserved.

Recent research in the carbohydrate area has revealed the important biological roles of cell-surface carbohydrates^{1,2}. Besides many other adhesive interactions, oligosaccharides are e.g. involved in inflammatory responses³ and host-graft rejections⁴ to mention just a few. Therefore, there is an ongoing challenge for ever more efficient methods⁵ to synthesize various glycoconjugates for drug discovery⁶.

An alternative to the reliable but cumbersome chemical synthesis of carbohydrates⁷ is a combined chemoenzymatic approach⁸. We could recently show that glycosyl-transferases, which form oligosaccharides *in vivo* by sequential transfer of a monosaccharide from a nucleotide-activated donor to a growing oligosaccharide chain⁹, can be used to prepare a wide range of non-natural oligosaccharides highly regio- and stereospecifically in a very efficient manner^{10,11,12}. Here we wish to report our findings concerning an even more extended use of recombinant $\alpha(2-3)$ -(N)-<u>sialyl-transferase</u> (sia-T)¹³ (EMBL accession no. M97754)¹¹ for the synthesis of non-natural oligosaccharides.

A series of type-I disaccharides is first synthesized enzymatically¹⁴ or chemically (see scheme). The common precursor 1 is obtained from 9-hydroxy nonanoic acid methylester following a standard glycosylation protocol¹⁵. It is then 4,6-benzylidenated and subsequently galactosylated at the 3-OH group with commercial α -galactosyl bromide in the presence of mercury cyanide¹⁶ to give disaccharide 2. This compound is treated first

E-mail: REINHOLD.OEHRLEIN@pharma.novartis.com.

with trifluoro acetic acid to remove the benzylidene group and then reacetylated followed by a Pd° -catalyzed deprotection of the amino group¹⁵ to yield derivative **3**. The amine is acylated either with acyl chlorides or carbonic acids according known protocols¹⁰. A final deprotection step gives the type-I disaccharides **4**. In some cases (indicated in the table as alternative route) step 3) (see scheme) is immediately followed by step 7) and then step 5). The resulting O-deacetylated derivative of disaccharide **3** is finally N-acylated as described for the protected compound to give type-I sugars **4**. These disaccharides are incubated with recombinant sia-T and cytidine-monophosphosialic acid (CMP-sia) (see exp. procedure)^{11,17}.

Scheme: 1) PhCH(OMe)₂, CSA, 95%; 2) α -perAcgal-Br, Hg(CN)₂, 64%; 3) TFA, 100%; 4) Ac₂O, pyr, 76%; 5) Pd(PPh₃)₄, diethyl malonate or thiosalicylic acid, 89%; 6) acylate; 7) MeONa, MeOH; 8) Sia-T, CMP-sia (yields see table).

Although it was shown in a previous study¹⁸ that the native rat liver enzyme tolerated minor replacements of the N-acetyl group, like an azido- or amino-group, the recombinant enzyme exhibits an unexpected broad substrate tolerance. Selected examples of a great number of type-I sugars 4, which have been α -sialylated at the 3-OH group of the terminal galactose unit, are listed in the table. Likewise as the parent N-acetyl compound (entry 1) small and large lipophilic N-acyl replacements (entries 2 - 5, 10) are accepted by the sia-T. Even polar (entry 6) or positively and negatively charged substituents (entries 7, 8) are tolerated. The natural N-acetyl group can even be replaced by a sulfonamide (entry 9) or heterocyclic amides (entries 11, 12), which closely resemble nucleotides.

The structure of all new compounds has been proven by 1 H, 13 C and MS-spectra. The NMR-data are in good agreement with those of the parent compound (entry 1, compare also 19). Selected shifts of some significant reporter groups are included in the table. The $\beta(1-3)$ linkage of the galactose unit is nicely indicated by a large downfield shift of C-3 of the N-acyl glucosamine moiety. The attachment of sialic acid to the 3-OH of the galactose moiety is confirmed by a downfield shift of the galactose C-3 and also nicely by the H-3.

entry	acyl	% (mg)	GlcNacyl: H-1c); C-1, C-2, C-3	Gal: H-1c); H-3e); C-1, C-3	Sia: H-2e f); Ac, C-2, C-3	C-others: OCH3, NHR
1a)	ب م≓ر	70 (81.2)	4.39; 102.40; 56.08; 85.09	4.27; 3.96; 105.49; 77.72	2.73; 22.74; 101.17; 41.00	51.99; 23.44
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	71 (36.0)	4.62; 102.91; 57.74; 83.91	4.30; 3.94; 104.54; 77.40	2.75; 22.68; 101.23; 41.77	51.98; 117.43
3 a)	∘≺⁺	55 (10.0)	4.44; 102.15; 55.32; 84.08 d)	4.30; 3.93; 105.19; 77.57	2.77; 22.61; 101.17; 42.22	51.98; 164.71
4	o≓	72 (33.0)	4.60; 102.67; 56.65; 83.83	4.35; 3.94; 104.59; 77.50	2.71; 22.72; 101.36; 41.39	51.97; 128.58
5b)	o≓ S	69 (25.8)	4.45; 102.58; 57.80; 83.10	4.36; 3.99; 104.25; 77.76	2.73; 22.67; 101.24; 41.72	51.98; 16.35
6a)	e E	79 (14.3)	4.50; 102.22; 55.63; 84.49	4.28; 3.96; 105.35; 77.56	2.80; 22.61; 100.94; 42.32	51.98; 62.82
7b)	MH ²	59 (12.4)	4.40; 102.22; 55.76; 85.53	4.25; 3.95; 105.79; 77.77	2.82; 22.58; 100.95; 42.42	51.98; 45.70
æ	So ₃ Na	53 (13.0)	4.65; 102.09; 57.98; 82.56	4.51; 4.07; 103.81; 77.10	2.78; 22.84; 100.98; 41.65	g); 64.38
6	င်းလုံးလ ကို	94 (28.1)	4.40; 103.01; 59.77; 84.37	4.28; 3.95; 104.89; 77.36	2.79; 22.76; 100.18; 41.84	51.97; 42.47
10	¢ − +	60 (31.3)	. 4.74; 102.76; 56.70; 83.39	4.39; 4.03; 104.31; 77.53	2.70; 22.68; 101.37; 41.40	51.95; 106.36
11	₽ Z Z H	73 (55.2)	4.52; 102.14; 56.67; 84.17	4.31; 4.00; 105.35; 77.51	2.73; 22.78; 101.13; 41.62	52.02; 148.07
12		82 (38.9)	4.66; 102.80; 56.38; 83.43	4.44; 4.13; 103.95; 77.60	2.67; 22.66; 101.20; 41.46	51.96; 112.92

Table: all measurements in D₂O-CD₃OD (ref. D₂O: 4.80 ppm and <u>C</u>D₃OD: 49.00 ppm); a) starting material from enzymatic synthesis¹⁴; b) alternative route, see text; c) all dubletts J ~ 8 Hz; d) main isomer; e) dd J ~ 9 and 3.5 Hz; f) dd J ~11.5 and ~3 Hz; g) free acid. In conclusion our findings render recombinant sia-T a versatile and stereochemical reliable tool for the glycobiologist. The biocatalyst does not only accept a wide range of type-II disaccharides, as previously shown by us¹¹, but also tolerates a broad range of type-I sugars, as shown in the present study, to give a large number of sialyl Lewis^a precursors.

Representative experimental procedure: To a mixture of 800 µl of bidistilled water, 1600 µl of Na-cacodylate buffer (0.05 M, pH = 6.5) and 1600 µl of a 0.06 M MnCl₂-solution are added 12.0 mg (21.0 µmol) of disaccharide 4 (entry 6), 18.3 mg (29.0 µmol contains ~ 70%) CMP-sia²⁰ and 2.0 mg of bovine serum albumine (Boehringer). This mixture is incubated at 37° C in a plastic tube with 100 µl (670 mU) sia-T and 2 µl (34 U) of calf intestine alkaline phosphatase (Boehringer no. 108146, 7500 U/ 498 µl). After a TLC (CH₂Cl₂ - Methanol - water mixtures) shows the consumption of the starting acceptor 4, the turbid solution is centrifuged and the clear supernatant passed over a C-18 reversed- phase column¹⁷, washed with water, eluted with methanol and finally purified over silica-gel (CH₂Cl₂ - Methanol - water mixtures). Lyophilization from dioxane-water yields 14.3 mg (79%) of compound 5 (entry 6) as a white powder which is pure according its MS-, ¹H- and ¹³C NMR-analysis. In order to increase the solubility of some acceptor substrates (entries 4, 11, 12) up to 8.5% of DMSO (vol/vol) can be added to the incubation mixture.

References:

- 1) R. A. Dwek, Chem. Rev. 1996, 96, 683.
- 2) A. Varki, Glycobiology 1993, 3, 97.
- 3) P. R. Crocker, T. Feizi, Curr. Opin. Struct. Biol. 1996, 6, 679.
- 4) F. A. Neethling, E. Koren, Y. Ye, S. V. Richards, M. Kujundzic, R. Oriol, D. K. C. Cooper, Transplantation 1994, 57, 959.
- 5) J. C. McAuliffe, O. Hindsgaul, Chem. & Ind. 1997, 3, 170.
- 6) M. J. Sofia, DDT 1996, 1, 27.
- 7) F. Barresi, O. Hindsgaul, J. Carbohydr. Chem. 1995, 14, 1043.
- 8) H. J. M. Gijsen, L. Qiao, W. Fitz, C.-H. Wong, Chem. Rev. 1996, 96, 443.
- 9) S. C. Crawley, M. M. Palcic, Modern Methods Carbohydr. Synth. 1996, 492.
- 10) G. Baisch, R. Öhrlein, B. Ernst, Bioorg. Med. Chem. Lett. 1996, 6, 749.
- 11) G. Baisch, R. Öhrlein, M. Streiff, B. Ernst, Bioorg. Med. Chem. Lett. 1996, 6, 755.
- 12) G. Baisch, R. Öhrlein, A. Katopodis, B. Ernst, Bioorg. Med. Chem. Lett. 1996, 6, 759.
- 13) D. X. Wen, B. D. Livingston, K. F. Medziharadsky, S. Kelm, A. L. Burlingame, J. C. Paulson, J. Biol. Chem. 1992, 267, 21011.
- 14) G. Baisch, R. Öhrlein, M. Streiff, F. Kolbinger, manuscript submitted to Bioorg. Med. Chem. Lett. 1997.
- 15) P. Boullanger, J. Banoub, G. Descotes, Can. J. Chem. 1987, 65, 1343.
- 16) R. M. Ratcliffe, D. A. Baker, R. U. Lemieux, Carbohydr. Res. 1981, 93, 35.
- 17) M. M. Palcic, Methods Enzymol. 1994, 230, 313.
- 18) K. B. Wlasichuk, M. A. Kashem, P. V. Nikrad, P. Bird, C. Jiang, A. P. Venot, J. Biol. Chem. 1993, 268, 13971.
- 19) A. Lubineau, C. Augé, P. François, Carbohydr. Res. 1992, 228, 137.
- 20) CMP-sia was gratefully supplied by Prof. U. Kragl (KFZ Jülich, Germany): M. Kittelmann, T. Klein, U. Kragl, C. Wandrey, O. Ghisalba, Appl. Microbiol. Biotechnol. 1995, 44, 59.