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Abstract: Directed, homogeneous hydrogenation of 1-(1-hydroxymethylethyl)-5-methoxy-3,4dihydronaphthalena (7), followed by 
protection and selective benzylic oxidation gave the 10x0~(4W, 1 IR’) compound (13). After addition of MeCeCla. the natural C-l 
stereochemistry was established by intramolecular hydride dellvery from the di-t-butylsifylether. Final elaboration of the sidechain and 
the Ar ring substituents gave the secopseudopterosin r&cone ether (3). 

Pseudopterosfn A (1)’ and secopseudopterosin A (2)2 are members of a family of diterpenes isolated from 

pseudopteqmgia sp. by Fenical and co-workers. The potent anti-inftammatofy actfvfty of these substark& gives good 

reason to regard them as targets for flexible, stereocontrolled syntheses. Two routes to the tricyclic system have 

appeared,4*5 having in common the annelation of an aromatic ring onto a terpene-derived unit in which three 

stereocenters were already established. In this paper, we outline a conceptually different, tetralone-based route to the 

racemic secopseudopterosin aglycone ether (3), with >20:1 relative stereocontrol at each stereocenter. 

Our mute to key intermediate (4) from 5methoxytetrabne (5) utilises a directed hydrogenation in conjunction with a 

selective functionalisation of a benzylic methylene group. The final stereocenter is established by a different type of 

directed reduction, using intramolecular ionic hydrogenation as a new method for controlling benzylii stereochemistry. In 

the accompanying paper, we describe the conversbn of (4) to the tricyclic series, and other aspects of chemo- and 

regioselectivii in benzylic carbonium ion chemistry. 

2 R’ I a-D-Arabfnosyl, Ra I H 

3 RI-H.t?-Me 

The conversion of (5) to (4) is shown in Scheme 1. Reformatsky reaction” [Zn, MeCHBrCOpEt, MesSiCl 

activation, THF, 65O], followed by dehydratbn [k&OH, 1,2-C2HqCl2, w afforded racemic’ ester (S), which was reduced 

[NaH2Al(OCH2CH20Me)2, Et201 to homoallyiii alcohol (7) [mp 63-65O; 7565%]. Dihydronaphthalenes (6) and (7) have a 

strongly preferred solution conformation, s depicted for (7), which minimlses interactions with the peri-ArH and 

differentiates the diastereotopic faces of the ofefin, permftting stereoselecttve reduction. 
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Reagents (see text for details): a: Zn, MeCHBrCQEt; MsOH. b: Red-Al. c: clRh(PPhs)s, f.f2, f-BucK 
ofH2, W-C; PIQGWDCI, PY. d: K&08, CuSO4. e: WC; NaOMe. 1: MeCeCh; TSOH; ~-Bu~~~HcI, 
WdazOle. g: CFsCOzH (high dilution); rrBu4NF. h: HZ, w-c. 

Scheme 1 

Although normal reduction [Hp. WC] of (7) gave a 3:2 mixture of (8) and epimer (9)s [S values (CDCl3) for CHCHs 

in (8) and (9) were 0.77 and 1.04, respectively], directed homogeneous reductionto by the method of Thompsonft [0.05 

eq. CIRh(PPhs)s, 0.1 eq. f-BuOK, 80 psi Hp, THF, 23O, 50 h] afforded (8)/(S) in r95:5 ratio. Complete purity was secured 

upon one recrystallization of the derived pnitrobenzoate (10) [mp 90-920; 88% from (7)]. Selective oxidation was 

obtained by modifiying a known prooedure:12 treatment of (10) with K2S2Ds (2 eq.), CuSO4 (0.2 eq.) and symoollidinets 

(2 eq.) in MeCN-H20 [l:l, 800, 1.5 h] gave a mixture of aloohols (11)/(12) and ketone (13). Oxidation of this mixture 

[PCC,14 celite, CH2QJ provided (13) (83% from (lo)]. Following hydrolysis, treatment wlh MeCeClpf5 VHF, -70 to 2301 

and subsequent dehydration [TsOH] gave olefin (15) in 72% yield from (13). 
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Olefin (15) was inert to H~t_BuOKICIRh(PP$)3, but was recclced [l-l2, Pd-C] from the less hindered face to isomer 

(16), epimerbls at C-l with the natural series. With E@iH-CF3CO2lj, a 2:3 mtxture of (16) and the desired (4) was 

produced [6 values (CDCl3) for CHCH3: for (4). 0.87 and 1.16, and for (16), 0.66 and 1.161. The rapid, clean nature of 

this “ionic hydrogenation” 7 suggested the applicatbn of an intfaemokular versbn18 to secure the needed 

stereochemistry. Accordingly, (16) was COnVerted [2 eq. tBupSiHCI, 3 eq. imkiazole, DMF, 23O] to the ether’s (18). 

Syringe pump add&b+ [16-20 h] of (18) in CH2Cl2 to CF3CO2l-l [6 eq., O.lM in CH2Cl2] folbwed by desilylation [rr 

Bu4NF, THF. 239 gave (4) of >95% isomerfc purity in 65-75% yield from (16), 19-24% overall from 5-methoxytetrabne. 

Alcohol (4) was Converted to the agiycone ether (3) as folbws: tosylate (19). treated with Me2C=CHCH(Li)S02Ph 

[THF, -70 to 2301, afforded diastereoisomer mixture (20) .21 Desulfonylatbn of (20) [Li, EtNHd22 was accompanied by 

demethylatbn to yield (21) containing 8-13% of (22). After protection [MeOCH2CI, bPr2NEt] to afford (23), metalatbn2s 

was effected [t-BuLi, Et20, oo]. Workup with.B(OMe)s followed by’H202-H20-K2C0s24 gave catechol ether (24), and 

Mannich reaction [aq. CH20, morpholine. EtOH, 8001 produced (25). 

Mannich base (25) was resistant to both hydride reagents and Na-NH3, but was efficiently converted to the 

chloromethyl compound (26) [3 eq. CCl3OCOCI, 4 eq. symcolliiine or CPr2NE1, CH2Cl2, 0-23O, 6 h]. Reduction [NaBHA, 

DMSO] followed by hydrolysis25 [NaOH, aq. EtOH] gave CG-methyl compound (27), which was 0-methylated [Mel, 

K2CO3, acetone]. Final hydrolysis of the MOM ether IrsOH, MeOH] then provided (3), Mentical (TLC, MS, 400MHz PMR) 

with a sample prepared2 from secopseudopterosin. 

Acknowledgements: We thank Professor W. Fenical for an authentic sample of (3), and the Physical-Analytical 

department for spectra and analyses.26 
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