

Polyhedron 21 (2002) 1579-1588

www.elsevier.com/locate/poly

Scandium halide complexes of phosphine- and arsine-oxides: synthesis, structures and ⁴⁵Sc NMR studies

Nicholas J. Hill, William Levason*, Michael C. Popham, Gillian Reid, Michael Webster

Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

Received 31 October 2001; accepted 20 February 2002

Abstract

The reactions of ScCl₃·6H₂O, ScBr₃·6H₂O and ScI₃·8H₂O with Ph₃PO, Ph₃AsO, Ph₂MePO, Me₃PO and Me₃AsO have been examined in EtOH or Me₂CO solution. The new complexes [ScCl(Me₃PO)₅]Cl₂, [Sc(Me₃PO)₆]X₃ (X = Br or I), [ScX₂(Ph₃AsO)₄]X, [Sc(Me₃AsO)₆]X₃ (X = Cl, Br or I), [ScCl₃(Ph₂MePO)₃] and [ScBr₂(Ph₂MePO)₄]Br were isolated as solids and were characterised by analysis, IR and multinuclear (¹H, ³¹P{¹H} and ⁴⁵Sc) NMR spectroscopy and conductance measurements. The crystal structures of [ScBr₂(Ph₃PO)₄]Br·1/2Et₂O, [ScCl₂(Ph₃AsO)₄]Cl and [Sc(Me₃AsO)₆]Br₃ are also reported. The solution speciation (in CH₂Cl₂ or MeNO₂) in the various systems was examined by multinuclear NMR spectroscopy. The ⁴⁵Sc NMR chemical shifts and line widths show systematic trends with donor set and symmetry, which are described. No reaction between these ligands and ScF₃·1/2H₂O was observed. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Scandium; Phosphine oxide; Arsine oxide; X-ray structures; ⁴⁵Sc NMR

1. Introduction

The chemistry of scandium is the least studied of any 3d element, although interest in its complexes has increased in recent years with applications for example, in α -olefin polymerisation catalysis [1,2], various organic functional group transformations [3,4], and sol-gel preparations for oxide materials [5]. The quadrupolar ⁴⁵Sc nucleus (45 Sc = 100%, I = 7/2, Q (quadrupole moment) = -0.22×10^{-28} m), which is one of the most sensitive NMR nuclei ($D_c = 1700$) has been little used [6] but potentially should provide a very suitable probe for studying solution speciation. We have reported [7,8] detailed studies of $Sc(NO_3)_3$ and $Y(NO_3)_3$ complexes with R₃PO and R₃AsO ligands which exhibit a range of stoichiometries including nine-coordinate $[Y(R_3PO)_3(NO_3)_3],$ eight-coordinate $[M(R_3PO)_4 (NO_3)_2$ ⁺ (M = Sc or Y) and [Sc(Ph₃PO)₂(NO₃)₃], and six-coordinate $[M(Me_3AsO)_6]^{3+}$ (M = Sc or Y). In all these complexes the coordinated nitrate groups are bidentate, so quite different behaviour is to be expected with the monoatomic halide ligands. We have also reported [9] studies of yttrium halide complexes of these ligands, all of which are six-coordinate $[YX_2(Ph_3PO)_4]Z$ $(X = Cl, Br \text{ or I}; Z = X \text{ or PF}_6), [YX_3(Ph_2MePO)_3],$ $[YCl_2(Ph_2MePO)_4]PF_6, [YCl(Ph_3PO)_5][SbCl_6]_2, [Y(Me_3-PO)_6]X_3, [YX_2(Ph_3AsO)_4]X and [Y(Me_3AsO)_6]Cl_3. No$ complexes of scandium halides with pnictogen oxideligands have been described, and hence we have nowcarried out systematic studies of the reactions of $scandium halides ScX_3 <math>\cdot n$ H₂O (X = F, Cl, Br or I) with Ph_3PO, Ph_3AsO, Me_3PO, Ph_2MePO and Me_3AsO.

2. Results and discussion

2.1. Synthesis

Reactions of the hydrated scandium halides (excluding fluoride) with Ph₃PO, Ph₃AsO, Ph₂MePO, Me₃PO and Me₃AsO in ethanol or acetone were carried out using a variety of molar ratios and reaction conditions. Pure solids could be isolated as described in the Section

^{*} Corresponding author. Tel.: +44-2380-595-000; fax: +44-2380-593-781

E-mail address: wxl@southampton.ac.uk (W. Levason).

4, although NMR studies show that often the solutions contain a mixture of species. The isolated complexes were identified by a combination of analysis, IR, ¹H, ³¹P{¹H} and ⁴⁵Sc NMR spectroscopy, which also revealed that many retain lattice solvent even after prolonged drying in vacuum. The very poorly soluble $ScF_3 \cdot 1/2H_2O$ did not react with Ph₃PO or Me₃PO in boiling ethanol or acetone even with extended reaction times.

2.2. $[ScX_2(Ph_3PO)_4]X$

The reaction of $ScX_3 \cdot nH_2O$ with Ph_3PO in ethanol in molar ratios 1:3–6 resulted in white $[ScCl_2(Ph_3PO)_4]Cl$, $[ScBr_2(Ph_3PO)_4]Br$ and yellow $[ScI_2(Ph_3PO)_4]I$ (Table 1). Attempts to isolate $[ScX_3(Ph_3PO)_3]$ using low $ScX_3:Ph_3PO$ ratios or other solvents were unsuccessful. The presence of six-coordinate cations with O_4X_2 donor sets was confirmed by an X-ray crystal structure of $[ScBr_2(Ph_3PO)_4]Br \cdot 1/2Et_2O$, which (Fig. 1, Table 2)

Table 1 ${}^{45}Sc$ and ${}^{31}P\{^1H\}$ NMR data a

	45 Sc($w_{1/2}$ (Hz))	$^{31}P\{^{1}H\}$	Solvent
[ScCl ₂ (Ph ₃ PO) ₄]Cl	75(850)	34.5	CH ₂ Cl ₂ -
			CDCl ₃
[ScCl ₃ (Ph ₃ PO) ₃] ^b	121(1400)	34.0, 33.0	CH_2Cl_2-
			CDCl ₃
[ScBr ₂ (Ph ₃ PO) ₄]Br	108(4500)	35.8	CH_2Cl_2-
			CDCl ₃
[ScCl(Me ₃ PO) ₅]Cl ₂	47.0(250)	56.0, 54.5	MeNO ₂ -
			CDCl ₃
[ScCl ₂ (Me ₃ PO) ₄]Cl ^b	85.0(360)	54.0(?)	MeNO ₂ -
			CDCl ₃
[Sc(Me ₃ PO) ₆]Br ₃ ^c	4.4(sept)	57.0(eight	MeNO ₂ -
L.		lines)	CDCl ₃
[ScBr(Me ₃ PO) ₅]Br ₂ ^b	51.5(850)	56.5, 55.0	MeNO ₂ -
			CDCl ₃
$[Sc(Me_3PO)_6]I_3$	4.2(sept)	57.0 (eight	MeNO ₂ -
		lines)	CDCl ₃
[Sc(Ph ₃ AsO) ₄ Cl ₂]Cl	96(4000)		CH ₂ Cl ₂ -
	1.40(20.000)		CDCl ₃
$[Sc(Ph_3AsO)_4Br_2]Br$	140(20 000)		CH_2Cl_2-
	56(00)		CDCl ₃
$[Sc(Me_3AsO)_6]Cl_3$	56(80)		MeNO ₂ -
$[\mathbf{C}_{\mathbf{r}}(\mathbf{M}_{\mathbf{r}}, \mathbf{A}_{\mathbf{r}}\mathbf{O})]\mathbf{D}_{\mathbf{r}}$	5((70)		CDCl ₃
$[Sc(Me_3AsO)_6]Br_3$	30(70)		$MeNO_2 - CDC1$
ISe(Ma AsO) II	56(70)		MaNO
[SC(10103ASO)6]13	30(70)		CDC1
[ScCl.(Ph.MePO).]	123(1100)	40 5 42 5	CH-Cl-
	125(1100)	40.5, 42.5	
[ScCl ₂ (Ph ₂ MePO) ₄]Cl ^b	80(2000)	42.4	CH ₂ Cl ₂ -
	2000)		CDCl
[ScBr2(Ph2MePO)4]Br	100(8000)	41.0	CH ₂ Cl ₂ -
[30312(1 112:100 0)4]BI	100(0000)		
			,

^a All spectra obtained at 295 K in solvent specified.

^b Species obtained only in solution.

 $^{c}{}^{2}J(^{45}\text{Sc}-^{31}\text{P}) = 19$ Hz.

Fig. 1. View of the cation in $[ScBr_2(Ph_3PO)_4]Br \cdot 1/2Et_2O$ showing the atom numbering scheme. Ellipsoids are drawn at the 40% probability level and H atoms omitted for clarity.

reveals a trans octahedral cation with Br-Sc-Br very close to linear $179.04(5)^{\circ}$ and Br-Sc-O $88.6(3)^{\circ}$ - $91.3(3)^{\circ}$. The angles Sc-O-P are variable approximately $154-166^{\circ}$. The Sc-O(P) distances, approximately 2.07 are very similar to the values [7] in Å. $[Sc(Ph_3PO)_2(NO_3)_3]$ or $[Sc(Ph_2MePO)_4(NO_3)_2]^+$, whilst the Sc-Br distances 2.652(1), 2.661(1) Å appear to be the first reported. The IR spectrum of each complex contains one very strong broad feature in the range 1150–1130 cm⁻¹ assignable as v(PO), which may be compared with 1195 cm^{-1} in the 'free' ligand [7]. In CH₂Cl₂ solution [ScCl₂(Ph₃PO)₄]Cl approximates to a 1:1 electrolyte¹ and in the ${}^{31}P{}^{1}H$ NMR spectrum there is a main feature at δ 34.5 attributed to the tetrakis(Ph₃PO) complex, and weaker features at 26.0 (Ph₃PO), 34.0, 33.0. The corresponding ⁴⁵Sc NMR spectrum has a broad resonance at δ 75 and a weaker broader resonance at δ 121. Addition of excess Ph₃PO to these solutions results in the loss of the weaker

Table 2

Selected bond lengths (Å) and angles (°) for $[ScBr_2(Ph_3PO)_4]Br\cdot 1/2Et_2O$

Bond lengths			
Sc(1)-Br(1)	2.652(1)	Sc(1)-Br(2)	2.661(1)
Sc(1) - O(1)	2.090(4)	Sc(1) - O(3)	2.059(4)
Sc(1) - O(2)	2.057(4)	Sc(1) - O(4)	2.074(4)
P-O	1.504(4) -		
	1.512(4)		
Bond angles			
Br(1)-Sc(1)-Br(2)	179.04(5)	Br-Sc(1)-O	88.6(3)-91.3(3)
Sc(1) - O(1) - P(1)	153.6(2)	Sc(1) - O(3) - P(3)	163.0(2)
Sc(1) - O(2) - P(2)	159.1(3)	Sc(1) - O(4) - P(4)	166.5(2)

³¹P{¹H} NMR features at 34.0 and 33.0 and the ⁴⁵Sc NMR resonance at 121 which are attributed to mer-[ScCl₃(Ph₃PO)₃]. In the presence of excess Ph₃PO, [ScCl₂(Ph₃PO)₄]Cl is the only complex present in significant amounts, but in its absence some decomposition into mer-[ScCl₃(Ph₃PO)₃] occurs. Even a large excess of Ph₃PO fails to produce substitution of further chloride ligands, in contrast to the corresponding yttrium systems [10]. The ${}^{31}P{}^{1}H{}$ NMR spectra of $[ScX_2(Ph_3PO)_4]X$ (X = Br or I) in CH₂Cl₂ solution show only a single resonance in each and the conductances do not change significantly on addition of Ph₃PO, consistent with $[ScX_2(Ph_3PO)_4]X$ as the only species present. The ⁴⁵Sc NMR spectrum of the bromide confirms this with a broad feature at δ 108, but the ⁴⁵Sc resonance of the iodo-complex is extremely broad (δ ca. 200, $w_{1/2}$ ca. 20000 Hz) and whilst the δ value is reasonable for a O₄I₂ set, the line-width could clearly obscure any other species present.

2.3. $[ScCl(Me_3PO)_5]Cl_2$ and $[Sc(Me_3PO)_6]X_3$ $(X_3 = Br \text{ or } I)$

The reaction of $ScX_3 \cdot nH_2O$ with Me₃PO in a 1:6 molar ratio in ethanol gave $[Sc(Me_3PO)_6]X_3$ (X = Br or I), but only $[ScCl(Me_3PO)_5]Cl_2$ for the lightest halide. The complexes are insoluble or poorly soluble in chlorocarbons, alcohols or acetone, but dissolve in nitromethane. In nitromethane solution, the ¹H, ³¹P{¹H} and ⁴⁵Sc NMR spectra of [ScCl(Me₃PO)₅]Cl₂ show a mixture of species present, which can be identified as [ScCl(Me₃PO)₅]Cl₂, [ScCl₂(Me₃PO)₄]Cl (in ca. equal amounts), Me₃PO and some unassigned minor species. In the presence of excess Me₃PO, only $[ScCl(Me_3PO)_5]Cl_2$ ($\delta^{-45}Sc = 47$) is present in large amounts, but two weak resonances at δ ⁴⁵Sc 11 and 4 are also seen, the latter due to a small amount of $[Sc(Me_3PO)_6]^{3+}$ (see below). The molar conductivity of a 10^{-3} mol dm⁻³ solution in MeNO₂ is 117 Ω^{-1} cm² mol^{-1} , intermediate between 1:1 and 1:2 electrolytes and this increases with addition of Me₃PO to 180 Ω^{-1} $cm^2 mol^{-1}$, showing that excess phosphine oxide shifts the equilibrium in favour of the pentakis complex. An attempt to extract the chloride ligand from [ScCl(Me3-PO)₅|Cl₂ with SbCl₅ in the presence of Me₃PO was unsuccessful. Dissolution of [Sc(Me₃PO)₆]Br₃ in MeNO₂ also produces a mixture of complexes which can be identified by the NMR spectra as $[Sc(Me_3PO)_6]^{3+}$ (δ

⁴⁵Sc 4.5, $\delta^{-31}P\{^{1}H\}$ 56.5), [ScBr(Me₃PO)₅]²⁺ (δ^{-45} Sc 51.5, $\delta^{-31}P\{^{1}H\}$ 56.0, 55.0), Me₃PO, and a minor species at δ 11 in the ⁴⁵Sc NMR spectrum. Addition of excess Me₃PO shifts the equilibria in favour of $[Sc(Me_3PO)_6]^{3+}$, although very small amounts of the other complexes remain evident. In contrast to the initial solution where the resonances of $[Sc(Me_3PO)_6]^{3+}$ in both ⁴⁵Sc and ³¹P{¹H} NMR spectra are broad with illdefined coupling, in the presence of excess Me₃PO well resolved couplings are seen (Fig. 2) confirming the presence of the quadrupolar scandium in a cubic symmetry environment where relaxation is slow. The trends are continued in [Sc(Me₃PO)₆]I₃ in that the $[Sc(Me_3PO)_6]^{3+}$ cation is the only major species in solution even in the absence of added Me₃PO (there is also a feature at δ 11 in the ⁴⁵Sc spectrum). The weak feature in the ⁴⁵Sc NMR spectra of all three complexes at δ approximately 11 is attributed to a solventocomplex $[Sc(Me_3PO)_{6-n}(MeNO_2)_n]^{3+}$ since the resonance is suppressed by addition of Me₃PO, and moreover is absent if the spectra are recorded in Me₂CO solution (although solubility in acetone is very poor).

2.4. $[ScX_2(Ph_3AsO)_4]X$

The reaction of $ScX_3 \cdot nH_2O$ with Ph₃AsO in 1:4 molar ratio in ethanol gave the *trans*-[ScX₂(Ph₃AsO)₄]X (X = Cl or Br) complexes. The iodide complex failed to give reproducible analytical data, it would appear to be obtained with a mixture of polyiodide–iodide counteranions, although spectroscopically the cation seems analogous to those with the lighter halides (cf. [YI₂(Ph₃AsO)₄]I₅) [9]. The identity as *trans* octahedral

Fig. 2. 45 Sc NMR spectrum of $[Sc(Me_3PO)_6]^{3+}$ in MeNO₂ at 295 K in the presence of excess Me₃PO.

 $^{^{1}}$ CH₂Cl₂ has rarely been used as a solvent for conductivity measurements and in the standard review (W.J. Geary, Coord. Chem. Rev., 7 (1971) 81), some doubts were raised about its value for this purpose. We have used it here and in previous papers (refs [7–9]) to correlate with the NMR data obtained in CH₂Cl₂ solution, and with the typical conductances for the electrolyte types established using appropriate tetra-alkylammonium salts.

Table 3 Selected bond lengths (Å) and angles (°) for [ScCl₂(Ph₃AsO)₄]Cl

-			
Bond lengths			
Sc(1)-Cl(1)	2.562(4)	Sc(1)-Cl(2)	2.545(4)
Sc(1) - O(1)	2.079(7)	Sc(1) - O(3)	2.059(7)
Sc(1) - O(2)	2.089(7)	Sc(1) - O(4)	2.063(7)
As-O	1.651(7) -		
	1.668(7)		
Bond angles			
Cl(1)-Sc(1)-Cl(2)	179.8(1)	Cl-Sc(1)-O	88.6(3)-91.3(3)
Sc(1) - O(1) - As(1)	146.6(4)	Sc(1) - O(3) - As(3)	147.3(5)
Sc(1)-O(2)-As(2)	145.4(5)	Sc(1)-O(4)-As(4)	147.5(5)

cations was established by the X-ray structure of $[ScCl_2(Ph_3AsO)_4]Cl$ (Table 3, Fig. 3). Like the Ph₃PO complex (above) the scandium cation is *trans* octahedral with bond angles at scandium very close to those of a regular octahedron. The Sc–Cl distances 2.562(4), 2.545(4) Å are approximately 0.15 Å longer than observed in $[ScCl_3(thf)_3]$ [10] or scandium chloride complexes of crown ethers [11]. The Sc–O(As) distances are very similar to those [8] in the eight-coordinate $[Sc(Ph_3AsO)_4(NO_3)_2]^+$, but the Sc–O–As angles (Table 3) are rather more acute than the Sc–O–P angles in $[ScBr_2(Ph_3PO)_4]^+$. In CH₂Cl₂ solution the complexes are litle

in the presence of added ligand. For $[ScCl_2(Ph_3AsO)_4]Cl$ the ⁴⁵Sc NMR spectrum is a broad ($w_{1/2}$ 4000 Hz) resonance at δ 96 and there was no evidence for any dissociation into a tris(Ph_3AsO) complex (compare $[ScCl_2(Ph_3PO)_4]Cl$ above). The ⁴⁵Sc NMR spectrum of $[ScBr_2(Ph_3AsO)_4]Br$ has a very broad resonance ($w_{1/2}$ 18 000 Hz) centred at approximately δ 140 (\pm 20), whilst we have been unable to observe a ⁴⁵Sc resonance from the iodocomplex.

2.5. $[Sc(Me_3AsO)_6]X_3$

The reaction of $ScX_3 \cdot nH_2O$ with Me₃AsO in boiling ethanol readily affords the hexakis(Me₃AsO) complexes; the contrast with [ScCl(Me₃PO)₅]Cl₂ is notable. The complexes are characterised by a sharp singlet in the ¹H NMR spectra at approximately δ 2.1, and a sharp ⁴⁵Sc NMR signal at δ 56. The IR spectra show three strong bands in the region 925–840 cm⁻¹ attributable to v(As-O) and methyl rocking modes. These data compare well with those reported [7] for [Sc(Me₃-AsO)₆](NO₃)₃, and the presence of [Sc(Me₃AsO)₆]³⁺ cations was confirmed by an X-ray crystal structure of [Sc(Me₃AsO)₆]Br₃ (Fig. 4, Table 4). As expected the dimensions of the cation are very similar to those reported previously for the corresponding nitrate salt

Fig. 3. View of the cation in $[ScCl_2(Ph_3AsO)_4]Cl$ showing the atom numbering scheme. Ellipsoids are drawn at the 40% probability level and H atoms omitted for clarity.

Fig. 4. View of the cation in $[Sc(Me_3AsO)_6]Br_3$ showing the atom numbering scheme. Ellipsoids are drawn at the 40% probability level. The Sc(1) is located on a centre of symmetry.

Table 4 Selected bond lengths (Å) and angles (°) for [Sc(Me₃AsO)₆]Br₃

2.08(2)	Sc(1) - O(3)	2.11(2)
2.11(2)		
1.65(2)-1.69(2)		
89.5(6)	Sc(1) - O(1) - As(1)	133.8(9)
90.5(7)	Sc(1) - O(2) - As(2)	132.6(10)
88.3(6)	Sc(1) - O(3) - As(3)	146.3(10)
	2.08(2) 2.11(2) 1.65(2)-1.69(2) 89.5(6) 90.5(7) 88.3(6)	2.08(2) 2.11(2) 1.65(2)-1.69(2) 89.5(6) 90.5(7) 88.3(6) Sc(1)-O(1)-As(1) Sc(1)-O(2)-As(2) Sc(1)-O(3)-As(3)

[8], but the structure serves to confirm the ScO₆ environment with uncoordinated bromide ions. All three complexes are 3:1 electrolytes in 10^{-3} mol dm⁻³ MeNO₂ solution, although the conductivities increase a little on addition of Me₃AsO, possibly indicating some small amounts of coordination of halide, which is suppressed by excess ligand. However, only for [Sc(Me₃AsO)₆]Cl₃ is there any NMR evidence for a second complex in MeNO₂ solution, with a very weak singlet at δ 2.05 in the ¹H, and a broad weak feature at δ 84 in the ⁴⁵Sc spectrum, which we propose are due to small amounts of [ScCl(Me₃AsO)₅]²⁺, although this is ~ 5% of the concentration of the hexakis-complex.

2.6. $[ScCl_3(Ph_2MePO)_3]$ and $[ScBr_2(Ph_2MePO)_4]Br$

Isolation of pure complexes containing Ph2MePO proved difficult and attempts to obtain reproducible products from the ScI₃·8H₂O-Ph₂MePO system in either ethanol or acetone were unsuccessful. The white solid isolated from the reaction of hydrated ScCl₃ with Ph₂MePO in ethanol or acetone was identified as the [ScCl₃(Ph₂MePO)₃] complex by analysis. In CH₂Cl₂ solution this complex partially rearranges into $[ScCl_2(Ph_2MePO)_4]^+$ readily identified by a combination of ${}^{45}Sc$ and ${}^{31}P{}^{1}H$ NMR spectroscopy. A small amount of Ph2MePO is also present and there are weak features in the ⁴⁵Sc NMR spectrum which have no corresponding resonances in the ³¹P{¹H} NMR spectrum. From the NMR spectra the two scandium species are tentatively assigned as mer-[ScCl₃(Ph₂MePO)₃] and *trans*- $[ScCl_2(Ph_2MePO)_4]^+$ isomers. Addition of excess Ph₂MePO to the solution converts the scandium to the $[ScCl_2(Ph_2MePO)_4]^+$ and this is accompanied by the expected increase in conductance. In contrast the bromide complex isolated was [ScBr₂(Ph₂MePO)₄]Br, and in solution in CH₂Cl₂ this appears to be the only significant species present and the conductance is that of a 1:1 electrolyte, showing that [ScBr₃(Ph₂MePO)₃] does not form.

2.7. ⁴⁵Sc NMR data

The use of ⁴⁵Sc and ³¹P NMR spectroscopy to identify solution species has been discussed in previous sections. There are advantages and disadvantages to both nuclei in these systems. The $I = 1/2^{31}$ P nucleus is very sensitive, but the chemical shifts vary little between complexes in each ScX₃-R₃PO system, and coincidence or only partial resolution of resonances is a concern when identifying minor species or isomers present. The ⁴⁵Sc nucleus is also inherently very sensitive, but the line widths (Table 1) vary greatly and in some systems this also causes problems. The ⁴⁵Sc NMR spectra often show a number of weak and usually sharp resonances in addition to those of the major species, which we tentatively assign to hydrolysis/solvolysis impurities in solution, although there remains the possibility that some are due to other isomers of the phosphine oxide complexes. In situ ⁴⁵Sc NMR studies by Kirakosyan et al. [12,13], on ScCl₃–(RO)₃PO (L) systems (R = Me, Et or Bu) identified a range of complexes including $[ScClL_5]^{2+}$, cis- and trans- $[ScCl_2L_4]^{2+}$, fac- and mer- $[ScCl_3L_3]$, *cis*- and *trans*- $[ScCl_4L_2]^-$. In these phosphate systems the line-widths are much smaller than in the present phosphine oxides and often partial resolution of ${}^{45}Sc - {}^{31}P$ couplings were seen. The line widths in the present complexes increase Cl < Br « I and in several cases we were unable to observe resonances from the iodo-complexes. There is also a significant increase in line-width $R_3PO < R_3AsO$ in the halide systems. The broad lines indicate that the electric field gradient is substantial, promoting fast quadrupolar relaxation of the ⁴⁵Sc nucleus. The increasing line width $Cl \rightarrow Br \rightarrow I$ is predictable as the disparity in electron density increases between the hard O (of Ph₃AsO) and the increasingly soft halide, but clearly the effect is much greater than in the Ph₃PO analogues. We have shown elsewhere [8] that the donor power towards oxophilic metals is $R_3AsO >$ R₃PO and this is manifested here in increased electric field asymmetry. The ⁴⁵Sc NMR chemical shifts show systematic trends with donor set (Table 1, Scheme 1) the δ (⁴⁵Sc) shifting to high frequency with halide Cl \rightarrow Br \rightarrow I and $R_3PO \rightarrow R_3AsO$. This pattern is also seen in the ⁸⁹Y NMR shifts of the yttrium analogues [9]. As discussed above, only for $[Sc(Me_3PO)_6]^{3+}$ were ${}^{31}P-{}^{45}Sc$ couplings resolved (Fig. 2). We also note that intermolecular exchange with added R₃PO or R₃AsO is slow on the NMR time-scales in these systems.

3. Conclusions

All the scandium halide complexes isolated are based upon six-coordinate metal centres. The results also suggest that the affinity of scandium for chloride is much greater than for the heavier halides; compare [ScCl(Me₃PO)₅]Cl₂ and [Sc(Me₃PO)₆]X₃ (X = Br or I), and that [ScX₃(R₃PO)₃] form only with X = Cl. Comparison with the yttrium halide systems [9] shows that whilst both metals form [MX₂(Ph₃EO)₄]X (E = As or P), in the presence of excess Ph₃PO, the yttrium systems also form [YX(Ph₃EO)₅]²⁺, whereas we have no evidence for pentakis complexes in the scandium systems. This is probably due to the smaller radius of scandium (r = 83 vs. 106 pm for Y) which may be unable to accommodate more than four bulky Ph₃EO ligands. For both metals the affinity for R₃AsO is greater than for R₃PO.

4. Experimental

Multinuclear NMR spectra were obtained on a Bruker DPX400 at 161.9 MHz $({}^{31}P{}^{1}H{})$ and referenced to external 85% H₃PO₄, 97.2 MHz (⁴⁵Sc) and referenced to 1 mol dm⁻³ $Sc(NO_3)_3$ in water at pH 1. Other physical measurements were made as before [7]. Ph₃PO, Ph₂MePO, Ph₃AsO (Aldrich) and Me₃PO (ALFA) were used as received. Me₃AsO was made by H₂O₂ oxidation of Me₃As in diethyl ether and purified by sublimation in vacuo [8]. ScF₃ \cdot 1/2H₂O was made by precipitation from aqueous solutions of Sc₂(SO₄)₃ and NaF, washed with water and dried in vacuo. ScBr₃·6H₂O was prepared by evaporating Sc_2O_3 with 48% HBr, and recrystallising the product from H₂O. Yield 79% (Found: Br, 60.8. Calc. for ScBr₃·6H₂O: Br, 61.0%). ScCl₃·6H₂O and ScI₃· 8H₂O were made by metathesis of aqueous solutions of scandium sulfate and the appropriate barium halide, removal of the precipitated BaSO₄, and evaporation to dryness in vacuo. ScCl₃·6H₂O yield 90% (Found: Cl, 40.8. Calc. for ScCl₃·6H₂O: Cl, 41.0%). ScI₃·8H₂O yield 86% (Found: I, 66.7. Calc. for ScI₃·8H₂O: I, 66.8%).

4.1. $[ScCl(Me_3PO)_5]Cl_2$

Ice-cold ethanol solutions (10 cm³) of $ScCl_3 \cdot 6H_2O$ (0.13 g, 0.5 mmol) and Me₃PO (0.28 g, 3.0 mmol) were mixed, stirred for 1 h and then concentrated to approximately 5 cm³ and refrigerated overnight. The white solid was filtered off and dried in vacuo. Yield 0.24 g, 63%. (Found: C, 29.7; H, 8.1. Calc. for $C_{15}H_{45}Cl_{3}O_{5}P_{5}Sc: C, 29.4; H, 7.4\%$). IR (cm⁻¹) (CsI disc): 2964w, 2896w, 1421w, 1360w, 1299m, 1182w, 1109br,vs (PO), 959s, 872s, 845m, 762s, 682m, 559w, 427s. ¹H NMR (300 K, CD₃NO₂): 1.5(d) ${}^{2}J({}^{31}P-{}^{1}H) =$ 14 Hz (Me₃PO); 1.90(d) $^{2}J(^{31}P-^{1}H) = 14$ Hz $([ScCl_2(Me_3PO)_4]^+);$ 1.8(d) [4H] 1.70(d) [H] ${}^{2}J({}^{31}P-{}^{1}H) = 14$ Hz ([ScCl(Me₃PO)₅]²⁺). ${}^{31}P\{{}^{1}H\}$ NMR (MeNO₂) 36.5 (Me₃PO), 54.0 ([ScCl₂- $(Me_3PO)_4]^+$), 54.5 [P], 56.0 [4P] [ScCl $(Me_3PO)_5]^{2+}$). ⁴⁵Sc NMR (MeNO₂) 47.0 ([ScCl(Me₃PO)₅]²⁺), 84.5

Scheme 1. Systematic trends in the 45 Sc NMR chemical shifts. The values under formulae are the chemical shift, values over arrows the chemical shift differences. Data for the hexahaloscandate ions are taken from Ref. [6].

 $([ScCl_2(Me_3PO)_4]^+)$. Λ_M (10⁻³ mol dm⁻³ MeNO₂) = 117 Ω^{-1} cm² mol⁻¹, +XS Me₃PO 180.

4.2. $[Sc(Me_3PO)_6]Br_3$

A solution of ScBr₃·6H₂O (0.20 g, 0.50 mmol) in icecold ethanol (10 cm³) was treated with Me₃PO (0.28 g, 3.0 mmol) in ethanol (5 cm³), resulting in an immediate white precipitate. After stirring for 1 h, the solid was filtered off and dried in vacuo. Yield 0.29 g, 54%. (Found: C, 25.2; H, 6.6. Calc. for C₁₈H₅₄Br₃O₆P₆Sc: C, 25.8; H, 6.5%). IR (cm⁻¹) (CsI disc): 2964w, 2897w, 1422m, 1361w, 1312m, 1299m, 1183w, 1110vbr s (PO), 960s, 872s, 762m, 682m, 428s, 418s. ¹H NMR (300 K, CD₃NO₂): 1.5(d) ${}^{2}J({}^{31}P^{-1}H) = 14$ Hz ([Scfr(Me₃PO); 1.85(d) ${}^{2}J({}^{31}P^{-1}H) = 14$ Hz ([Sc(Me₃PO)₆]³⁺); 1.70(d) [H], 1.85(d) [4H] ${}^{2}J({}^{31}P^{-1}H) = 14$ Hz ([ScBr(Me₃PO)₅]²⁺). ${}^{31}P{}^{1}H{}$ NMR (MeNO₂) 36.5 (Me₃PO), 56.5(m) ([Sc(Me₃PO)₆]³⁺), 56.0 [4P], 55.0 [P] ([ScBr(Me₃-PO)₅]²⁺). ${}^{45}Sc$ NMR (MeNO₂) 51.5 ([ScBr(Me₃-PO)₅]²⁺), 4.5 ([Sc(Me₃PO)₆]³⁺). ${}^{A}_{M}$ (10⁻³ mol dm⁻³ MeNO₂) = 179 Ω^{-1} cm² mol⁻¹, +XS Me₃PO 221.

4.3. $[Sc(Me_3PO)_6]I_3 \cdot EtOH$

Me₃PO (0.14 g, 1.5 mmol) and ScI₃·8H₂O (0.11 g, 0.25 mmol) were dissolved separately in boiling ethanol $(2 \times 5 \text{ cm}^3)$ and the solutions mixed to yield a pale yellow precipitate. After stirring for 1 h this was filtered off and dried in vacuo. Yield 0.14 g, 67%. (Found: C, 24.2; H, 6.1. Calc. for C₂₀H₆₀I₃O₇P₆Sc: C, 23.6; H, 5.9%). IR (cm⁻¹) (CsI disc): 3480br, 2964w, 2898w,

1421m, 1360w, 1312m, 1299m, 1184w, 1108vbr s (PO), 957s, 871s, 761m, 681m, 427s. ¹H NMR (300 K, CD₃NO₂): 1.1(t) [3H], 3.4(q) [2H] (EtOH), 1.88(d) [54H] ²J(³¹P⁻¹H) = 13 Hz ([Sc(Me₃PO)₆]³⁺); 1.82– 1.78(br). ³¹P{¹H} NMR (MeNO₂) approximately 57.5(s) ([Sc(Me₃PO)₆]³⁺). ⁴⁵Sc NMR (MeNO₂) 4.0 ([Sc(Me₃PO)₆]³⁺), 9.0. $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ MeNO₂) = 189 Ω^{-1} cm² mol⁻¹, +XS Me₃PO 242.

4.4. $[ScCl_2(Ph_3PO)_4]Cl$

Warm (60 °C) ethanol solutions (10 cm³) of ScCl₃. 6H₂O (0.13 g, 0.5 mmol) and Ph₃PO (0.55 g, 2.0 mmol) were mixed, concentrated to approximately 10 cm³ and then refrigerated for 1 h. The white solid was filtered off and dried in vacuo. Yield 0.35 g, 50%. (Found: C, 68.4; H, 4.7. Calc. for $C_{72}H_{60}Cl_3O_4P_4Sc$: C, 68.4; H, 4.8%). IR (cm⁻¹) (CsI disc): 3055w, 1624w, 1591w, 1439m, 1358w, 1191w, 1152s (PO), 1122s, 1091s, 1046w, 1029w, 999m, 751m, 726s, 697s, 544s, 473m, 460m, 445m, 430m. ¹H NMR (CDCl₃) 7.0–7.9(m). ³¹P{¹H} NMR (CH₂Cl₂) $([ScCl_2(Ph_3PO)_4]^+), 34.0 [2P],$ 33.0 [P] 34.5 ([ScCl₃(Ph₃PO)₃]), 26.0 (Ph₃PO). ⁴⁵Sc NMR (CH₂Cl₂) 76 ($[ScCl_2(Ph_3PO)_4]^+$), 121 ($[ScCl_3(Ph_3PO)_3]$). Λ_M $(10^{-3} \text{ mol } \text{dm}^{-3} \text{ CH}_2\text{Cl}_2) = 17 \ \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}, +XS$ Ph₃PO 22.

4.5. $[ScBr_2(Ph_3PO)_4]Br \cdot CH_2Cl_2$

A solution of $\text{ScBr}_3 \cdot 6\text{H}_2\text{O}$ (0.39 g, 1.0 mmol) in icecold ethanol (10 cm³) was added to Ph_3PO (1.11 g, 4.0 mmol) in ethanol (5 cm³) and stirred for 1 h. The solution was refrigerated and the white solid filtered off and dried in vacuo. It was recrystallised by dissolving in CH₂Cl₂ and diffusion of diethyl ether. Yield 0.84 g, 60%. (Found: C, 59.0; H, 4.5. Calc. for C₇₃H₆₂Br₃Cl₂O₄P₄Sc: C, 59.1; H, 4.2%). IR (cm⁻¹) (CsI disc): 3056w, 1620w, 1591w, 1438m, 1358w, 1188w, 1137s(PO), 1120s, 1084s, 1028m, 1000m, 750m, 725s, 692s, 547s, 465m, 454m, 426w, 317m, 306m, 269m, 255m. ¹H NMR (CDCl₃) 7.0–7.6(m) [30H], 5.2 [H] (CH₂Cl₂). ³¹P{¹H} NMR (CH₂Cl₂) 35.8. ⁴⁵Sc NMR (CH₂Cl₂) 108. *Λ*_M (10⁻³ mol dm⁻³ CH₂Cl₂) = 21 Ω⁻¹ cm² mol⁻¹, +XS Ph₃PO 23.

4.6. $[ScI_2(Ph_3PO)_4]I \cdot 2H_2O$

This was made similarly to the chloride analogue, as a pale yellow solid. Yield 44%. (Found: C, 54.7; H, 3.7. Calc. for $C_{72}H_{64}I_3O_6P_4Sc: C, 54.9; H, 4.1\%$). IR (cm⁻¹) (CsI disc): 3466br, 3054w, 1624w, 1590w, 1438m, 1359w, 1187w, 1132s(PO), 1122s, 1073s, 1027m, 999m, 750m, 725s, 693s, 543s, 464m, 452m, 425w. ¹H NMR (CDCl₃) 7.0–7.7(m) [60H], 1.7 [4H] (H₂O). ³¹P{¹H} NMR (CH₂Cl₂) 38.0. ⁴⁵Sc NMR (CH₂Cl₂) approximately 200 vbr. Λ_M (10⁻³ mol dm⁻³ CH₂Cl₂) = 22 Ω^{-1} cm² mol⁻¹.

4.7. $[ScCl_2(Ph_3AsO)_4]Cl \cdot 2EtOH$

An ethanol solution (5 cm³) of Ph₃AsO (0.32 g, 1.0 mmol) was added to a solution of ScCl₃·6H₂O (0.06 g, 0.25 mmol) in boiling ethanol (10 cm³). The mixture was concentrated to 5 cm³ and refrigerated overnight. The white solid was separated and dried in vacuo. Yield 0.24 g, 64%. (Found: C, 58.9; H, 4.5. Calc. for C₇₆H₇₂-As₄Cl₃O₆Sc: C, 59.5; H, 4.7%). IR (cm⁻¹) (CsI disc): 3407br, 3055w, 1583w, 1485m, 1440m, 1358w, 1187w, 1162w, 1089s, 1070w, 1027m, 999m, 908vs (AsO), 883m, 745s, 692s, 480s, 458m. ¹H NMR (CDCl₃) 7.0–7.7(m) [60H], 1.2(t) [6H], 3.4(q) [4H] (EtOH). ⁴⁵Sc NMR (CH₂Cl₂) 96. $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) = 20 Ω^{-1} cm² mol⁻¹, +XS Ph₃AsO 24.

4.8. $[ScBr_2(Ph_3AsO)_4]Br \cdot 5H_2O$

[ScBr₂(Ph₃AsO)₄]Br·5H₂O was made similarly (54%) (Found: C, 51.4; H, 3.6. Calc. for C₇₂H₇₀As₄Br₃O₉Sc: C, 51.9; H, 4.3%). IR (cm⁻¹) (CsI disc): 3400br, 3051w, 1654m, 1582w, 1485m, 1440s, 1354w, 1185m, 1162w, 1088s, 1027w, 999m, 883s (AsO), 762s, 744s, 691s, 482s, 473s, 457m, 413m. ¹H NMR (CDCl₃) 7.1–6.6(m) [60H], 1.8(br) [11H] (H₂O). ⁴⁵Sc NMR (CH₂Cl₂) approximately 140. $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) = 19 Ω⁻¹ cm² mol⁻¹, +XS Ph₃AsO 23.

4.9. $[ScI_2(Ph_3AsO)_4]I$

[ScI₂(Ph₃AsO)₄]I was made similarly as a mustard coloured solid (46%). Not obtained analytically pure see text. IR (cm⁻¹) (CsI disc): 3300m, 1636w, 1439m, 1359w, 1185w, 1161w, 1088s, 1027w, 998m, 883s,br (AsO), 739s, 690s, 477m, 457m, 419m. ¹H NMR (CDCl₃) 7.15–7.7(m). ⁴⁵Sc NMR (CH₂Cl₂) not observed. $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ CH₂Cl₂) = 20 Ω⁻¹ cm² mol⁻¹, +XS Ph₃AsO 23.

4.10. $[Sc(Me_3AsO)_6]Cl_3$

Scandium chloride hydrate (0.05 g, 0.19 mmol) was dissolved in boiling ethanol (10 cm³) and added to a solution of Me₃AsO (0.21 g, 1.5 mmol) in ethanol (10 cm³), resulting in a white suspension. The solution was concentrated to approximately 10 cm³ and the white solid filtered off and dried in vacuo. Yield 0.13 g, 71%. (Found: C, 22.1; H, 5.6. Calc. For C₁₈H₅₄As₆Cl₃O₆Sc: C, 22.3; H, 5.6%). IR (cm⁻¹) (CsI disc): 2981w, 2904w, 1418m, 1359w, 1295w, 1269m, 1114w, 924s, 874s, 844s, 647s, 420m. ¹H NMR (300 K, CD₃NO₂): 2.1(s), 2.05(w). ⁴⁵Sc NMR (MeNO₂) 56.0 ([Sc(Me₃AsO)₆]³⁺), 84(vw) ([ScCl(Me₃AsO)₅]Cl₂). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ MeNO₂) = 214 Ω^{-1} cm² mol⁻¹, +XS Me₃AsO 251.

4.11. $[Sc(Me_3AsO)_6]Br_3$

[Sc(Me₃AsO)₆]Br₃ was made similarly. Yield 62%. (Found: C, 19.0; H, 5.0. Calc. for C₁₈H₅₄As₆Br₃O₆Sc: C, 19.6; H, 5.0%). IR (cm⁻¹) (CsI disc): 2982w, 2920w, 1653w, 1418m, 1359m, 1268m, 1088m, 926s, 874s, 846s, 648s, 420m. ¹H NMR (300 K, CD₃NO₂): 2.05(s). ⁴⁵Sc NMR (MeNO₂) 56.0 ([Sc(Me₃AsO)₆]³⁺). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ MeNO₂) = 239 Ω⁻¹ cm² mol⁻¹, +XS Me₃AsO 281.

4.12. $[Sc(Me_3AsO)_6]I_3 \cdot 3H_2O$

A solution of ScI₃·8H₂O (0.10 g, 0.17 mmol) in warm (60 °C) ethanol (10 cm³) was added to a solution of Me₃AsO (0.14 g, 1.0 mmol) resulting in immediate precipitation of a yellowish solid. After stirring for 1 h this was filtered off and dried in vacuo. Yield 0.11 g, 53%. (Found: C, 15.8; H, 3.9. Calc. for C₁₈H₆₀-As₆I₃O₉Sc: C, 16.7; H, 4.6%). IR (cm⁻¹) (CsI disc): 3440br, 2978w, 2902w, 1647w, 1417m, 1359w, 1265m, 1088w, 921s, 872s, 844s, 646s, 420m. ¹H NMR (300 K, CD₃NO₂): 2.1(s) [10H], 2.05(vw) 1.7 [H] (H₂O). ⁴⁵Sc NMR (MeNO₂) 56.0 ([Sc(Me₃AsO)₆]³⁺). $\Lambda_{\rm M}$ (10⁻³ mol dm⁻³ MeNO₂) = 253 Ω^{-1} cm² mol⁻¹, +XS Me₃AsO 280.

1587

4.13. $[ScCl_3(Ph_2MePO)_3] \cdot H_2O$

Solutions of ScCl₃·6H₂O (0.06 g, 0.25 mmol) and Ph_2MePO (0.16 g, 0.75 mmol) in boiling acetone (2 × 10 cm^{3}) were mixed resulting in a white suspension. Hexane (10 cm^3) was added and the white sticky solid separated and stirred with diethyl ether for 24 h. The white powder was dried in vacuo. Yield 0.17 g, 59%. (Found: C, 56.8; H, 5.1. Calc. for C₃₉H₄₁Cl₃O₄P₃Sc: C, 57.2; H, 5.0%). IR (cm⁻¹) (CsI disc): 3420br, 3056w, 2913w, 1643m, 1439s, 1359w, 1143s(PO), 1127sh, 1099m, 1028w, 998w, 901s, 783m, 746s, 720m, 696s, 517s, 507sh, 429w. ¹H NMR (CDCl₃): 1.7br (H₂O), 1.9(d) ${}^{2}J_{PH} = 13$ Hz, 2.03(d) ${}^{2}J_{PH} = 13$ Hz, 2.5(d) ${}^{2}J_{PH} = 13$ Hz, 7.3–7.9(m). ⁴⁵Sc NMR (CH₂Cl₂) 123 ([ScCl₃(Ph₂MePO)₃]), 80(w) $([ScCl_2(Ph_2MePO)_4]^+)$. ³¹P{¹H} NMR (CH₂Cl₂) 29.0 (Ph₂MePO), 40.5 [P], 42.5 [2P] [ScCl₃(Ph₂MePO)₃)], 42.4 $[ScCl_2(Ph_2MePO)_4)]^+$. $\Lambda_M (10^{-3} \text{ mol } dm^{-3} CH_2Cl_2) =$ $8 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$, +XS Ph₂MePO 23.

4.14. $[ScBr_2(Ph_2MePO)_4]Br$

To a solution of Ph₂MePO (0.22 g, 1.0 mmol) in icecold acetone (10 cm³) was added a solution of ScBr₃. $6H_2O$ (0.09 g, 0.25 mmol) in acetone (5 cm³). After stirring for 1 h, the solution was concentrated to approximately 5 cm³ and refrigerated overnight. The white precipitate was filtered off and dried in vacuo.

Table 5 Crystallographic data ^a

Yield 0.14 g, 49%. (Found: C, 55.3; H, 4.8. Calc. for $C_{52}H_{52}Br_{3}O_{4}P_{4}Sc:$ C, 54.3; H, 4.6%). IR (cm⁻¹) (CsI disc): 3420br, 3050w, 2908w, 1638m, 1486m, 1438s, 1363w, 1138s (PO), 1094m, 1073w, 1028m, 998w, 894s, 787m, 746s, 719m, 695s, 515s. ¹H NMR (CDCl₃): 1.92(d) ${}^{2}J_{PH} = 13$ Hz, 7.3–7.9(m). ⁴⁵Sc NMR (CH₂Cl₂) 100, $w_{1/2} = 5000$ Hz. ${}^{31}P{}^{1}H{}$ NMR (CH₂Cl₂) 41.0, 40.3(w). Λ_{M} (10⁻³ mol dm⁻³ CH₂Cl₂) = 22 Ω^{-1} cm² mol⁻¹.

4.15. X-ray crystallographic studies

Crystallographic details together with data collection and refinement parameters are given in Table 5. Crystals were obtained by vapour diffusion from MeNO₂-Et₂O systems (with excess Me₃AsO added for that complex), or from CH₂Cl₂-Et₂O. Data were recorded from small, modest quality crystals at low temperature using a Nonius Kappa CCD diffractometer. The structure solutions and refinements (on F or F^2 (Cl compound)) were carried out using standard methods [14-17] except for [ScCl₂(Ph₃AsO)₄]Cl which was initially solved and refined in the triclinic space group $P\bar{1}$ (no. 2) (with Z =4). The value of Z caused concern [18]; subsequent reexamination of the data showed systematic absences consistent with a monoclinic space group and the structure was re-solved and refined in this higher symmetry space group. Anisotropic refinement of

	$[ScBr_2(Ph_3PO)_4]Br\cdot 1/2Et_2O$	[ScCl ₂ (Ph ₃ AsO) ₄]Cl	[Sc(Me ₃ AsO) ₆]Br ₃
Formula	$C_{72}H_{60}Br_{3}O_{4}P_{4}Sc + 1/2(C_{4}H_{10}O)$	C ₇₂ H ₆₀ As ₄ Cl ₃ O ₄ Sc	C ₁₈ H ₅₄ As ₆ Br ₃ O ₆ Sc
M	1434.89	1440.19	1100.82
Crystal system	triclinic	Monoclinic	monoclinic
Space group	<i>P</i> 1 (no. 2)	$P2_1/n$ (no. 14)	C2/c (no. 15)
a (Å)	14.2119(4)	18.436(2)	17.7475(5)
b (Å)	14.7923(4)	18.946(3)	16.9358(5)
c (Å)	17.6032(5)	18.393(3)	12.5771(4)
α (°)	66.695(2)	90.0	90.0
β(°)	80.919(1)	90.04(1)	96.643(1)
γ (°)	89.302(1)	90.0	90.0
U (Å ³)	3351.0(2)	6424.5(18)	3754.9(2)
$T(\mathbf{K})$	150	120	120
Z	2	4	4
<i>F</i> (000) (e)	1462	2912	2136
Total number of observations	46 706	31 012	14 955
Number of unique observations (R_{int})	15012 (0.054)	9826 (0.16)	4371 (0.093)
Max/min transmission	0.668/0.581	0.269/0.240	0.314/0.288
Number of data in refinement	8868 $(I > 3\sigma(I))$	9826	1581 $(I > 3\sigma(I))$
Number of parameters/restraints	777/0	758/0	96/0
$\mu (\rm cm^{-1})$	20.5	23.33	86.7
S	2.13	0.92	1.80
$R (I > n\sigma(I))$	$0.059 \ (n=3)$	$0.081 \ (n = 2, 4002 \ \text{reflections})$	0.065 (n = 3)
R (all data)		0.217	
wR_2 (all data)		0.265	
$wR \ (I > n\sigma(I))$	$0.073 \ (n=3)$		$0.114 \ (n = 3)$

 $R = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|; wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} \Sigma w F_{o}^{4}]^{1/2}; wR = [\Sigma w (F_{o} - F_{c})^{2} \Sigma w F_{o}^{2}]^{1/2}.$

^a Common data: Mo K α ($\lambda = 0.71073$ Å).

 $[Sc(Me_3AsO)_6]Br_3$ gave some npd thermal parameters for O and C and all were subsequently refined with an isotropic model.

5. Supplementary data

Crystallographic data for the structures have been deposited with the Cambridge Crystallographic Data Centre (CCDC) and given numbers 173058 [ScBr₂(Ph₃PO)₄]Br·1/2Et₂O, 173059 [Sc(Me₃AsO)₆]Br₃, 173060 [ScCl₂(Ph₃AsO)₄]Cl. Copies of the data can be obtained on request from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.ac.uk or www: http://www.ccdc.cam.ac.uk) quoting the deposition numbers.

Acknowledgements

We thank the EPSRC for support and Professor M.B. Hursthouse for access to the Nonius Kappa CCD diffractometer.

References

 P.J. Shapiro, W.D. Cotter, W.P. Schaefer, J.A. Labinger, J.E. Bercaw, J. Am. Chem. Soc. 116 (1994) 4623.

- [2] S. Hajela, W.P. Schaefer, J.E. Bercaw, J. Organomet. Chem. 532 (1997) 45.
- [3] S. Kobayashi, Eur. J. Org. Chem. (1999) 15.
- [4] M. Nakajima, Y. Yamaguchi, S. Hashimoto, Chem. Commun. (2001) 1596.
- [5] D. Grosso, P.A. Sermon, J. Mater. Chem. 10 (2000) 359.
- [6] D. Rehder, in: P.S. Pregosin (Ed.), Transition Metal NMR, Elsevier, New York, 1991.
- [7] L. Deakin, W. Levason, M.C. Popham, G. Reid, M. Webster, J. Chem. Soc., Dalton Trans. (2000) 2439.
- [8] W. Levason, B. Patel, M.C. Popham, G. Reid, M. Webster, Polyhedron 20 (2001) 2711.
- [9] N.J. Hill, W. Levason, M.C. Popham, G. Reid, M. Webster, Polyhedron 21 (2002) 445.
- [10] J.L. Atwood, K.D. Smith, J. Chem. Soc., Dalton Trans. (1974) 921.
- [11] (a) G.R. Willey, M.T. Lakin, N.W. Alcock, J. Chem. Soc., Dalton Trans. (1993) 3407.;
 (b) G.R. Willey, P.R. Meehan, M.D. Rudd, M.G.B. Drew, J. Chem. Soc., Dalton Trans. (1995) 811.
- [12] G.A. Kirakosyan, V.P. Tarasov, Y.A. Buslaev, Mag. Res. Chem. 27 (1989) 103.
- [13] Y.A. Buslaev, G.A. Kirakosyan, V.P. Tarasov, Dokl. Akad. Nauk. SSSR 264 (1982) 1405.
- [14] PATTY, The DIRDIF Program System. P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C. Smykalla, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.
- [15] G.M. Sheldrick, SHELXS 97, Program for crystal structure solution, University of Göttingen, 1997.
- [16] TEXSAN: Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1997.
- [17] G.M. Sheldrick, SHELXL 97, Program for crystal structure refinement, University of Göttingen, 1997.
- [18] R.E. Marsh, Acta Crystallogr., Sect. B 55 (1999) 931.