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In the environmental sciences, a large knowledge base is typically available on an investigated system
or at least on similar systems. This makes the application of Bayesian inference techniques in envi-
ronmental modeling very promising. However, environmental systems are often described by complex,
computationally demanding simulation models. This strongly limits the application of Bayesian infer-
ence techniques, because numerical implementation of these techniques requires a very large number
of simulation runs. The development of ef� cient sampling techniques that attempt to approximate the
posterior distribution with a relatively small parameter sample can extend the range of applicability of
Bayesian inference techniques to such models. In this article a sampling technique is presented that
tries to achieve this goal. The proposed technique combines numerical techniques typically applied
in Bayesian inference, including posterior maximization, local normal approximation, and importance
sampling, with copula techniques for the construction of a multivariate distribution with given marginals
and correlation structure and with low-discrepancy sampling. This combination improves the approxi-
mation of the posterior distribution by the sampling distribution and improves the accuracy of results for
small sample sizes. The usefulness of the proposed technique is demonstrated for a simple model that
contains the major elements of models used in the environmental sciences. The results indicate that the
proposed technique outperforms conventional techniques (random sampling from simpler distributions
or Markov chain Monte Carlo techniques) in cases in which the analysis can be limited to a relatively
small number of parameters.

KEY WORDS: Bayesian inference; Computationally demanding model; Copula; Low-discrepancy
sequence; Markov chain Monte Carlo; Numerical technique.

1. INTRODUCTION

Due to the accumulation of much knowledge over the
past centuries, much information on environmental systems
is available. For this reason, Bayesian techniques provide
a natural framework for statistical inference for decision-
oriented problems. The explicit use of prior knowledge and
its updating with speci� c data leads to an optimal use of
all available sources of information. However, because prior
knowledge is often vague and cannot be unambiguously
formulated in a prior probability distribution, a subjective
element is introduced into the analysis.

The usefulness of Bayesian methods in the environmental
sciences has been pointed out by various authors (Freeze,
Massmann, Smith, Sperling, and James 1990; Brand and Small
1995; Ellison 1996; Reichert and Omlin 1997; Steinberg,
Reckhow, and Wolpert 1996; Omlin and Reichert 1999).
Other authors have questioned the Bayesian approach, mainly
because of the problem of uniquely specifying prior distri-
butions (e.g., Dennis 1996). Early applications of Bayesian
techniques and similar approaches in the environmental
sciences focused on sensitivity and uncertainty analyses of

models for aquatic systems (Hornberger and Spear 1981;
Dilks, Canale, and Meier 1992). The dif� culty in accessing
groundwater systems, which makes measurements very
expensive, led to the recognition of the usefulness of formal
incorporation of prior knowledge by Bayesian techniques
in hydrogeology (Freeze et al. 1990; Abbaspour, Schulin,
Schläppi, and Flühler 1996; Sohn, Small, and Pantazidou
2000). Other environmental applications of Bayesian methods
include modelling of air pollution (Smith and French 1993;
Ranyard and Smith 1997), environmental exposure and risk
assessment (Finkel and Evans 1987; Taylor 1993), and
global climate change impacts (Patwardhan and Small 1992).
However, even today, the application of Bayesian techniques
is largely limited to the research literature and is only very
rarely done in “� eld” applications.

© 2002 American Statistical Association and
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SAMPLING FOR BAYESIAN INFERENCE 319

The application of Bayesian techniques usually requires a
large number of simulation runs to numerically approximate
the posterior distribution of model parameters. This can seri-
ously limit the applicability of these techniques in environ-
mental modeling, because many environmental models require
signi� cant computation time to perform a single simulation.
Typical causes for this long computation time include the con-
sideration of many chemical constituents, a high degree of
spatial resolution, and long simulation periods. In many prac-
tical applications performed in the past, this problem was fur-
ther increased by the use of inef� cient sampling schemes such
as random sampling from the prior [Bayesian Monte Carlo
(BMC)] (Dilks et al. 1992; Brand and Small 1995; Dakins,
Toll, Small, and Brand 1996).

It is the goal of this article to describe a procedure that
can lead to an approximation of a low-dimensional posterior
parameter distribution and of the corresponding distribution of
model results, with signi� cantly fewer simulations compared
to often-used sampling techniques. (This is what is meant by
“ef� cient” in the title.) The article is structured as follows.
In section 2 a brief survey of techniques for the numerical
approximation of the posterior distribution is given, with spe-
cial emphasis on importance sampling. In Section 3 the pro-
posed extensions to importance sampling are discussed. These
involve the use of a larger class of sampling distributions (arbi-
trary marginals coupled by a copula with given correlation
coef� cients) and the use of low-discrepancy samples instead
of random samples. Both of these techniques have been used
for many years, but not in the current context. In Section 4 the
proposed technique is applied to a simple example of practical
relevance. Finally, in Section 5 the results are summarized and
their implications for other applications discussed.

2. BAYESIAN INFERENCE AND NUMERICAL
APPROXIMATIONS

In the Bayesian approach to statistical inference, probability
distributions describe the state of knowledge of the investi-
gator or the research team on model structure, parameters,
and/or results, rather than a limit of observed frequency
distributions of a stochastic system for a large number of
repetitions of an experiment. To conduct a Bayesian analysis
for a given model structure with continuous parameters,
prior knowledge of model parameters, ˆ D 4ˆ11 : : : 1 ˆm5T ,
must be summarized in the form of a prior probability
density, fpri4ˆ5. In addition, the model, M , must be speci� ed
by the probability density of model results (for a given
experimental layout), y D 4y11 : : : 1 yn5T , conditional on the
values of the model parameters, fM 4y — ˆ5. If the observa-
tions, ymeas

D 4ymeas1 11 : : : 1 ymeas1 n5T , are substituted in the
probability density, fM , and this function is viewed primarily
as a function of the model parameters, then it is called the
likelihood function of the model, LM 4ˆ1 ymeas5 D fM 4ymeas — ˆ5.
Bayesian inference then involves updating prior knowledge
about parameter values to posterior knowledge according to

fpost4ˆ — ymeas5 D LM 4ˆ1ymeas5fpri4ˆ5R
LM 4ˆ01ymeas5fpri4ˆ

05dˆ 0 (1)

(e.g. Gelman, Carlin, Stern, and Rubin 1995). In this equa-
tion, fpost is the posterior probability density of the model

parameters, which considers prior knowledge and data, ymeas.
This posterior probability density of the parameters can then
be used to calculate the posterior distribution of model results.
Although proper formulation of the prior distribution and the
likelihood function are dif� cult tasks (Wolpert 1989; Chaloner
1996; Kadane and Wolfson 1998), and the sensitivity of model
results to these assumptions should be checked (Berger 1984;
Wolfson, Kadane, and Small 1996; Small and Fischbeck
1999), in this article only the computational evaluation of (1)
is addressed.

Except for very simple examples, the posterior distribution
given by (1) cannot be computed analytically. The two most
important numerical techniques applied instead are importance
sampling and Markov chain Monte Carlo simulation (Gelman
et al. 1995; Gamerman 1997). We focus here on a brief review
of importance sampling, because we propose an extension of
this technique.

Importance sampling is based on a sample from a distri-
bution that is different from the posterior and is corrected by
weights to approximate the posterior (e.g. Gelman et al. 1995).
Typically this technique starts with a numerical determination
of the maximum of the posterior distribution. This maximum
can be calculated using the numerator of (1) only,

ˆ04ymeas5 D argmax
ˆ

log LM 4ˆ1 ymeas5fpri4ˆ5
¢¢

0 (2)

The logarithm is introduced for numerical convenience. Next,
the curvature of the log posterior density at its maximum is
estimated, and the covariance matrix of a multivariate dis-
tribution approximating the posterior in the vicinity of its
maximum is calculated according to

è ƒ
³

¡2 log4LM 4ˆ1ymeas5fpri4ˆ55

¡ˆT¡ˆ

̂
Dˆ0

ƒ́1

0 (3)

This information is used to construct a sampling distribution,
fsamp, that approximates the posterior. Often a multivariate nor-
mal distribution with mean ˆ0 and covariance matrix è is
used as a sampling distribution. However, other distributions,
including a multivariate t distribution and a mixture of differ-
ent analytical distributions, may be appropriate (Gelman et al.
1995). (Mixtures are of special importance in the case of the
existence of several local maxima.) Then a sample is drawn
from the sampling distribution. For each point of the sample,
8ˆk9

N
kD1, the posterior weight

wk
D

fpri4ˆk5 ¢ LM 4ˆk 1ymeas5

fsamp4ˆk5

PN
lD1

fpri4ˆl5 ¢ LM 4ˆl1ymeas5

fsamp4ˆl 5

(4)

is calculated. These weights correct the sample to approximate
the posterior distribution. Expectations of arbitrary functions,
g, with respect to the posterior distribution (1) can then be
approximated by

Efpost
4g5

NX

kD1

wk g4ˆk50 (5)

Note that the prior sampling technique (BMC) mentioned in
Section 1 is a special case of importance sampling with fsamp D
fpri . This technique is obviously very inef� cient if the posterior
is signi� cantly different from the prior.
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320 PETER REICHERT, MARK SCHERVISH, AND MITCHELL J. SMALL

3. PROPOSED EXTENSIONS
TO IMPORTANCE SAMPLING

The major disadvantages of importance sampling are

¢ the limited � exibility of the parameterized sampling dis-
tribution to approximate the posterior distribution

¢ the slow convergence of random samples to the sampling
distribution.

It is not possible to completely eliminate these problems.
However, extensions of this technique that decrease the
severity of these problems, at least for low-dimensional
parameter spaces, are discussed in the next two sections.
Both of the techniques used in these extensions have been
available for many years and are frequently used in other
� elds. However, because they are not usually applied in the
current context, their usefulness in improving the convergence
of numerical approximations to posterior distributions in
Bayesian inference has not yet been appreciated.

3.1 Extension of the Class of Sampling Distributions

Instead of using any of the analytical distributions com-
monly used in Bayesian inference, we propose constructing a
sampling distribution from given marginals and given Kendall
correlation coef� cients using the copula approach. This sig-
ni� cantly increases the analyst’s � exibility in approximating
the posterior distribution. In contrast to the distribution-
free approach of constructing parameter samples with given
rank correlation coef� cients (Iman and Conover 1982), our
approach uses a multivariate distribution, the density of which
can be easily calculated. This is necessary to calculate the
weights for importance sampling (4).

The copula approach starts from the observation that any
multivariate cumulative distribution function can be written in
the form

F 4ˆ5 D C F14ˆ151 : : : 1 Fm4ˆm5
¢

(6)

(Schweizer 1991; Nelson 1995; Clemen and Reilly 1999),
where the Fi’s are the marginal cumulative distribution func-
tions and C is the copula. The density can be written as

f4ˆ5 D f14ˆ15 ¢ ¢ ¢ ¢ ¢fm4ˆm5c F14ˆ151 : : : 1 Fm4ˆm5
¢
1 (7)

where fi is the marginal density corresponding to Fi and

c D ¡mC

¡F1 ¢ ¢ ¢ ¡Fm

(8)

is the copula density or dependence function. The representa-
tions (6) and (7) of a probability distribution have the advan-
tage of separating the marginal densities and the correlation
structure of a given multivariate distribution. On the other
hand, these equations can be used to construct a multivari-
ate density given the marginal distributions and the correla-
tion structure. This is what we do, technically in the same
way as has been done for combining expert opinion (Clemen
and Reilly 1999), but with another application in mind. The
decomposition of the multivariate sampling distribution into
one-dimensional marginal distributions and a copula may be
preferred to the decomposition into a marginal distribution for
one parameter and a series of conditional distributions for the
other parameters if the model structure does not naturally lead

to such a decomposition. For this alternative case, more spe-
ci� c numerical techniques for estimating marginal posterior
densities are available (Johnson 1995).

For technical convenience, and because a normal distribu-
tion is a natural � rst approximation to the posterior close to
its maximum, we use the copula of the multivariate normal
distribution to specify the correlation structure for given pair-
wise Kendall correlation coef� cients and marginal distribu-
tions (Clemen and Reilly 1999). The de� nition of the Kendall
correlation coef� cient starts from a random sample of two
points, ˆ1 and ˆ2, from the parameter distribution. The Kendall
correlation coef� cient, of the components i and j of the param-
eter vector R ü

i1 j , is then equal to the probability that differences
in the components i and j of the two points have the same
sign (concordant components) minus the probability that these
differences have different signs (disordant components),

R ü
i1 j

D P 6ˆ17i
ƒ 6ˆ27i

¢
6ˆ17j

ƒ 6ˆ27j

¢
> 0

¢

ƒP 6ˆ17i
ƒ 6ˆ27i

¢
6ˆ17j

ƒ 6ˆ27j

¢
< 0

¢

D 2P 6ˆ17i
ƒ 6ˆ27i

¢
6ˆ17j

ƒ 6ˆ27j

¢
> 0

¢
ƒ 11 (9)

where 6¢7i refers to the ith component of the argument.
Kendall correlation coef� cients are used because it is easier
to construct a multivariate distribution with given Kendall
correlation coef� cients compared to given moment-based
correlation coef� cients using the copula approach. This is
because Kendall correlation coef� cients are not affected
by monotone transformations of individual parameters nec-
essary to adapt the marginal distributions. If we denote
the multivariate normal distribution with mean values Œ,
standard deviations ‘ , moment-based correlation coef� cients
R by N4Œ1‘ 1R5, and the univariate normal distribution by
N4Œ1‘ 5 and 4x11 : : : 1 xn5T by x, then, using the de� nitions
(6) and (7), we can express the copula of the multivariate
normal distribution as

CN4R54x5DFN4Œ1‘ 1R5 F ƒ1
N4Œ1 1‘ 154x151: : : 1F ƒ1

N4Œm1‘ m54xm5
¢

(10)

and the density as

cN4R54x5

D
fN4Œ1‘ 1R5 F ƒ1

N4Œ1 1‘154x151: : : 1F ƒ1
N4Œm 1‘m 54xm5

¢

fN4Œ11‘ 15 F ƒ1
N4Œ1 1‘154x15

¢
¢ ¢¢¢ ¢fN4Œm1‘ m5 F ƒ1

N4Œm 1‘m 54xm5
¢0 (11)

It will become evident in eq. (15) that these copulas do not
depend on Œ and ‘ . For the normal distribution, the moment-
based correlation coef� cients can be calculated from Kendall
correlation coef� cients according to

R 2 Ri1 j
D sin

³
�

2
R ü

i1 j

´
(12)

(Kruskal 1958; Clemen and Reilly 1999). If these correlation
coef� cients are used for the copula, then the resulting distri-
bution will have the desired Kendall correlation coef� cients,
R ü , whereas the moment-based correlation coef� cients will no
longer be R because of the transformation of the marginals.
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SAMPLING FOR BAYESIAN INFERENCE 321

After substituting the density of the multivariate normal dis-
tribution

fN4Œ1‘ 1R54x5

D 1
42� 5n=2 — è —1=2

exp

³
ƒ1

2
4x ƒ Œ5Tèƒ14x ƒ Œ5

´
(13)

with the covariance matrix given by

è D diag4‘ 5R diag4‘ 5 (14)

into (11), algebraic manipulation leads to

cN4R54x5 D 1
—R —1=2

exp

0
BB@ƒ 1

2

0
B@

F ƒ1
N401154x15

000
F ƒ1

N401154xm5

1
CA

T

� 4Rƒ1 ƒ Im5

0
B@

F ƒ1
N401154x15

000
F ƒ1

N401154xm5

1
CA

1
CCA1 (15)

where Im is the m-dimensional identity matrix (Clemen and
Reilly 1999). This is a joint copula density of m uniformly
distributed random variables having the same Kendall correla-
tion matrix as the normal distribution with correlation matrix
(12).

Combining (7) and (15) leads to the density of the sampling
distribution

fsamp4ˆ5 D f14ˆ15 ¢ ¢ ¢ ¢ ¢fm4ˆm5
1

— R —1=2

� exp

0
BBBB@

ƒ1

2

0
BBB@

F ƒ1
N401 15 F14ˆ15

¢

000

F ƒ1
N401 15 Fm4ˆm5

¢

1
CCCA

T

� 4Rƒ1 ƒ Im5

0
BBB@

F ƒ1
N401 15 F14ˆ15

¢

000

F ƒ1
N401 15 Fm4ˆm5

¢

1
CCCA

1
CCCCA

1 (16)

where f11 : : : 1 fm and F11 : : : 1 Fm are the given densities and
cumulative distribution functions of the marginals and R is
the correlation matrix calculated with the aid of (12) from the
given Kendall correlation matrix R ü .

Substituting (10) in (6) and considering the fact [observed
in (15)] that this distribution does not actually depend on Œ

and ‘ leads to the following expression for the cumulative
distribution function of the sampling distribution:

Fsamp4ˆ5

D FN401 11 R5 F ƒ1
N401 15 F14ˆ15

¢
1 : : : 1 F ƒ1

N 401 15 Fm4ˆm5
¢¢

0 (17)

To apply (16), marginal distributions and Kendall correla-
tion coef� cients must be speci� ed. In the � rst iteration step of
the procedure, where a local normal approximation has been

estimated by using (2) and (3), the Kendall correlation coef� -
cients can be estimated by an inversion of (12) which is valid
for normal distributions (Kruskal 1958):

R ü 2 R ü
i1 j

D 2
�

arcsin4Ri1 j50 (18)

Normal marginal distributions can be used, or marginal distri-
butions can be selected according to prior knowledge. In any
case, the maximum of the sampling distribution constructed
in this way should be at least approximately equal to the
maximum, ˆ0, determined in the maximization procedure. In
later iteration steps of approximating the posterior distribution,
marginal distributions can be estimated from the weighted
sample (4) of the previous iteration step. Similarly, Kendall
correlation coef� cients of the posterior distribution can be esti-
mated from the weighted sample of the previous iteration step
according to

R ü 2 R ü
i1 j

4 ¢
P
k>l

46ˆ1 7i ƒ6ˆ2 7i 546ˆ1 7j ƒ6ˆ2 7j 5>0

wpost1 kwpost1 l

1ƒ PN
kD1 w2

post1 k

ƒ 10 (19)

Projections of the values of the weights (4) can help diagnose
the need for a shift of the sampling distribution. See Section 4
for an illustration.

3.2 Quasi-Random Sequences

In different � elds of numerical analysis, quasi-random
sequences have been used instead of random numbers to
increase the ef� ciency of Monte Carlo techniques (Ham-
mersley and Handscomb 1964; Niederreiter 1978, 1992;
Hua and Wang 1981). A quasi-random, or low-discrepancy,
sequence is a sequence of points, 8zk9

N
kD1, that is uniformly

distributed in the unit cube, 60117m. This is quanti� ed by
its discrepancy, D, the supremum of the difference between
the empirical distribution function of the sample and the
distribution function to be approximated (in this case, of
the uniform distribution). For low-discrepancy sequences,
the discrepancy is signi� cantly smaller than the expected
discrepancy of a random sample. The major � eld of appli-
cation of quasi-random sequences is numerical integration
(Niederreiter 1978) however, quasi-random sequences have
also been applied in statistics (Fang, Wang, and Bentler 1994),
for global optimization (Kalagnanam and Diwekar 1997), and
for Bayesian inference (Shaw 1988).

Two simple low-discrepancy sequences due to Hammers-
ley and Halton (Hammersley 1960; Halton 1960; Hammersley
and Handscomb 1964) can be constructed using the following
expansion of a nonnegative integer, k:

k D a0
C a1p C a2p

2 C ¢ ¢ ¢ C ar p
r 1 (20)

where p is a prime number and ai are nonnegative integer
coef� cients smaller than p. These coef� cients can be used to
construct a number between 0 and unity according to

êp4k5 D a0

p
C a1

p2
C a2

p3
C ¢ ¢ ¢ C ar

prC1
0 (21)
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322 PETER REICHERT, MARK SCHERVISH, AND MITCHELL J. SMALL

Any sequence of different prime numbers, p11 : : : 1 pmƒ1, leads
to a sequence of N Hammersley points de� ned by

zk
D

³
k ƒ 1=2

N
1êp1

4k51 êp2
4k51 : : : 1êpmƒ1

4k5

´
1

k D 11 : : : 1N 0 (22)

Here the � rst component has been shifted by 1=42N 5 com-
pared to other de� nitions to avoid a value of 0 or unity
that would be transformed to in� nity by the transformation
given by (27). Any sequence of different prime numbers,
p11 : : : 1 pm, leads to a sequence of N Halton points de� ned
by

zk
D êp1

4k51êp2
4k51: : : 1êpm

4k5
¢
1 kD11: : : 1N 0 (23)

Compared with the Hammersley sequence, the Halton
sequence has the advantage that a sample can easily be
extended to a larger sample without modifying the old sample
points. It has been shown that the discrepancy of these
sequences with respect to the uniform distribution in 601 17m

is much smaller than that of a random sample (Hammersley
1960; Halton 1960; Hammersley and Handscomb 1964). This
is illustrated by the comparison of sampling techniques in
the unit square in Figure 1 (Kalagnanam and Diwekar 1997).
The sampling techniques used are grid sampling, random
sampling, latin hypercube sampling (McKay, Beckman, and
Conover 1979), and Hammersley sampling according to
(22). It is evident that the Hammersley points are much
more uniformly distributed than the points from random or
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Y

Figure 1. Bivariate Uniform Distribution Without Correlation. Sam-
ples of 100 points are shown for the following sampling techniques: (a)
grid (D D .090), (b) random (D D .087), (c) latin hypercube (D D .067),
(d) Hammersley (D D .029).

latin hypercube sampling. Note that the two quasi-random
sequences due to Hammersley and Handscomb described
in this section are very useful examples for demonstrating
the basic ideas, because their construction is very simple
[see (20)–(23)]. Other quasi-random sequences have been
proposed to further improve the ef� ciency of numerical
integration procedures (Sobol 1988; Bratley and Fox 1988).

3.3 Combination of the Extensions

The form (17) of the cumulative distribution function of the
sampling distribution shows that the values of

0
BBB@

F ƒ1
N401 15 F14ˆ15

¢

000

F ƒ1
N401 15 Fm4ˆm5

¢

1
CCCA (24)

are distributed according to a multivariate normal distribution
with means equal to 0, standard deviations equal to unity, and
correlation coef� cients equal to R if a sample of values of
ˆ is distributed according to the sampling distribution. If the
matrix A is a Cholesky factor of the correlation matrix R, that
is,

AAT D R1 (25)

then its inverse can be used to transform a normally dis-
tributed sample with correlation matrix R to an uncorrelated
normally distributed sample (Gelman et al. 1995; Gamerman
1997). Application of the standard normal distribution to the
marginals then leads to a uniform distribution of the points
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(26)

in 60117m. Inversion of this formula shows that sample points
ˆ of the sampling distribution can be constructed from sample
points z of a uniform distribution in 601 17m according to
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Figure 2. Bivariate Distribution With N(4,1) and LN(1,1) Marginals
and a Kendall Correlation Coef’ cient of .8. Highest probability density
contour lines with probability contents of .05, .25, .5, .75, and .95 and
samples of 100 points for the following sampling techniques: (a) grid
(D D .052), (b) random (D D .078), (c) latin hypercube (D D .060), (d)
Hammersley (D D .029).

This equation makes it very simple to construct a sample
of the sampling distribution based on an arbitrary sample
from the uniform distribution in 601 17m . The sample, 8ˆk9

N
kD1,

is based on the cumulative distribution functions of the
marginals, F11 : : : 1 Fm, on the Kendall correlation coef� cients,
R ü , used to calculate R according to (12) and then A
according to (25), and on a sample, 8zk9

N
kD1, of the uniform

distribution in 60117m. Obviously, a low-discrepancy sequence,
as described in Section 3.2, can be used for this purpose.

Figure 2 shows that the extended class of distributions intro-
duced in Section 3.1 leads to an extension of typically used
distribution shapes. The “banana-shaped” distribution is a dif-
� cult case for importance sampling (Gelman et al. 1995). The
graphic evidence in Figures 1 and 2 that the low-discrepancy
sample is a good approximation to the distribution is supported
by the values of the discrepancies for these distributions (see
the � gure captions). The discrepancies for the Hammersley
sampling technique are signi� cantly smaller than for the other
techniques for both the uniform and the transformed distribu-
tions.

4. ILLUSTRATIVE APPLICATION

4.1 Model and Data

The model chosen to illustrate and compare the methods
is a simple biogeochemical model commonly used as a sub-
model for reaction kinetics in wastewater treatment plants
(Henze, Grady, Gujer, Marais, and Matsuo 1986; Gujer et al.
1995; Gujer, Henze, Mino, and van Loosdrecht 1999) rivers

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

t

S
, X

Figure 3. Model Results and Synthetic Data (Dimensionless Units).
The solid circles and solid line represent synthetic measurements and
simulation for dissolved substrate (S); the open circles and dashed line,
synthetic measurements and simulation for bacterial population (X).

(Reichert et al. 2001), lakes (Omlin, Reichert, and Forster
2001), and other systems in which microbially mediated bio-
geochemical processes occur. The model describes degrada-
tion of a dissolved organic substrate in a completely stirred
batch reactor caused by the growth of a bacterial population
in the reactor. The process equations are

dX

dt
D kSX and

dS

dt
D ƒ 1

Y
¢kSX0 (28)

The � rst equation describes the growth of the bacterial pop-
ulation, which is assumed to be proportional to the product
of the concentration of substrate, S, and the concentration of
bacteria, X , with a growth rate constant, k. The second equa-
tion describes degradation of the substrate, which is assumed
to be proportional to growth with a yield coef� cient, Y . To
keep the example as simple as possible, it is assumed that all
parameters are nondimensionalized and that the values of the
model parameters k and Y as well as the initial conditions of
S and X, Sini and Xini, are equal to unity. For this example, we
produced simulation results and synthetic measurements that
were assumed to be normally distributed around the simula-
tion results with a standard deviation of .025 for the substrate
and .1 for the bacteria. This difference in standard deviation
accounts for the fact that it is usually much simpler to measure
dissolved substrate than bacterial populations. Figure 3 shows
the results of a model simulation of X and S.

4.2 Implementation of Model
and Solution Techniques

The model equations were implemented in the program
AQUASIM (Reichert 1994, 1995), which is designed for iden-
ti� cation and simulation of models for aquatic systems. The
batch version of this program has been extended by inter-
faces that allow the input of parameter sets and by options
for posterior maximization and Markov chain Monte Carlo
techniques. The creation and evaluation of samples from sam-
pling distributions as described in Section 3 were done using
the UNCSIM package (Reichert 2002). This package pro-
vides simple programs for producing and evaluating sample
� les. It is designed to perform this type of analysis with any
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simulation program that can read sample � les and write corre-
sponding result � les. Finally, the plots used for illustrating the
samples and for analyzing the marginal distributions were pro-
duced with the program R, designed for statistical computing
(Ihaka and Gentleman 1996).

4.3 Problem to be Solved

Our simple model has four parameters: Y , k, Sini, and Xini.
There is typically much less uncertainty in the stoichiometric
parameter Y than in the kinetic parameter k. Similarly, Sini is
usually known to much higher accuracy than Xini. Therefore, it
seems reasonable to reduce the dimension of the problem for
this didactical application, by assuming the model parameters
Y D 1 and Sini D 1 to be perfectly known. For the other two
model parameters, we assume independent lognormal prior
distributions with means and standard deviations equal to 1.2
and .3 for k, and 1.0 and 1.0 for Xini. The likelihood function
of the model is a product of normal distributions with stan-
dard deviations of .025 for results in S and .1 for results in
X around the result of the deterministic model (28) at those
points in time where data are assumed to be available (Fig. 3).
We distinguish two cases. For the � rst case, we assume that all
data shown in Figure 3 are available; for the second case, we
assume that only data for substrate concentrations are available
(the solid circles in Fig. 3). The latter case is not unrealis-
tic, because due to the greater dif� culty in measuring bac-
terial concentrations, the attempt is often made to estimate
changes in bacterial concentrations indirectly through changes
in observed conversion rates of dissolved substances.

Note that due to the short simulation time required by the
simple model given by (28), it is possible to calculate a very
accurate approximation to the true solution of this problem on
a very � ne grid in the parameter space. This allows us to com-
pare the samples and marginal distributions with the “true”
solution of this problem. In the subsequent section, this is done
for the proposed ef� cient importance sampling technique and
for a simple Markov chain Monte Carlo technique.

4.4 Results

To take advantage of the distributions and sampling tech-
niques described in Section 3, we apply the following proce-
dure:

1. Estimate the maximum of the posterior distribution and
the standard deviations and correlation coef� cients of a local
normal approximation to the maximum.

2. Construct a low-discrepancy sample for a multivariate
normal distribution at the maximum of the posterior with the
estimated correlation coef� cients but enlarged standard devi-
ations. Calculate the posterior weights, posterior means, stan-
dard deviations, and Kendall correlation coef� cients.

3. Construct a low-discrepancy sample based on more
realistic, but still widened marginals (using prior information
and results from the previous steps), and calculate posterior
weights and posterior means, standard deviations, and Kendall
correlation coef� cients. Repeat this step until approximate
convergence is achieved (i.e., posterior means, standard
deviations, Kendall correlation coef� cients, and the shape of
the marginals no longer change signi� cantly).

4. Construct a low-discrepancy sample based on realistic
marginals (without extension of the range of values). Check
marginals and weights and use them for inference if the
approximation of the posterior seems adequate.

This procedure has led to good results in the present example,
as well as in the example used during the development phase
of the UNCSIM package (Reichert 2002). However, this is
not a universal procedure, but rather a procedure that requires
changes depending on the dimensionality of the problem and
on the results of intermediate steps. In steps 2 and 3, the
standard deviations of the sampling distribution are enlarged
to have an extended range of sample points that can sup-
port detection of deviations of the sampling distribution from
the posterior. In the present example, the standard deviations
were enlarged by a factor of 1.5; this factor would have to be
reduced in higher dimensions.

The top row of Figure 4 shows the samples according to
step 2 of the aforementioned procedure for the two cases
of a complete dataset (left column) and substrate data only
(right column). This sample is a low-discrepancy (Hammers-
ley) sample of a normal distribution of size 50 with mean and
correlation coef� cient as determined locally from the maxi-
mum of the posterior distribution, but with standard deviations
50% larger than those determined locally. The weights of the
sample points, represented by the size of their circles, obvi-
ously decrease with increasing distance from the center of
the distribution. This indicates that no signi� cant shift of the
sampling distribution is necessary to � t the posterior and that
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Figure 4. The First and Third Samples Produced by the Ef’ cient
Importance Sampling Technique (Rows) for the Two Cases of a Com-
plete Dataset (Left Column) or Data for Substrate Only (Right Column).
The surface area of the circles characterizing each point of the sample
is proportional to its posterior weight. The dashed and solid lines indi-
cate 5%, 50%, and 95% highest probability density region boundaries
for the prior and the posterior distribution. Note the differences in scales
between the left and right columns.

TECHNOMETRICS, NOVEMBER 2002, VOL. 44, NO. 4

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

2:
26

 1
7 

N
ov

em
be

r 
20

14
 



SAMPLING FOR BAYESIAN INFERENCE 325

0.8 0.9 1.0 1.1 1.2

0

2

4

6

8

10

12

14

Xini

f

0.0 0.4 0.8 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Xini
f

0.8 0.9 1.0 1.1 1.2

0

2

4

6

8

10

12

14

Xini

f

0.0 0.4 0.8 1.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Xini

f

Figure 5. Marginal Distributions for Xini for the First and Third Sam-
ples Produced by the Ef’ cient Importance Sampling Technique (rows)
for the Two Cases of a Complete Dataset (Left Column) or Data for
Substrate Only (Right Column). The solid line represents the continuous
curve: sampling distribution. The solid line represents a step function:
histogram characterizing the distribution of the sample. The dashed line
indicates the “exact” marginal of the posterior.

the sampling distribution can be narrowed to some degree. For
the case with the complete dataset (left), a minor shift to the
top left seems adequate, because there are more sample points
with small weight in the bottom right. The very small dots at
both ends of the sample for the second case indicate that the
posterior is narrower or bended away from the sample. (Note
that the solid lines characterizing the posterior are usually not
available.) These � ndings are supported by the analysis of
the marginal distributions for Xini shown in the top row of
Figure 5. It is evident that the histogram calculated from the
weighted sample (solid line, step function), which represents
the marginal of the posterior distribution, is narrower than the
marginal of the sampling distribution (solid line, continuous
function) for both cases. (Note that the exact marginal shown
by the dashed line is usually not available.)

To account for the (small) asymmetry in the histogram
approximating the marginal posterior distribution, the second
samples (step 3 of the procedure) are low-discrepancy (Ham-
mersley) samples of size 50 based on lognormal marginals
with means and Kendall correlation coef� cients estimated
from the � rst step, but with standard deviations still enlarged
by a factor of 1.5. The graphical analyses of the marginals
(not shown) now lead to more symmetric deviations between
the sampling distribution and the posterior. These � ndings
allow us to proceed to step 4 of the procedure and to construct
a sample based on the means, Kendall correlation coef� cients,
and unchanged standard deviations resulting from the second
sample. Such a sample of size 50 is shown in the bottom
row of Figure 4. The smaller difference in observed posterior
weights indicates the closer approximation of the sampling
distribution to the posterior. This is again con� rmed by the
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Figure 6. Posterior Weights of the First (Triangles) and Third (Solid
Circles) Samples Produced by the Ef’ cient Importance Sampling Tech-
nique for the two Cases of the Complete Data set (a) or Data for
Substrate only (b), Plotted as a Function of Xini .

analysis of the marginals shown in the bottom row of Figure 5.
The histograms corresponding to the weighted sample do
not signi� cantly deviate from the marginals of the sampling
distribution.

Figure 6 shows another useful diagnostic plot, in which
the weights of the sample points are plotted as a function
of Xini. These “marginal weights” demonstrate that the
range of weights decreases signi� cantly from sample 1 to
sample 3, indicating that the deviation between the sampling
distribution and the posterior decreases. Because for the
� nal samples there is no systematic trend in weights and the
range of weights is not large, this sample can be accepted
as a reasonable sample for Bayesian inference. If possible,
the sample size could now be increased to improve the
accuracy of the posterior distributions of the parameters and
the corresponding model results.

To quantitatively support our graphical results regarding the
ef� ciency of the proposed technique, we calculated the dis-
crepancies of the � nal samples for six techniques: the ef� cient
importance sampling technique using both proposed exten-
sions, three simpli� ed importance sampling techniques using
only one or none of the extensions, a short Markov chain
(with the same total number of simulations as in the three
importance samples of size 50 each), and a long Markov
chain. The results, given in Table 1, show the superiority
of the ef� cient importance sampling technique over all other
techniques based on 150 sample points (in addition to the

Table 1. Discrepancies of Weighted Posterior Samples
for Different Techniques

Case

Technique Data for S and X Data for S only

Ef’ cient importance
sampling .06 .06

Copula distribution,
random sampling .15 .11

Normal distribution,
Hammersley sequence .08 .08

Normal distribution,
random sampling .17 .15

Markov chain 1–150 .27 .15
Markov chain 1,000–2,000 .06 .07
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function evaluations needed for posterior maximization com-
mon to all techniques) for the present example. A comparison
of rows 2 and 3 indicates that in the current example, using
the low-discrepancy sequence instead of random samples con-
tributed more to the improvement than the � exible shape of
the distribution allowed by the copula representation. This
conclusion is not generalizable however, the opposite result
can be expected for posteriors with shapes that deviate more
signi� cantly from the normal. The Markov chain technique is
not competitive at such a small sample size, but does lead to
good results if more simulations can be performed.

5. CONCLUSIONS

In importance sampling for Bayesian inference, the poste-
rior distribution of model parameters is approximated by a
sample from a multivariate normal distribution or from another
analytically tractable distribution, and the sample is then cor-
rected with weights to improve the approximation. The pro-
cedure proposed in this article extends this approach by using
multivariate distributions constructed from arbitrary marginals
and given pairwise correlation coef� cients with the aid of a
copula and by using low-discrepancy sequences for sampling.
The � rst of these extensions makes the approach more � exible
in improving the approximation of the shape of the posterior
by the sampling distribution, and the second leads to a better
approximation of the distribution by the sample. The result-
ing estimates of the marginals and correlation coef� cients can
then be used to improve the sampling distribution for the next
iteration of the procedure, and the weights can be used to
diagnose the quality of the approximation. This combination
of techniques can be expected to lead to good estimates of
properties of the posterior distribution with a minimum of sim-
ulation runs. The advantages of the proposed procedure are
most relevant for problems concerning inference of a small
number of parameters (less than about 10), because analysis of
a large number of marginal distributions can become cumber-
some, the chosen form of the copula may limit the degree of
approximation of high-dimensional distributions, and the low-
discrepancy sequences used in this article need many points
to cover a high-dimensional distribution. Still, the proposed
procedure can lead to signi� cant ef� ciency gains for compu-
tationally demanding models with a relatively small number
of in� uential parameters. If computing time is not a limiting
factor, however, then Markov chain Monte Carlo techniques
may be preferable because of their greater � exibility.
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Abbaspour, K. C., Schulin, R., Schläppi, E., and Flühler, H. (1996), “A
Bayesian Approach for Incorporating Uncertainty and Data Worth in Envi-
ronmental Projects,” Environmental Modeling and Assessment, 1, 151–158.

Berger, J. O. (1984), “The Robust Bayesian Viewpoint,” in Robustness of
Bayesian Analyses, ed. J. Kadane., Amsterdam: North-Holland, pp. 63–124.

Brand, K. P., and Small, M. J. (1995), “Updating Uncertainty in an Integrated
Risk Assessment: Conceptual Framework and Methods,” Risk Analysis, 15,
719–731.

Bratley, P., and Fox, B. L. (1988), “ALGORITHM 659: Implementing Sobol’s
Quasi-Random Sequence Generator,” ACM Transactions on Mathematical
Software, 14, 88–100.

Chaloner, K. M. (1996), “The Elicitation of Prior Distributions,” in Bayesian
Biostatistics, eds. D. A. Barry and D. K. Stangl, New York, Marcel Dekker,
pp. 141–156.

Clemen, R. T., and Reilly, T. (1999), “Correlations and Copulas for Decision
and Risk Analysis,” Management Science, 45, 208–224.

Dakins, M. E., Toll, J. E., Small, M. J., and Brand, K. P. (1996), “Risk-
Based Environmental Remediation: Bayesian Monte Carlo Analysis and the
Expected Value of Sample Information,” Risk Analysis, 16, 67–79.

Dennis, B. (1996), “Discussion: Should Ecologists Become Bayesians?,” Eco-
logical Applications, 6, 1095–1103.

Dilks, D. W., Canale, R. P., and Meier, P. G. (1992), “Development of
Bayesian Monte Carlo Techniques for Water Quality Model Uncertainty,”
Ecological Modelling, 62, 149–162.

Ellison, A. M. (1996), “An introduction to Bayesion Inference for Ecological
Research and Environmental Decision-Making,” Ecological Applications,
6, 1036–1046.

Fang, K.-T., Wang, Y., and Bentler, P. M. (1994), “Some Applica-
tions of Number-Theoretic Methods in Statistics,” Statistical Science, 9,
416–428.

Finkel, A. M., and Evans, J. S. (1987), “Evaluating the Bene� ts of Uncer-
tainty Reduction in Environmental Health Risk Management,” Journal Air
Pollution Control Association, 37, 1164–1172.

Freeze, R. A., Massmann, J., Smith, L., Sperling, T., and James, B. (1990),
“Hydrogeological Decision Analysis: 1. A Framework,” Ground Water, 28,
738–766.

Gamerman, D. (1997), Markov Chain Monte Carlo—Statistical Simulation for
Bayesian Inference, London: Chapman and Hall.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995), Bayesian
Data Analysis, London: Chapman and Hall.

Gujer, W., Henze, M., Mino, T., Matsuo, T., Wentzel, M. C., and Marais,
G. v. R. (1995), “The Activated Sludge Model No. 2: Biological Phosphorus
Removal,” Water Science and Technology, 31, 1–11.

Gujer, W., Henze, M., Mino, T., and van Loosdrecht, M. (1999), “Activated
Sludge Model No. 3,” Water Science and Technology, 39, 183–193.

Halton, J. H. (1960), “On the Ef� ciency of Certain Quasi-Random Sequences
of Points in Evaluating Multi-Dimensional Integrals,” Numerische Mathe-
matik, 2, 84–90.

Hammersley, J. M., (1960), “Monte Carlo Methods for Solving Multivariate
Problems,” Annals of the New York Academy of Science, 86, 844–874.

Hammersley, J. M., and Handscomb, D. C. (1964), Monte Carlo Methods,
London: Spottiswoode, Ballantyne & Co.

Henze, M., Grady, C. P. L., Gujer, W., Marais, G. v. R., and Matsuo, T. (1986),
“Activated Sludge Model No. 1,” Scienti� c and Technical Report 1, IAW-
PRC Task Group on Mathematical Modelling for Design and Operation of
Biological Wastewater Treatment Processes.

Hornberger, G. M., and Spear, R. C. (1981), “An Approach to the Preliminary
Analysis of Environmental Systems,” Journal of Environmental Manage-
ment, 12, 7–18.

Hua, L. K., and Wang, Y. (1981), Applications of Number Theory to Numer-
ical Analysis, Berlin: Springer.

Ihaka, R., and Gentleman, R. (1996), “R: A Language for Data Analy-
sis and Graphics,” Journal of Computational and Graphical Statistics, 5,
299–314.

Iman, R. L., and Conover, W. J. (1982), “A Distribution-Free Approach to
Inducing Rank Correlation Among Input Variables,” Communication in
Statistics—Simulation and Computation, 11, 311–334.

Johnson, V. E. (1995), “A Technique for Estimating Marginal Posterior Den-
sities in Hierarchical Models Using Mixtures of Conditional Densities,”
Journal of the American Statistical Association, 87, 852–860.

Kadane, J. B., and Wolfson, L. J. (1998), “Experiences in Elicitation” (with
discussion), Journal of the Royal Statistical Society, Ser. D 47, 3–19.

Kalagnanam, J. R., and Diwekar, U. M. (1997), “An Ef� cient Sampling Tech-
nique for Off-Line quality control,” Technometrics, 39, 308–319.

Kruskal, W. H. (1958), “Ordinal Measures of Association,” Journal of the
American Statistical Association, 53, 814–861.

TECHNOMETRICS, NOVEMBER 2002, VOL. 44, NO. 4

D
ow

nl
oa

de
d 

by
 [

C
or

ne
ll 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

2:
26

 1
7 

N
ov

em
be

r 
20

14
 



SAMPLING FOR BAYESIAN INFERENCE 327

McKay, M. D., Beckman, R. J., and Conover, W. J. (1979), “A Comparison
of Three Methods for Selecting Values of Input Variables in the Analysis
of Output From a Computer Code,” Technometrics, 21, 239–245.

Nelson, R. (1995), “Copulas, Characterization, Correlation, and Counterex-
amples,” Mathematics Magazine, 68, 193–198.

Niederreiter, H. (1978), “Quasi-Monte Carlo Methods and Pseudo-Random
Numbers,” Bulletin of the American Mathematical Society, 84, 957–1041.

(1992), Random Number Generation and Quasi-Monte Carlo Meth-
ods, Philadelphia: Society for Industrial and Applied Mathematics.

Omlin, M., and Reichert, P. (1999), “A Comparison of Model Extrapolation
Uncertainty Estimation Techniques,” Ecological Modelling, 115, 45–59.

Omlin, M., Reichert, P., and Forster, R. (2001), “Biogeochemical Model of
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