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Chemical hydrogen storage in amine-boranes (e.g., H;B+NHj,
19.6 wt% H) is a possible solution to the transport of hydrogen for
future energy requirements due to their high hydrogen content.’
Although solution and solid-state dehydrogenations have been
reported, there is much interest in transition-metal-catalyzed de-
hydrogenation or hydrolytic? reactions due to favorable kinetics
and lower reaction temperatures. Catalysts for dehydrogenation
include Cp,Ti derivatives,** Re-nitrosyls,” Ir-pincer complexes,®’
and Ni-NHC complexes;® colloidal-Rh has also been shown to be
an active catalyst,”'° for which in situ EXAFS suggests that the

active species might actually be smaller Rh, and Rhg “clusters”."!

Scheme 1. Amine—Borane Dehydrogenation
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Scheme 1 illustrates the accepted reaction course for homoge-
neous systems. Computational studies indicate a number of
mechanistic scenarios for the dehydrogenation step: NH proton
transfer to a coordinated ligand followed by transfer to the metal
(Ni-NHC),'? intermolecular stepwise transfer of NH then BH
(CpzTi-df;trivatives),13 and concerted NH/BH activation at the metal
center (Ir-pincer complexes).'* Oxidative addition of the BH bond
followed by NH S-elimination has also been suggested.® All routes
implicate o-complexes of amine-borane in the reaction, and while
details of intermediate species remain scarce,*’ materials that
represent catalyst deactivation products have been isolated.**” We
report here 7°-amine-borane o-complexes of rhodium that are
models for such intermediate complexes, and also catalysts for the
dehydrogenation of H3;B+NHMe, (DMAB), a close analogue of
H;B+NH;. Borane o-complexes have been reported previously'”
as have o-amine-borane complexes,'® but as far as we are aware,
there is only a brief report of such species’ involvement in catalytic
dehydrogenation.'” No examples involving Rh have been reported.

Scheme 2. Synthesis of New Amine—Borane o-Complexes

+ HaB-NMe,H
H3B-NMe,R 'BugPl/.‘Rh*'.\\\H\ . y ;

1y DB TVeR kg - 11 [MeNBH,
BuLP”  WH

“NMe, R # Me
’ AN
@H R H\; Pt
R=H DMAB (2-Me) LI IR H
- +
R = Me TMAB R=HMe  Hinlp, g
e

iBu,P /\(CHS

“NMe;,
H l+ HsC ; ‘
T gt~
@ [ R o H3B-NMe,R P'Buy
3H
Bu,P .~ CHs Es-m)e)

14432 m J. AM. CHEM. SOC. 2008, 130, 14432—-14433

F!'gure 1. Cationic portion of 2-Me (left) and 3-H (right). Selected distances
(A) and angles (deg): (2-Me): Rh1—BI1, 2.180(4); P1—Rh1—P2, 97.35(4).
(3-H): Rh1—BI1, 2.318(8); P1—Rh1—P2, 163.65(7).

Addition of DMAB (2 equiv) to [Rh(P'Bus),][BAr",] 1'® (A",
= 3,5-C¢H;3(CF;),) in 1,2-difluorobenzene results in the immediate
formation of a purple Rh(I) species [Rh(P'Bus),(17>-H3B - NHMe,)]-
[BAr"y] 2-H. 2-H is short-lived (¢,» ~1 min) and evolves to give
yellow Rh(III) [Rh(H),(P'Bus),(17*-H3B *NHMe,)][BAr"4] 3-H and
the cyclic dimer [BH,NMe;],.'° Addition of smaller amounts of
DMAB to 1 resulted in the formation of mixtures of 2-H, 3H, and
1 in varying proportions, meaning that 2-H could not be isolated
free of 3-H. 2-H was longer-lived under these conditions allowing
for its full characterization. Both complexes have been characterized
by NMR spectroscopy, ESI-MS/MS, and, for 3-H, also in the solid
state (Figure 1).

"H NMR spectra show the coordinated borane group as a broad
3H signal, relative to ‘Bu and NH groups, at 6 —2.13 (2-H) and 6
—0.77 (3-H), which sharpen on ''B decoupling. This suggests rapid
exchange of terminal and bound hydrides. Cooling 3-H to 190 K
arrests this process (0 —3.15, 2H, Rh—H—B). 2-H was not stable
in suitable low-temperature solvents (CD,Cl,). The two hydrido
ligands in 3-H are observed as a 2H dt, 0 —17.42 [J(PH) 20, J(RhH)
17], while the NH signals appear at ¢ 4.67 (2-H) and 6 3.87 (3-
H). *'P{'H} NMR spectra indicate a Rh(I) species 2-H 6 35.9
[J(RhP) 174] and a Rh(II) species 3-H 6 22.3 [J(RhP) 105].
""B{'H} NMR spectroscopy shows broad signals at & 19.3 (2-H)
and 0 2.23 (3-H), shifted significantly downfield from DMAB (J
—13.4). The solid-state structure of 3-H shows a pseudo-octahedral
Rh(IIl) center with trans phosphines, cis hydrides, and an 7>
H;B-NMe,H ligand [Rh1—B1 2.318(8) A] (Figure 1). NMR data
and structural metrics indicate a Rh(III) center ligated with a
o-borane rather than an alternative Rh(V) tetrahydridoboryl struc-
ture;'® a bond-indices analysis on calculated structures confirms
this (see SI). 3-H probably forms via dehydrogenation of the bound
DMARB in 2-H to give [Rh(H),(P'Bus),][BAr"4] 4,'® which com-
bines with a further equivalent of DMAB. Consistent with this,
3-H can be formed by addition of DMAB to 4. 3-H slowly loses
H; under vacuum to reform (unstable) 2-H, establishing a plausible
dehydrogenation cycle for DMAB mediated by 1.

As complex 2-H is short-lived and undergoes dehydrogenation
to give 3-H by NH/BH scission, blocking this route should afford
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Figure 2. DMAB dehydrogenation by 1 (5 mol%, CsHsF>) in a sealed
NMR tube. Inset: ''"B NMR spectrum after 90 min.

a stable complex. This is the case, with H;B+NMe; (TMAB)
affording a stable (under Ar) analogue 2-Me. The resulting complex
2-Me has a solid-state structure that shows a coordinated TMAB
ligand with a pseudo square-planar Rh(I) center (Figure 1) and is
structurally similar to related hydridoborate complexes of Rh(I).?°
3-Me can be prepared by adding H, to 2-Me or addition of TMAB
to 4. Spectroscopic and ESI-MS/MS data are in full accord with
these structures and are also similar to 2-H/3-H underscoring their
own structural assignment. Interestingly 3-Me loses H, much more
rapidly than 3-H (simply by flushing with Ar), and we speculate
that this is a steric effect arising from the additional N-methyl group,
forcing the Rh center to adopt a less crowded Rh(I) square-plane
configuration.

Complexes 1, 4, and 3-H are active catalysts for the dehydro-
genation of DMAB. In an open system under Ar a modest*’®
overall turnover frequency (34 h™!, 298 K, 5 mol%, 100%
conversion) is achieved to ultimately afford the cyclic dimer
[H.BNMes], {6(''B) 5.4 [t, J(BH) 113]}.'° Repeating this reaction
in a sealed NMR tube resulted in a lower TOF (2 h™ ') indicating
inhibition by H, released during catalysis. Under these attenuated
conditions a time/concentration plot (Figure 2) showed no evidence
of sigmoidal kinetics. Addition of Hg did not inhibit catalysis. Both
observations suggest nanoparticle formation is not occurring in
catalysis.” A species that shows characteristic intermediate time/
concentration dependence is also observed by ''B NMR spectros-
copy in both the open and closed systems, 0 2.4 [t, J(BH) 112],
tentatively identified as [H,BNMe,]s. This species has also been
identified during the dehydrogenation of DMAB by “Cp,Ti”.* A
small amount of H,B=NMe,, 6 38 [d, J(BH) 123], following a
similar concentration/time profile, was also observed.'

Monitoring the “closed” system during catalysis by NMR
spectroscopy identified a number of metal containing species,
including 3-H (ca. 20%). Other species currently elude definitive
identification. At the end of catalysis only two compounds are
observed in a ca. 1:1 ratio: 3-H and another that is currently only
partially characterized. *'P{'"H} NMR spectroscopy suggests a
Rh(III) center, while "H NMR data indicate 2 Rh—H, 2 Rh—H—B
groups and no NH. These data fit an empirical formula [Rh(H),-
(P'Bus),(7*-H,B=NMe,)] "."> In support of this assignment, addi-
tion of HB=NCy, to 4 results in a complex with similar NMR
spectroscopic characteristics (see Supporting Information). We
discount assignment as a [H,BNMe,], adduct, as addition of this
fragment'® to 4 is followed by immediate H, loss and the isolation
of a different complex in quantitative yield: [Rh(P'Bus){#n>-
(H,BNMe,), } [[BAr",] 5 (Figure 3), a o-complex of a cyclic amino-
borane. Addition of excess DMAB to 5 or the postcatalysis mixture
gives 3-H and the resumption of catalysis. Addition of H (1 atm)
to 5 gives a mixture of 5, 4, and [H,BNMe;],.

Figure 3. Cationic portion of 5 from asymmetric cell. Selected distance
(A) and angle (deg): Rh1—B1, 2.161(6); P1—Rh1—P2, 98.31(6).

In conclusion we have isolated Rh(I) and Rh(III) o-amine-borane
complexes of H3B:NMe;R, and although the details of the
dehydrogenation mechanism currently remain unresolved, these
complexes provide useful insight into the likely intermediates. Given
the isoelectronic relationship between alkane and amine-boranes,
complexes 2 and 3 are also analogues of o-alkane complexes of
late-transition metals.'® 5 is thus an analogue of a transition metal
bound to a cyclic alkane, complexes that have previously been
observed in solution at low temperatures by NMR spectroscopy or
by time-resolved IR spectroscopy.?!

Acknowledgment. The EPSRC for support. Dr. Simon Aldridge
for stimulating discussions and the gift of H,B=NCys:.

Supporting Information Available: Full experimental details,
kinetic and characterization data. This material is available free of
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