

Amine-Borane *o*-Complexes of Rhodium. Relevance to the Catalytic Dehydrogenation of Amine-Boranes

Thomas M. Douglas, Adrian B. Chaplin, and Andrew S. Weller*

Department of Chemistry, Inorganic Chemistry Laboratories, University of Oxford, U.K., OX1 3QR

Received August 19, 2008; E-mail: andrew.weller@chem.ox.ac.uk

Chemical hydrogen storage in amine-boranes (e.g., $H_3B \cdot NH_3$, 19.6 wt% H) is a possible solution to the transport of hydrogen for future energy requirements due to their high hydrogen content.¹ Although solution and solid-state dehydrogenations have been reported, there is much interest in transition-metal-catalyzed dehydrogenation or hydrolytic² reactions due to favorable kinetics and lower reaction temperatures. Catalysts for dehydrogenation include Cp₂Ti derivatives,^{3,4} Re-nitrosyls,⁵ Ir-pincer complexes,^{6,7} and Ni-NHC complexes;⁸ colloidal-Rh has also been shown to be an active catalyst,^{9,10} for which in situ EXAFS suggests that the active species might actually be smaller Rh₄ and Rh₆ "clusters".¹¹

Scheme 1. Amine-Borane Dehydrogenation

Scheme 1 illustrates the accepted reaction course for homogeneous systems. Computational studies indicate a number of mechanistic scenarios for the dehydrogenation step: NH proton transfer to a coordinated ligand followed by transfer to the metal (Ni-NHC),¹² intermolecular stepwise transfer of NH then BH (Cp₂Ti-derivatives),¹³ and concerted NH/BH activation at the metal center (Ir-pincer complexes).¹⁴ Oxidative addition of the BH bond followed by NH β -elimination has also been suggested.⁸ All routes implicate σ -complexes of amine-borane in the reaction, and while details of intermediate species remain scarce,4,7 materials that represent catalyst deactivation products have been isolated.^{4,6,7} We report here η^2 -amine-borane σ -complexes of rhodium that are models for such intermediate complexes, and also catalysts for the dehydrogenation of H₃B·NHMe₂ (DMAB), a close analogue of H₃B·NH₃. Borane σ -complexes have been reported previously¹⁵ as have σ -amine-borane complexes,¹⁶ but as far as we are aware, there is only a brief report of such species' involvement in catalytic dehydrogenation.¹⁷ No examples involving Rh have been reported.

Scheme 2. Synthesis of New Amine-Borane σ -Complexes

Figure 1. Cationic portion of **2-Me** (left) and **3-H** (right). Selected distances (Å) and angles (deg): (**2-Me**): Rh1–B1, 2.180(4); P1–Rh1–P2, 97.35(4). (**3-H**): Rh1–B1, 2.318(8); P1–Rh1–P2, 163.65(7).

Addition of DMAB (2 equiv) to $[Rh(P^{i}Bu_{3})_{2}][BAr^{F_{4}}]$ 1¹⁸ (Ar^{F₄} = 3,5-C₆H₃(CF₃)₂) in 1,2-difluorobenzene results in the immediate formation of a purple Rh(I) species $[Rh(P^{i}Bu_{3})_{2}(\eta^{2}-H_{3}B\cdot NHMe_{2})]$ -[BAr^{F₄}] **2-H. 2-H** is short-lived ($t_{1/2} \sim 1$ min) and evolves to give yellow Rh(III) [Rh(H)₂(P^{i}Bu_{3})_{2}(\eta^{2}-H_{3}B\cdot NHMe_{2})][BAr^{F_{4}}] **3-H** and the cyclic dimer [BH₂NMe₂]₂.¹⁰ Addition of smaller amounts of DMAB to 1 resulted in the formation of mixtures of **2-H**, **3H**, and **1** in varying proportions, meaning that **2-H** could not be isolated free of **3-H. 2-H** was longer-lived under these conditions allowing for its full characterization. Both complexes have been characterized by NMR spectroscopy, ESI-MS/MS, and, for **3-H**, also in the solid state (Figure 1).

¹H NMR spectra show the coordinated borane group as a broad 3H signal, relative to ^{*i*}Bu and NH groups, at δ -2.13 (2-H) and δ -0.77 (**3-H**), which sharpen on ¹¹B decoupling. This suggests rapid exchange of terminal and bound hydrides. Cooling 3-H to 190 K arrests this process (δ -3.15, 2H, Rh-H-B). **2-H** was not stable in suitable low-temperature solvents (CD₂Cl₂). The two hydrido ligands in **3-H** are observed as a 2H dt, $\delta - 17.42$ [J(PH) 20, J(RhH) 17], while the NH signals appear at δ 4.67 (2-H) and δ 3.87 (3-**H**). ³¹P{¹H} NMR spectra indicate a Rh(I) species **2-H** δ 35.9 [J(RhP) 174] and a Rh(III) species **3-H** & 22.3 [J(RhP) 105]. ¹¹B{¹H} NMR spectroscopy shows broad signals at δ 19.3 (2-H) and δ 2.23 (**3-H**), shifted significantly downfield from DMAB (δ -13.4). The solid-state structure of **3-H** shows a pseudo-octahedral Rh(III) center with *trans* phosphines, *cis* hydrides, and an η^2 -H₃B·NMe₂H ligand [Rh1-B1 2.318(8) Å] (Figure 1). NMR data and structural metrics indicate a Rh(III) center ligated with a σ -borane rather than an alternative Rh(V) tetrahydridoboryl structure;¹⁹ a bond-indices analysis on calculated structures confirms this (see SI). 3-H probably forms via dehydrogenation of the bound DMAB in 2-H to give $[Rh(H)_2(P^iBu_3)_2][BAr^F_4]$ 4,¹⁸ which combines with a further equivalent of DMAB. Consistent with this, 3-H can be formed by addition of DMAB to 4. 3-H slowly loses H₂ under vacuum to reform (unstable) **2-H**, establishing a plausible dehydrogenation cycle for DMAB mediated by 1.

As complex **2-H** is short-lived and undergoes dehydrogenation to give **3-H** by NH/BH scission, blocking this route should afford

Figure 2. DMAB dehydrogenation by 1 (5 mol%, $C_6H_4F_2$) in a sealed NMR tube. Inset: ¹¹B NMR spectrum after 90 min.

a stable complex. This is the case, with $H_3B \cdot NMe_3$ (TMAB) affording a stable (under Ar) analogue 2-Me. The resulting complex 2-Me has a solid-state structure that shows a coordinated TMAB ligand with a pseudo square-planar Rh(I) center (Figure 1) and is structurally similar to related hydridoborate complexes of Rh(I).²⁰ **3-Me** can be prepared by adding H₂ to **2-Me** or addition of TMAB to 4. Spectroscopic and ESI-MS/MS data are in full accord with these structures and are also similar to 2-H/3-H underscoring their own structural assignment. Interestingly 3-Me loses H2 much more rapidly than 3-H (simply by flushing with Ar), and we speculate that this is a steric effect arising from the additional N-methyl group, forcing the Rh center to adopt a less crowded Rh(I) square-plane configuration.

Complexes 1, 4, and 3-H are active catalysts for the dehydrogenation of DMAB. In an open system under Ar a modest^{4,7,8} overall turnover frequency (34 h⁻¹, 298 K, 5 mol%, 100% conversion) is achieved to ultimately afford the cyclic dimer $[H_2BNMe_2]_2 \{\delta^{(11}B) 5.4 [t, J(BH) 113]\}.^{10}$ Repeating this reaction in a sealed NMR tube resulted in a lower TOF $(2 h^{-1})$ indicating inhibition by H₂ released during catalysis. Under these attenuated conditions a time/concentration plot (Figure 2) showed no evidence of sigmoidal kinetics. Addition of Hg did not inhibit catalysis. Both observations suggest nanoparticle formation is not occurring in catalysis.9 A species that shows characteristic intermediate time/ concentration dependence is also observed by ¹¹B NMR spectroscopy in both the open and closed systems, δ 2.4 [t, J(BH) 112], tentatively identified as [H₂BNMe₂]₃. This species has also been identified during the dehydrogenation of DMAB by "Cp2Ti".3 A small amount of H₂B=NMe₂, δ 38 [d, J(BH) 123], following a similar concentration/time profile, was also observed.¹¹

Monitoring the "closed" system during catalysis by NMR spectroscopy identified a number of metal containing species, including 3-H (ca. 20%). Other species currently elude definitive identification. At the end of catalysis only two compounds are observed in a ca. 1:1 ratio: **3-H** and another that is currently only partially characterized. ³¹P{¹H} NMR spectroscopy suggests a Rh(III) center, while ¹H NMR data indicate 2 Rh-H, 2 Rh-H-B groups and no NH. These data fit an empirical formula [Rh(H)₂- $(P^{i}Bu_{3})_{2}(\eta^{2}-H_{2}B=NMe_{2})]^{+.15}$ In support of this assignment, addition of $H_2B=NCy_2$ to 4 results in a complex with similar NMR spectroscopic characteristics (see Supporting Information). We discount assignment as a [H₂BNMe₂]₂ adduct, as addition of this fragment¹⁰ to **4** is followed by immediate H₂ loss and the isolation of a different complex in quantitative yield: $[Rh(P^{i}Bu_{3})_{2}\{\eta^{2} (H_2BNMe_2)_2$][BAr^F₄] **5** (Figure 3), a σ -complex of a cyclic aminoborane. Addition of excess DMAB to 5 or the postcatalysis mixture gives **3-H** and the resumption of catalysis. Addition of H_2 (1 atm) to 5 gives a mixture of 5, 4, and $[H_2BNMe_2]_2$.

Figure 3. Cationic portion of 5 from asymmetric cell. Selected distance (Å) and angle (deg): Rh1-B1, 2.161(6); P1-Rh1-P2, 98.31(6).

In conclusion we have isolated Rh(I) and Rh(III) σ -amine-borane complexes of H₃B·NMe₂R, and although the details of the dehydrogenation mechanism currently remain unresolved, these complexes provide useful insight into the likely intermediates. Given the isoelectronic relationship between alkane and amine-boranes, complexes 2 and 3 are also analogues of σ -alkane complexes of late-transition metals.¹⁶ **5** is thus an analogue of a transition metal bound to a cyclic alkane, complexes that have previously been observed in solution at low temperatures by NMR spectroscopy or by time-resolved IR spectroscopy.²¹

Acknowledgment. The EPSRC for support. Dr. Simon Aldridge for stimulating discussions and the gift of H₂B=NCy₂.

Supporting Information Available: Full experimental details, kinetic and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116-8118. (b) Stephens,
- (a) Market, H. D. Huger, C. H. Dalton Trans. 2007, 2613–2626.
 (a) Yoon, C. W.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 13992–13993.
 (b) Yan, J.-M.; Zhang, X.-B.; Han, S.; Shioyama, H.; Xu, Q. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.
 Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128, 6520, 6520. (2)
- 9582-9583

- (4) Pun, D.; Lobkovsky, E.; Chirik, P. J. Chem. Commun. 2007, 3297–3299.
 (5) Jiang, Y.; Berke, H. Chem. Commun. 2007, 3571–3573.
 (6) Hebden, T. J.; Denney, M. C.; Pons, V.; Piccoli, P. M. B.; Koetzle, T. F.; Schultz, A. J.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. J. Am. Chem. Soc. 2008, 130, 10812–10820.
 (7) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I.
- J. Am. Chem. Soc. 2006, 128, 12048-12049
- Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844-1845.
- (9) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776–9785.
 (10) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc.
- **2003**, *125*, 9424–9434.
- (11) Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; Chen, Y.; Szymczak, N. K. J. Am. Chem. Soc. 2007, 129, 11936–11949.
 (12) Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 1798–1799.
- (13) Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597-3600.
- (14) Paul, A.; Musgrave, C. B. Angew. Chem., Int. Ed. 2007, 46, 8153–8156.
 (15) (a) Alcaraz, G.; Clot, E.; Helmstedt, U.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2007, 129, 8704-8705. (b) Crestani, M. G.; Muñoz-Hernández, M.; Arévalo, A.; Acosta-Ramírez, A.; García, J. J. J. Am. Chem. Soc. 2005, 127, 18066–18073. (c) Hartwig, J. F.; Muhoro, C. N.; He, X.; Eisenstein, O.; Bosque, R.; Maseras, F. J. Am. Chem. Soc. 1996, 118, 10936–10937. (d) Lin, Z. Struct. Bonding (Berlin) 2008, 130, 123-148.
- (16) Shimoi, M.; Nagai, S.-I.; Ichikawa, M.; Kawano, Y.; Katoh, K.; Uruichi, M.; Ogino, H. J. Am. Chem. Soc. 1999, 121, 11704-11712.
- (17) Shimoi, M.; Kawano, Y.; Taeko, T. S. 224th ACS National Meeting, Boston, 2002.
- (18) Douglas, T. M.; Chaplin, A. B.; Weller, A. S. Organometallics 2008, 27, 2918-2921.
- (19) Hartwig, J. F.; De Gala, S. R. J. Am. Chem. Soc. 1994, 116, 3661-3662. (20) Westott, S. A.; Marder, T. B.; Baker, R. T.; Harlow, R. L.; Calabrese, J. C.; Lam, K. C.; Lin, Z. Polyhedron 2004, 23, 2665–2677.
- (21) Ball, G. E.; Brookes, C. M.; Cowan, A. J.; Darwish, T. A.; George, M. W.; Kawanami, H. K.; Portius, P.; Rourke, J. P. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6927–6932, and references therein.

JA806582N