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Abstract: Alkylation of regioisomeric potassium enolates 4 and 6
obtained from corresponding silyl enol ethers 2 and 3 occurs at the most
substituted site affording ketones 8. Alkylation of corresponding lithium
enolates 5 and 7 occurs at the expected site affording ketones 8 or 9. As
an application the one pot synthesis of spiroketones 13 from silyl enol
ethers 12 is described.

Alkylation of enolates is a very useful reaction to form carbon-carbon
bonds.1 It is well-known that starting from an unsymmetrical ketone
such as 2-methylcyclopentanone 1a or 2-methylcyclohexanone 1b, the
regioselectivity of the alkylation, in non equilibrating conditions, is
directly controlled by the structure of the starting enolate.2-10 Thus,
intensive efforts have been made to generate either the less substituted
enolate or the more substituted one.2-15 Lithium enolates have been
intensively studied whereas only comparatively few papers concern
potassium enolates. This is due to a lack of convenient methods for
regioselective and stereoselective preparation of potassium enolates6,14

in contrast to their lithium counterparts.2-4,10-13 We have reported that
regiocontrolled and stereocontrolled potassium enolates could be
prepared by treating corresponding silyl enol ethers with potassium tert-
butoxide; a metal exchange using five equivalents of lithium bromide
led to the corresponding lithium enolates (Scheme 1).14

In this paper we report a comparative study of the reactions of
potassium and lithium enolates obtained in these conditions toward
alkylhalides. 

Starting from 2-methylcyclopentanone 1a and 2-methylcyclohexanone
1b, we prepared the tetra- and tri-substituted trimethylsilyl enol ethers 2
and 3,16 their corresponding potassium enolates 4 and 6, and lithium
enolates 5 and 7 according to previous procedures (Schemes 1, 2).14,15

In all cases, control experiments using their condensation with acetyl
chloride have shown that the structure of the initial silyl enol ethers was
retained.

We studied the alkylation of these eight enolates with allylbromide and
benzylbromide in THF (-78°C, 1h for K enolates, -15°C, 15h for Li
enolates) (Table 1, runs 1-16).17 The composition of the crude product
was determined by 1H NMR and the major alkylated ketones were
isolated. As shown in Table 1, lithium enolates 5 and 7 led

Scheme 1
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predominantly to the expected monoalkylated ketones 8 and 9,
respectively. Surprisingly, starting from potassium enolates 4 and 6, the
2,2-disubstituted ketones 8 were obtained independently from structure
4 or 6 as the starting enolates (Scheme 2); the regioisomeric
disubstituted ketone 9 was detected as a very minor by-product, in
addition to the minor dialkylation product 10.18 The predominant
ketones 8 or 9 were purified by chromatography on silica gel and
isolated from the crude material without contamination with other
ketones (Scheme 2).

Scheme 2

Methylation of potassium enolates 4a and 6a using methyliodide (THF,
-75°C, 2h) confirms the preceding results (Table 1, runs 17-19): the
composition of the crude product was the same, whatever the structure
of the starting silyl enol ethers 2a, 3a and 2,2-dimethylcyclopentanone
was the main methylation product.19

These results can be explained by the known propensity of potassium
enolates to equilibrate.7,15 The equilibration 6 4 occurs via the ketone
1 and can be initiated by a catalytic amount of a ketonic compound
(ketone 8 or 9). The alkylation reaction takes place on the most
nucleophilic tetrasubstituted potassium enolate 4 (Scheme 2).20 With
lithium enolates, the tightness of the oxygen-metal bond is generally
sufficient to prevent proton transfer. 2,21

We used the above property to prepare in one pot, spiroketones 13 from
silyl enol ethers 12 by dialkylation of their potassium enolates with 1,4-
dibromobutane (Scheme 3). This one pot procedure afforded ketones 13
with a 78% yield which compares favorably with those reported in the
literature.22

Scheme 3

In connection with these results, the regioselective alkylation at the
more hindered α−site of the unsymmetrical ketones has been recently
reported using another methodology : alkylation of the tetrasubstituted
lithium enolates generated by the combined use of aluminium tris(2,6-
diphenylphenoxide) and LDA.10 

Lastly, the complementary results obtained from the aldolisation15 and
the alkylation of potassium enolates must be noted. The aldolisation
occurs on the less substituted site, the alkylation on the most substituted
one, whatever the starting potassium enolate (Scheme 4). Concerning
aldolisation all reactions are equilibrated and the result reflects the
relative stability of the potassium aldolates. The formation of alkylated
ketones 8 or 9 is obviously non reversible and the alkylation takes place
with the most nucleophilic tetrasubstituted enolate.

Scheme 4

In conclusion alkylation of unsymmetrical ketones via their potassium
enolates obtained from silyl enol ethers occurs at the more substituted
α-site whatever the regioisomeric structure of the starting silyl enol
ethers, due to the equilibration as the alkylation starts. The proposed
method is very convenient for preparative purposes. Only the alkylated
ketone 8 has been obtained starting from a mixture of silyl enol ethers 2
and 3.
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