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The article [Darmon 02] proposes a conjectural p-adic analytic
construct ion of points on (modular) elliptic curves, points which
are defined over ring class fields of real quadratic fields. These
points are related to classical Heegner points in the same way
as Stark units to circula r or elliptic units.! For this reason they
are called "Stark-Heegner points," following a terminology in
troduced in [Darmon 98].

If K is a real quadratic field, the Stark-Heegner points
attached to K are conjectured to satisfy an analogue of the
Shimura reciprocity law, so that they can in principle be used
to find explicit generators for the ring class fields of K . It is also
expected that their heights can be expressed in terms of deriv
atives of the Rankin L-series attached to E and K , in analogy
with the Gross-Zagier formula .

The main goal of this paper is to describe algorithms for cal
culating Stark-Heegner points and supply numerical evidence
for the Shimura reciprocity and Gross-Zagier conjectures, fo
cussing primarily on elliptic curves of prime conductor.

1. HEEGNER POINT ALGORITHMS

1.1 Heegner Points Attached to Imaginary
Quadratic Fields

The theory of complex multiplication. It is instructive
to briefly recall the theory behind the classical Heegner
point construction. Fix a positive integer N, and let
Xo(N) be the modular curve classifying pairs (A, A') of
generalized elliptic curves together with a cyclic isogeny
A --+ A' of degree N. Its set of complex points is a
Riemann surface admitting the complex uniformisation:

'T} : n:jfo(N) ~ Xo(N)(iC)

where 1i* = 1i u IP'! (Q) is the extended upper half plane
and fo(N) is the set of elements of SL2(Z) whose reduc
tions (mod N) are upper triangular. The map 'T} sends

lSee for example the discussion in [Bertolini and Darmon 2001]
relating these points to derivatives of p-adic L-functions.
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7 E 11 to the point of X o(N )(C) associated to the pair
(CI (7, 1) ,CI (7, l i N )) of elliptic curves over C related
by t he obvious cyclic N-isogeny.

Let 0 be an order in a quadratic imaginary subfield
K of C. Such an order is completely determined by it s
discriminan t D . T he Heegner points attached to 0 corre
spond to the pairs (A , A' ) of N -isogenous elliptic curves
satisfying

End(A) ~ End( A') ~ O .

Assume for simplicity that D is prime to N. Then such
a pair (A , A' ) is of the form (CI A, CI A' ) where (up to
homothety) A and A' are projective O-submodules of K
satisfying A = nA' , for some fact orizati on

(N) = nn
of N as a product of cyclic O-ideals. The set of Heegner
points assoc iate d to 0 form s a Pi c(O )-affine space via

a * (A, A') = (Hom( a, A ),Hom (a , A' )),

a E Pi c(O) , (A, A' ) E Xo(N).

On the level of complex tori , t his ac t ion is described by
the rul e

a * (CI A, C/ n- 1A) = (C/ a- 1A,C/ a- 1n- 1A).

The natural action of GK := Gal(KIK ) preserves the
set of Heegner points attached to 0 , and commutes with
t he action of Pi c(0 ). Hence the action of GK on the
collection of Heegner points attached to 0 is det ermined
by a homomorphism 6 : Gal (K IK ) ---+ Pi c(0 ) sat isfying

6(0") * (A,A') = (A ,A')" ,

Finding the Heegn er points. T he following recip e for
calculating Heegner points on 1lIfo(N ) attached to the
order 0 of discrimina nt D prime to N is decr ibed in
[Zagier 85]. Choose an integer 8 E Z satisfying

8
2 == D (mod 4N) ,

giving rise to t he cyclic O- ideal n := (N, S- r )of norm
N. The Heegner points (A , A') attached to 0 for which

ker(A ---+ A') = A [n]

are in bijecti on wit h t he SL2 (Z)-equi valence classes of
primitive int egral bin ary qu adratic forms

Ax2+ B xy + Cy2 satisfying

B 2 - 4AC = D , N IA, B == 8 (mod 2N) .

Under t his bij ecti on , the point on 1lIfo(N ) identified
by 7] with t he Heegner point correspo nding to such a
quadrat ic form is the class of 7 where 7 E 11 is t he unique
root of t he dehom ogeni zed form Ax2 + B x + C . T hus
a list of representatives 71, .. . ,7h E 11 (where h is the
class number of 0 ) of Heegner points can be computed
efficient ly by using Gauss' t heory of reduced primit ive
integ ral bin ar y qu adrati c forms (see for example t he ex
planation at t he end of section 5.2 of [Cohen 94]) .

Heegner points on ellipti c curves. Let E be an elliptic
cur ve defined over Q of conductor N . By the modular ity
theorem ([W iles 95], [Tay lor and Wil es 95], [Breuil et al.
2001]) , E is equippe d with a nonconst ant morphism of
cur ves over Q, commonly referred to as the Weil para
metrisation attached to E :

rec : Pic(0 ) .:; Gal(HIK)

of class field theory. The extension H = fI is the so-called
ring class field attached to O . The compatibility between
rec and 6 is known as the Shi mura reciprocity law; it is
t he cent ral result of t he t heory of complex mul tiplication.

for all Heegner points (A, A') with End(A) = O . In par
tic ular , 6 fact ors through t he Galois group of an abe lian
extension fI of K , and t he Heegner points attached to 0
are defined over tt.

Let p be a prime of K whi ch is unramified in fI and
for which A with End(A) ~ 0 has good reduction. Let
\13 be a prime of fI above p. A direct calculat ion shows
that the elliptic curve obtained by reducing A (mod \13)
and raising its coefficients to t he (#0 Kip)-power is iso
morphic to p * A reduced (mod \13). It follows t hat

6(Fro bp ) = [p] E Pic(O ).

T hus 6 is the inverse of the Artin reciprocity map

(1-1 )

¢ : X o(N ) ---+ E

mapping the cusp 00 to the identi ty element of E . It has
proved eminently frui tful to conside r the images under
the Weil par am et risati on of Heegner po ints of X o(N) (d.
Kolyvagin's work on Euler systems) .

While it is difficult to wri te down explicit algebraic
equat ions for X o(N ) (not to menti on ¢), complex uni
formi sation of E(C) and of Xo (N )(C) provides a method
for calculating the Weil par am et risat ion in practi ce.
Mor e precisely, t he Riemann surface E(C) is isomorphic
to CIA, where A is the lat ti ce generated by the periods
of a Neron different ial w on E (which is well-defined up
to sign). Generators for A can be computed by Gauss's
arit hmet ic-geometric mean formula for complete ellip
t ic integrals, a quadratica lly converge nt algorit hm which
works ext remely well in practice. The curve E is t hen
given up to isomorphism (over C) by the equation

y2 = 4x3 - g2(A)x - g3(A)
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and the complex analytic isomorphism

ns :C IA -----+ E(C)

is decribed by the formula

where PA is the Weierstrass p-function attached to A.
Explicit formulae for A, g2(A), g3(A) and PA can be found
in [Silverman 86] for example.

Let f be the normalised cusp form of weight two at
tached to E , with Fourier expansion given by

00

f(7) = L:ane21fin7, al = l.
n=l

To calculate the coefficients an , it is enough to compute
ap for p prime, in light of the identity

II(1- app-S)-l II(1 - app-s + pl-2s)-1 = L: ann-so

piN PlN n

This question in turn is reduced to counting the num
ber of points of E over the finite fields with p elements,
since ap = 0 (resp. 1, -1) if E has additive (resp. split
multiplicative, non-split multiplicative) reduction at p,
and

ap = p + 1- #E(Fp)

if E has good reduction at p. The pull-back ¢*(w) of w
by ¢ is a non-zero rational multiple of the differential

Assume for simplicity that ¢*(w) = wf' (After replac
ing E by a curve which is isogenous to it over Q - the
so-called strong Weil curve in its isogeny class - it is con
jectured that ¢ can be chosen to satisfy this condition.
When E is a semistable strong Weil curve, it is in fact
known that ¢*(w) = ±wf or ±2wf. See the discussion in
[Edixhoven 91].) Given 7 E ti, and setting

a direct calculation shows that the following diagram
commutes:

u:Ir o(N )~ Xo(N)(C)

re->JT 1 ¢1
CIA ~ E(C) .

More precisely, for all 7 E H, the point P; = (x, y) E

E(C) corresponding to it under the Weil uniformisation
is given by the formula

It is of some interest to consider the complexity of calcu
lating (x, y) as a function of 7.

Proposition 1.1. For 7 E ti , the calculation of the asso
ciated point (x, y) E E(C) to d digits of decimal accuracy
can be performed in O(d2Iogd/Im(7)2) elementary oper
ations as d ---+ 00 and Im(7) ---+ O.

Proof: The naive estimate

I
f an qnl s:; f exp( -21TnIm(7))

n=M+l n n=M+l

implies that the quantity L; can be evaluated with an
error of at most lO-d using not more than

M - log lO-d - 0 (~)
- -27rIm(7) - Im7

Fourier coefficients attached to E . Using the algorithm
of Shanks (see Algorithm 7.4.12 in Cohen's book [Co
hen 94]), it is possible to compute M coefficients in time
O(M2

) . The evaluation of the sum

M

J - '""" an nr-L.J q
n=l n

can then be performed (using Horner's rule) with O(M)
multiplications. Each multiplication can be carried out in
O( d log d) time using fast Fourier transform techniques.
Since the subsequent calculation of p( Jr) and pi(Jr) is
dominated by the time necessary to obtain J; (see Algo
rithm 7.4.5 of [Cohen 94]), the result follows. 0

1.2 Stark-Heegner Points Attached to

Real Quadratic Fields

Theory. The previous section motivates a conjectural
p-adic analytic construction of so-called Stark-Heegner
points, which are defined over ring class fields of real
quadratic fields. The description of the method is sim
plified by the assumption that the conductor N = p is a
prime, an assumption that will be made from now on.

The elliptic curve E of conductor p has multiplicative
reduction at p. Of key importance for the construction
is Tate's p-adic uniformization of E

¢Tate : C; Iqz -:; E(Cp ) ,

where q E p7l,p is the Tate period attached to E.
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Following the not ati ons that were used in [Darmon 02],
set w = 1 if E has split multiplicati ve reduction at p, and
set w = -1 if E has non-spli t mul tiplicative reduction
at p . Some import an t features of the behaviour of the
Stark-Heegner points on E are governe d by this sign. It
is known t hat w is equal to

Note that this lat ti ce contains the period la t ti ce A at
t ached to E . The period of (1-2) is expressed as a limi t
of Riemann sums

i
T21Y [(tU- T2) (l"'UY )]W = lim 2..: --- (9 EU f (z )dz

T1 x IIUII-->O UEU i u - T1 «u»

(1-3)

Given any distinct elements a, b E lP' I (Q) , t he group

!,Ti 'Yw-- iT1Ywfor all , E r.
, T 1 '"'IX 71 X

As stated in Lemma 1.11 of [Darmon 02]' the double
int egral of (1-2) is addit ive in the first and second set of
vari ables of integrati on , i.e.,

(1- 5)

(1-6)

(1- 4)

x , y , z E lP' I (Q).

x ,Y E lP'I (Q) ,

for all Tj E tip,

i T1Y i T1Y iT31Y
W + w = W,

Tt X T2 X TI X

for all Tj E tip,

i
T1Y i Tiz iTl z

w + w = W ,
71 x 7 1 Y 7 1 X

(Note t ha t these relati ons are writ ten mul tiplica tively in
Lemma 1.11 of [Darmon 02]' because the double integral
defined t here takes its values in C; . The notati onal dis
crepancy is in keeping with the common usage t hat the
composit ion law on the abelian group C; 0 Ashould be
written addit ively in relati ons (1-5) and (1-6) above .)
By the third formula in Lemma 1.11 of [Darmon 02]'
the double integral attached to E also satisfies t he key
invari an ce property under r := SL2(Z[1/p]) :

l
"' U CXJ

U H EU f( z)dz
"'UO

satisfies a dist ributi on relation. Since it takes values
in t he finit ely generated Z-module A, it s values are p
adically bounded and hence this dist ribut ion gives rise
to a p-adi c measure against which locally analyt ic Cp
valu ed functions on lP' I (Qp) can be integrated.

where the limi t is taken over un iformly finer disjo int cov
ers of lP'I(Qp) by sets of the form U = auI Zp , with
au E GLt (Z [l ip]) . In this limi t , i u is an arbit rarily
chosen point of U , and EU := word p(det o ) .

The form of the definit ion , fami lia r from the t heory of
p-adi c L-funct ions, is based on t he observation that the
assignment

where JT E C; I qZ is a period at tached to T and f whose
definit ion will now be recalled briefly.

T he role played by the line integral of the differenti al
form wf in defining JT in t he set t ing of Section 1.1 (when
T is quadrati c imaginary) is now played by t he double
integral on tip x ti introduced in [Darmon 02]. More
precisely (wit h only a min or modificat ion to t he not a
t ion) equations (71) and (72) of [Darmon 02] attach to
a normalized newform for r 0 (p) having rational Fourier
coefficents a period funct ion

Let K be a real quad rati c field in which p is inert , and
let H be a ring class field of K of conductor prime to
p. Considerations combining the Birch and Swinnerton
Dyer conjecture with a det erminati on of the signs in
the functi onal equations of L(E l K ,s) and its twists by
characters of Gal (HIK ) lead to the predicti on that the
Mordell-Weil group E( H) is equipped with a lar ge col
lecti on of po ints of infini te order. (Cf. the discussion in
the introduction to [Darmon 02].)

Let tip := lP'1(Cp) - lP' I (Qp) denote the p-adi c upper
half-plan e. Fix from now on an embedding of K into Cpo
Since p is inert in K , note t hat K n tip is non-empty.
The Stark-Heegner points are indexed by elements T E

K n tip, and are defined by t he rul e

3. the eigenvalue of t he Heeke operator Up acting on f.

2. the sign in the functiona l equat ion for L (E I Q,s), so
t hat , conjecturally, E (Q) has even (resp. odd) rank
if w = 1 (resp. w = -1);

1. the negative of the eigenvalue of the Atkin-Lehner
involuti on Wp at p acting on f ;

{T1Y
w E C; 0z A,

T 1 X

Here Ais the Z-module of rank two r a ,b = { , E r I , a= a, , b = b}

{1 f( z)dz : (J E HI (Xo( p), cusps ; Z) } .
is an abelian group of rank one. Assume for simplicity
that E is alone in its Q-isogeny class .

D
ow

nl
oa

de
d 

by
 [

N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

] 
at

 0
8:

28
 2

5 
N

ov
em

be
r 

20
14

 



Darmon, Green: Elliptic Curves and Class Fields of Real Quadratic Fields: Algorithms and Evidence 41

Lemma 1.2. The double integral

belongs to q71 0 A, for all Z E 'lip and for all I E r a,b .

Let 0 c K be the Z[l/p]-order of K defined by 0 =
1If-l(M2(Z[1/p]). Let u be the generator of O~, the
group of units of 0 of norm one, which is greater than 1
with respect to the chosen real embedding of K. Then
IT = 1If (u) is a generator for the stabilizer of T in f.
Define

be the reciprocity map of global class field theory. The
following is a restatement of Conjecture 5.6 and 5.9 of
[Darmon 02] (in light of the fact that the integer denoted
t in conjecture 5.6 is equal to 1 when the conductor of E
is prime) .

Definition 1.4. The point PT := ¢Tate(JT) E E(Cp ) is
called the Stark-Heegner point attached to T E K n 'lip
(and to the choice of functional (3).

Define

From the properties of the indefinite integral sketched
above, it can be checked that JT is independent of the
choice of x E 1P'1 ('01) . Let (3 : A -+ Z be a Z-module
homomorphism. The following assumption is made on (3:

The homomorphism (3 induces a homomorphism (de
noted by the same letter by abuse of notation)

Assumption 1.3. The image (3(A) is contained in 2cpZ,

where cp is the Tamagawa factor attached to E at p.

The conductor of T is the conductor of the Z[l/p]-order
o attached to T.

A point T E K n 'li is said to be even if ordp(T - r) is
even, and odd otherwise. The action of I' on 'lip preserves
both the order associated to T , and its parity. There are
exactly h distinct P-orbits of even T with associated order
0, where h is the cardinality of Pic+(O), the group of
narrow ideal classes attached to O . In fact, the group
Pic+ (0) acts simply transitively on the set of these p,
orbits. (Cf. [Darmon 02]' sec. 5.2). Denote by a * T the
image of a acting on T by this action. Let H+ denote the
so-called narrow ring class field attached to the order 0,
and let

1If(A) ( ~ ) = A ( ~ ) .

£"Il~ belongs to q71 0 A,

The proof of Theorem 1 of [Darmon 02] is based on a
deep conjecture of Mazur, Tate and Teitelbaum [Mazur
et al. 86] proved by Greenberg and Stevens [Greenberg
and Stevens 93]. A multiplicative refinement [Mazur and
Tate 87] of these conjectures due to Mazur and Tate,
which, for prime conductor, is proved by deShalit [de
Shalit 95], allows the ('01p):ors-ambiguity in formula (1-
7) to be removed. Lemma 1.2 follows.

Formal considerations explained in [Darmon 02], in
volving the cohomology of M-symbols, imply the exis
tence of "indefinite integrals"

Sketch of Proof Since E has prime conductor, the as
sumption that E is alone in its isogeny class implies that
ordp(q) = 1. Hence by Theorem 1 of [Darmon 02] (see
also Remark 1 following the statement of Corollary 3 of
[Darmon 02])

fi: E (C; /q71) 0 A

satisfying the properties

for all T E'lip, Q E I', x,y ,z E IP'1('01).

The first relation completely determines the indefinite
integral, in view of the fact that the space of f-invariant
(CC; /q71) 0A-valued functions on JP'1 ('01) xlP'1 ('01) satisfying
the second relation is trivial. (In fact , this is already true
for the SL2(Z)-invariant functions.)

To define the period JT E C; /q71 0 Aassociated to T E

K n 'lip, we use the algebra embedding 1If : K -+ M2('01)

such that for A E K ,

1If is defined by

Conjecture 1.5. If T E K n 'lip is a real quadratic point,
then the Stark-Heegner point PT E E(Cp ) is a global point
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42 Experimental Mathematics, Vol. 11 (2002), No .1

defined over H +. Furthermore,

Pa*T = rec([a]) -1 PT'

Hence, it suffices to compute

(i
T-loCO ) . ( 1 ) f3 (€Uf::;;oOO j(Z)dZ)

(3 w = lim II 1 +--
'1' 0 Ilu ll ->o t U -T

UEU

A slight ly weaker form of this conjecture is

Conjecture 1.6. If 71 , . .. , 7 h is a complete set of repre
sentatives fo r th e r -orbiis of even 7 attached to th e order

o of dis criminant D , th en th e points PTj are defined over
H + an d are permuted by Gal(H+/ K) , so that collectively

th ese points are defined over K.

Computations. We now describe an algorithm for com
puting JT • Set

where the notation is as before. Ob serve now that when

7 E R the fun ction

1
1 +-

t - 7

is constant (mod pN) on the sets

which cover lP'1(Qp). It follows t herefore from the ad
ditivity of the distribution (1-4) and the formula (1- 3)
that

(1- 8)

~)· oo = aj "or J' 1 nv l' = , . . . , .
bj

for 7 E R , x, y E IP1(Q).

.0 _ aj - l
0") - b '

j - l

Let 0"1 , . . • , O"n E SL 2(Z) be eleme nts sat isfying

By the addit ivity and SL2 (Z)-invariance properties of the
indefini te integral, the period of (1-8) is equal to

R = {a+ by'S : a E Zp, b E Z; } ,

ao
b
o

= x,

L t !!:.ll. £l. ~ b D f t 'e bo ' b l ' . . . ' b
n

e a r arey sequence rom x 0 y , t .e. ,
a sequence of frac tions in lowest terms satisfying

where s is a nonsquare element of Zp- pZp. If K is a real
quadratic field in which p is inert, any point 7 E K n tip
is equivalent under r to a point in R. Hence, it suffices
to describe an algorithm for comput ing

Since R is pr eserved by the action of SL2 (Z) it thus suf
fices to compute periods of the form

To carry out this last calculat ion, note that

The computation of the values

can in turn be performed efficient ly using Manin 's con
tinued fraction method for calculating modular symbols.
(Cf. for example [Cremona 97].)

Note that the running time of the above algorit hm for
computing JT is dominated by the (pN _pN - 1)-fold prod

uct of (1-11) needed to approximate the double p-adic
integral to a precision of p- N . Taking log(pN ) as a nat
ural measure for the size of this problem , this algorithm
has exponential running time. Motivated by Proposition
1.1, it is natural to ask:

Question . Is there an algorithm for computing JT to a
p-adic acuracy of »:" in subexponential time?
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-3+ J37
73 = 7

-3+ J37
72 =

471 = -6 + J37'

Pj := if!Tate(f3Jr)

were computed to 5 significant 43-adic digits to obtain,
after setting (Xj ,Yj) := Pj:

:1:1 = 29+26.43+36.432+36.433+15 .434+34.435+.. .

X 2 = (31 + 29 . 43 + 24 . 432 + 24 . 433 + 13 . 434 + 4 . 435 + )

+ (16 + 37 . 43 + 29 . 432 + 39 . 433 + 26 . 434 + 25 . 435 + )V37

X3 = (31 + 29 . 43 + 24 . 432 + 24 . 433 + 13· 434 + 4 . 435 + )

+ (27 + 5 . 43 + 13 . 432 + 3 . 433 + 16 . 434 + 17 .435 + ... )V37.

Example 2.1. Let 0 = Z [V37] be the order of discrim
inant D = 4 . 37, the smallest positive discriminant of
narrow class number 3. The smallest prime p which is
inert in Q(J37) and for which the modular curve Xo(P)+
admits an elliptic curve quotient is p = 43. Let

be the eliptic curve of conductor p = 43 denoted by 43A1
in Cremona's tables. The elements 71,72,73 E Q(J37) n
11.43 attached to the order 0 can be chosen to be

71 , ... ,7h be a complete set of representatives for the
SL2(Z[1/pJ)-orbits of even 7 E 1I.p having stabiliser in
M2(Z[1/pJ) isomorphic to 0 , and let Pr l , •. • , Pr h be the
associated Stark-Heegner points.

Let n+ and n_ denote the real and imaginary half
periods of E and define f3 : A-t Z by f3(n+) = f3(n_) =

!. The points

00

L L Cj ,k9j ,k(7)

kE IPl (z/ pZ) j = O

where Cj,k E pizp[JS] are constants independent of 7 ,

and 9j k (7) E Zp[JS] are functions of 7 that can be calcu
lated in linear time. Thus to calculate J; for any 7 E n
to a precision of p-N , it suffices to calculate the (p+ l)N
constants Cj ,k , k E lP'1 (Z/pZ) and j = 0, ... , N - 1. The
Shimura reciprocity and Gross-Zagier conjectures (to be
discussed below) might provide a method for accomplish
ing this by predicting the values of J; for sufficiently
many 7 to the necessary precision, thus reducing the cal
culation of the Cj ,k to a problem of linear algebra pro
vided the values of 7 can be chosen to produce a linearly
independent set of equations.

Remark 1.7. A prospect for a polynomial-time algorithm
(albeit one that is neither as efficient nor as simple as
the method described in Proposition 1.1) is offered by
the conjectures of [Darmon 02]. Observe that J; can be
recovered from its p-adic logarithm and its value (mod p).
Thus it suffices to provide a polynomial-time algorithm
for computing

log i; = lim L [f3 (EU l Q U OO

I(Z)dZ)
IIUII--+O UEU Q UO

X log (1 + _1_)]
tu - 7

when 7 E R: Taking local expansions of the logarithm,
this expression can be rewritten as

2. CLASS FIELDS OF REAL QUADRATIC FIELDS

The experiments summarised in this section test the pre
diction of Conjecture 1.6 that Stark-Heegner points are
defined over ring class fields of real quadratic fields. All of
the calculations were carried out using Pari-GP running
on a Unix workstation.f

Choose a Z[l/p]-order 0 in a real quadratic field K .
Of particular interest is the case where Pic(0) is not of
exponent two, since in this case the associated ring class
field H is not abelian over Q, and no method is known for
constructing points on E(H) without an a priori knowl
edge of H. Thus, in all the cases to be examined in this
section, the order 0 has been chosen so that Pic+(O) is
a cyclic group of odd order h.

Let E be an elliptic curve of prime conductor p, where
p is inert in K and prime to the discriminant of O. Let

2The routines that were written for this purpose can be
downloaded from t he web site http:/ /www.math.mcgill.ca/
darmon/heegner/heegner.html

Yl = 21 + 28 . 43 + 23 . 432 + 433 + 42 . 434 + 4 . 435 + . ..

Y2 = (18 + 7 . 43 + 31 . 432 + 20 . 433 + 19 .435 + ... )

+ (41 + 36·43 + 10 .432 + 14 .433 + 9 .434 + 30 .435 + ' '')V37

Y3 = (18 + 7 . 43 + 31 .432 + 20 . 433 + 19 . 435 + . .. )

+ (2 + 6 . 43 + 32 . 432 + 28 . 433 + 33 . 434 + 12 . 435 + . . . )V37.

Since the sign of the Atkin-Lehner involution at 43 acting
on IE is equal to 1, Conjecture 5.9 of [Darmon 02] (to
gether with Proposition 5.10) predicts that the 43-adic
points P j = (Xj , Yj) are algebraic and conjugate to each
other over Q, and that their coordinates generate the ring
class field of Q(J37) of conductor 2. A direct calculation
reveals that

3

II (t - Xj) = t3 - 5t2
- 5t - 1 (mod 436

) (2-1)
j=1

3

II (t - Yj) = t3 - 14t2 - 14t + 2 (mod 436
) . (2-2)

j=1
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x3 - 3x 2 - X + 1, and y3 - 5y2 + 3y + 5.

E : y2 + xy = x3 - 2x + 1

As before, the spli t ting field of each of these polynomials
is the ring class field H , and their roots, paired appro
pri ately, give global points on the elliptic curve E = 61A
over H .

of cond uctor 61 denoted 61A 1 in Cremona's tables. The
x and y-coordi nates of the Stark-Heegner points attached
to this order were computed to 5 significant 61-adic dig
its, and found to satisfy (to t his accuracy) the polynomi
als wit h small integer coefficients

and observes that the polynomi als f x(t ) and f y(t ) ap
pearing on the right both have H as splitting field . Fur
thermore , if x is a root of f x(t ) an d y is t he unique roo t of
fy defined over Q(x) , t hen the pair (x, y) is an algebraic
point on E(H).

X I = 19 + 34 . 61 + 17.612 + 46 .61 3 + 32 . 614 + .

X 2 = (29 + 26 . 61 + 36 . 612 + 7 . 613 + 12 . 614 + )
+ (52 + 11 . 61 + 21 . 612 + 32 . 613 + 48 . 614 + )V401

X3 = (29 + 26 . 61 + 36 . 612 + 7 . 613 + 12 . 614 + )

+ (9 + 49 ·61 + 39 .612 + 28 .613 + 12. 614 + )V401

X 4 = (59 + 47 . 61 + 15 . 612 + 30 . 613 + 32 . 614 + )

+ (28+6 ·61 + 40 . 612 + 36. 613 + 4 . 614 + . . . )V401

X5 = (59 + 47 . 61 + 15 . 612 + 30 . 613 + 32 . 614 + )

+ (33 + 54 . 61 + 20 . 612 + 24 . 613 + 56 . 614 + )V401.

YI = 19 + 37 . 61 + 57 . 612 + 11 . 613 + 34 . 614 + .

Y2 = (48 + 53 . 61 + 8 . 612 + 59 . 613 + 12 . 614 + )

+ (58 + 60 . 61 + 9 . 612 + 28 . 613 + 51 . 614 + )V401

Y3 = (48 + 53 . 61 + 8 . 612 + 59 . 613 + 12 . 614 + )

+ (3 + 51 .612 + 32 .613 + 9 .614 + . . . )V401

Y4 = (37 + 49 . 61 + 53 . 612 + 56 . 613 + 30 . 614 + . . . )

+ (50 + 2 · 61 + 38 .612 + 6.613 + 11.614 + " ' )V401

Y5 = (37 + 49 . 61 + 53 . 612 + 56 . 613 + 30 . 614 + )

+ (11 + 58 . 61 + 22 . 612 + 54 . 613 + 49 .614 + )V401

Conjecture 1.6 (combined with prop osition 5.10 of [Dar
mon 02]) pred icts that the 61-adi c points PT 1 , · · · , PT 5

are algebraic and conjugate to each ot her over Q, and
together generate t he Hilb ert class field H of Q( J 401).
One finds:

5

II (t - Xj) = t 5
- 12t 4 + 34t 3

- Se - 24t + 9 (mo d 615
)

j=1

5

II (t - Yj) = t5
- 6t 4

- 18lt3
- 428t 2

- 346t - 93 (mod 615
) ,

j = 1

-11 + J40l
7 3 = 28

-11 + J40l
7 2 = 10

- 1 + J40l
7 1 = 20

Example 2.2. Let K = Q(J401). It is the smallest real
qu ad rat ic field of (na rrow) class number 5. The prime
p = 61 is inert in K / Q , and X o(p)+ admits an ellip
t ic curve quotient ; the curve E of conductor 61 denot ed
61A1 in Cremona's tables, which already appeared in Ex
ample 2.1. The following 7j E 1-£61:

Let f x(t ) and fy(t) denote the po lynomials appearing
on the right hand side of (2- 1) and (2-2) respecti vely.
The small size of t heir coefficients suggest that the mod
436 congruences in these equat ions are in fact genuine
equalities. This guess is reinforced by the fact that f x (t)
and f y(t ) each have splitting field equal to H , and that , if
x E H is a root of f x(t) , and y is t he unique root of f y(t )
defined over Q(x ), then the pair (x, y) is an algebraic
point on E (H ).

A similar calculation-with the same value D = 4·37,
and the same values of 71 ,72 , an d 7 3 , bu t viewed this
t ime as elements of the 61-adic upper half plane 1-£61 

was performed with the ellipt ic curv e

form a complete syste m of represent atives for the
SL2 (Z [1/61])-orbits of even 7 E 1-£61 whose stabiliser
in M2(Z[1/ 61) is the maximal Z [1/ 61J-order 0 =
Z[1/ 61][1+ 2401J of K .

As in Example 2.1, let 0 + and 0 _ denote the real
and imaginar y half-periods of E an d define (3 : it ~ Z
by (3(0 +) = (3 (0_) = ~. The five points PT j = (Xj , Yj)
were calculated to 4 significant 61-adic digits, yielding
the values:

-7+ J40l
74 = 16

-7 + J40l
7 5 = 22

Example 2.3. Similar calculations were performed on the
real quadratic field K = Q( J577) of class number 7.
When applied to t he elliptic curve E = 61A whose con
ductor is iner t in K , t he method produces seven Gl -adic
points whose x and y coordinates oste nsibly (i.e. , to the
calculated accuracy of 4 significant 61-adic digits) satisfy
the polynomials wit h small integer coefficients:

f x(x) = x 7 - 23x 6 + 109x 5
- 102x 4

- 137x3

+ 271x 2
- 145x + 25,

f y(y ) = y7 + 71y6 - 589y5 + 204y4 + 1582y3

- 533y2 - 22y + 5.
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D h h+ p + p -
D D

8 1 1 2· (J! _.! + IV2) 02 ' 2 4

13 1 1 2 . ( 553 _.! - 3397 J13) 036 ' 2 21 6

17 1 1 2 · (¥,-~ + ¥v'i7) 0

21 1 2 (3840 67 _.! _ 17413453J2I) 5 (-6, - ~ ± ¥ A)86 700' 2 44 2 17000

24 1 2 ( 52 81 _.! + 376621 VB) 5 (-~ ,-~ ± ¥H)15 0 ' 2 45 00

28 1 2 (379 _.! - 249 1 v7) 5 (-6 , -~ ± ¥A)36' 2 21 6

29 1 1 2 . ( 907428 789 _.! + 5059406 78 05 19 J29) 05569600 ' 2 13144256000

32 1 2 3 · (J! _.! - IV2) 5 (-~ , -~ ± ¥H)2' 2 4

40 2 2 (66529 _.! + ~v'lO) + 5· (-I! _ .! ± IV2) 0810' 2 72900 2 ' 2 4

41 1 1 2 . ( 2589 _.! + a2QQ2 v'4I) 0100 ' 2 1000

52 1 1 2 . (105557507041 _.! + 1561352 5573072201 J13) 021 602148048 ' 2 11447669 519372736

57 1 2 (103 _.! _ 203 v'57) 5 (~ , - ~ ± ¥-v=I9)12 ' 2 72

61 1 1 2 . ( 330 571 544 885629 _ .! - 5230055528 90 597564957 v'6I) 055 2 179 775 74400' 2 410318 165 1980574720 00

65 2 2 (483 3 _.! _ 438 4 7 v'65) + 5 . ( 553 _ .! ± 33 97 J13) 0980 ' 2 68 600 36 ' 2 21 6

68 1 1 2 (11526 68 28048883379871 681 1 7272441985741364159 397781136558209 v'i7) 0• 2606 0 122715900639 133 248' -2 + 17345592742667798070904 67 9638455808

72 1 2 (~,-~ - iV2) 5 (-~ _ .! ± iliA)
6' 2 36

73 1 1 2 . (~567, - ~ + 2\96 v'73) 0

76 1 2 (34293031 _.! + 453 30 699833 Vl9) 5 (~ , -~ ± ¥-v=I9)8649 00' 2 80 4357000

84 1 2 2 . (384 067 _.! + 17413453J2I) 10 · (-6, -~ ± 121A)86700' 2 44217000

85 2 2 (161509609733 _.! _ 15729396596529101 J85) + 5 . (.ll _.! ± IIv'i7) 0263973780 ' 2 9590167427400 4 ' 2 8

96 2 4 ± ( 3569736 829100427360 82542174429 ± 130569 573374110842287342220555 V3 ±5 (_ll ± llV3
278370 7768508573369995649 0642 27 8370776850857336999564 90642 ' 2 2 '

_.! - 20542089 801 90819883982626882331444602218881 87 J2 -~ + 1:3y'=2 T ~7A)2 656826187966684076857319367 559728112277352 4

T 128971256132268625320388516238463109582746165 VB)
6568261879666840768573193675597281122773524

TABLE1. Stark-Heegner points on Xo(ll) , with D :::; 100.

As in Examples 2.1 and 2.2, the roots of these poly
nomials generate the Hilbert class field of Q(";577) , and
are the coordinates of global points on E defined over
this class field.

Remark 2.4. In all the examples presented in this sec
t ion, the Stark-Heegne r points are integral points of small
height, a fortunate circumstance which facilitates their
identification. There is no reason to expect this pat
tern to persist , and in fact it is known (cf. [Bertolini
and Darmon 2001]) that there is no elliptic curve E for
which all the Stark-Heegner points are integral-in con
t rast with the case of the classical Heegner point con
struction, which does yield integral points on any elliptic

curve E whose associated Weil uniformisation maps only
cuspidal points of Xo(N) to the origin of E .

Remark 2.5. Certain elliptic curves-such as the curve
61A-seemed more amenable to the types of calculations
described in this section, than others, such as HA, on
which the Stark-Heegner points appear generally to be of
larger height. The authors can provide no explanation,
even conjectural, for this phenomenon-nor would
they vouch for the fact that this observation is not a
mere accident , an artefact of the small ranges in which
numerical data has been gathered. With this caveat, the
following question still seems to merit some consider
ation: Is there a quantity which would play the role of the
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D h h+ p + p -
D D

101 1 1 0

105 2 4

109 1 1 2 ( 36 67 84 248 31 62 901 _1 + 143 2464200816409940003 3 J109) 06179 20 16400 0000' 2 15360259436712000000000

11 2 1 2 3 ( 37 9 _1 + 2491 J7) 1 5 (-6 , - ~ - ¥F7)36' 2 21 6

116 1 1 4 (9074287 89 _ 1 _ 50 59406 78 05 19 J29) 055696 0 0 ' 2 13144256000

117 1 2 3 ( 553 _1 + 3397 JI3) 5 (- t ,- ~ + *)-39)36 ' 2 216

120 2 4 ( 9 259 555 569 61 _ 1 _ 8837 1086342548 473 1 J35)
131 884 52670 ' 2 82 95668 61 3 956700

+ 5 e28 1 _1 + 3 7662 1 v'6)
150 ' 2 4500

1 28 1 2 4 ( ~ , - ~ + i J2)
129 1 2 ( 862869067 1 8286356803 79 ~)

19 3924800 ' -"2 - 46774661 76 000

140 2 4 ( 30662282713098066 7 _1 + 3027993 09 45 599 76 47936 040 13 vI35)
5 ( - ~ , - ~ + ~~~ ) - 35)62 1240 16807132020 ' 2 3 462376528 04 09 47 8 17398020 0

+ 5 ( 379 _1 + 24 91 J7) + 5 ( -6, -~ + ¥ F7)36' 2 2 16

145 4 4 0

149 1 1 0

1 5 3 1 2 (~ _1 - 11 m ) 5 (_413 _1 + 205 7 ) _ 5 1 )
4' 2 8 12 ' 2 72

1 5 6 2 4 ( 270 529 642433 6257 _1 + 3881493471366 1482518869 J39) 5 (_21 _ 1 + lliv=TI)
26495 6 7726 75 00' 2 23 62 235 3 54 62259625000 4 ' 2 8

+ 5 ( 5 53 _ 1 _ 3397 JI3) + 5 (- t ,- ~ - *)-39)36' 2 2 16

160 2 4 3 ( 66 529 _1 - 17042077 v'iO) + 5 (!! _ 1 + ZJ2)
8 10' 2 72 90 0 2 ' 2 4

161 1 2 ( 7 542 24 3 _ 1 _ 77 966 99 8 51 VI6I) 115 e293 1 22 7293 vCT6I)
57500' 2 66 12500 0 23 00 ' - "2 - 529 0 00 -

164 1 1 8 e58 9 _1 - 200 03 v41) 0100 ' 2 1000

172 1 2 ( 21 31747 _ 1 _ 46 73 2 240 1 J43)
5 ( ~ , - ~ + *)-43)51984 ' 3 118523 52

173 1 1 0

1 8 4 1 2 ( 31 3445281 _ 1 + 46080 8 20 94021 J46)
5 (-~ , - ~ ± ¥F2)38512350 ' 2 1620984811500

1 8 9 1 2 2 ( 38406 7 _1 + 17413453 J2I) 086 700' 2 442 17 00 0

193 1 1 2 (~~~ , - ~ - 1
5:

2
1
8 v'I93) 0

197 1 1 0

200 2 2 (!! _1 + ZJ2) + 5 (6652 9 _ 1 - 17042077 v'iO) 02 ' 2 4 8 10 ' 2 72900

TABLE 2. Stark-Heegner points on X o(l1 ), with 100 < D < 200.

degree of the Wei! parametrisation in the classical Heeg
ner point construct ion by controlling the overall heights
of Stark-Heegner points?

3. ELLIPTIC CURVES OF SMALL CONDUCTOR

3.1 Elliptic Curves with w = 1

The ell ipt ic curve curve Xo(ll). Let

E : y 2 + Y = x 3 - x 2
- lOx - 20

be the ellipt ic curve of smallest conductor N = 11. Given
a discriminant D (not necessarily fundamental) write pi;
(resp. Pi)) for the Stark-Heegner points of discriminant
D attached to the choice of fun ctional sending D+ to 5
(resp fL to 5) and fL (resp. D+ ) to O.

Conjecture 5.9 and Proposition 5.13 of [Darmon 02]
predict that pi; belongs to E(H), and that Pi) belongs
to E(H+)- , where Hand H + are t he rin g class field
and narrow ring clas s field of discriminant D resp ectively,
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D h h+ p + p-
D D

5 1 1 2 (3, -2 - V5) 0

12 1 2 2 (1!? _M _ 185y'3) 2(~, -~-Jfi)6 ' 12 36

20 1 1 2(3,-2+V5) 0

24 1 2 (ill _ 143 _ 101 5 J6) 4 ( 5 13 85A)
12 ' 24 72 8 ' -16 + 32 -

28 1 2 ( 523 1 6365 439205 V7) 2(1 _2 + lli)1134 ' - 2268 - 142 884 2 ' 4 4

29 1 1 2 ( 5091 3 158 52207 V29) 01225 ' - 122 5 - m75

37 1 1 2(~ - 47374482 + 131 90 34 94275 v'37) 064974 01' 6 49740 1 165 61 87 51 49

40 2 2 2 (5, - 3 + 3v'IO) + 4 (3, -2 - V5) 0

41 1 1 2 (ll _21 - 2v'4T) 04 ' 8 2

44 1 2 ( 271 01 _ 36803 + 1206545 JIT) 2 (~,-~ - Jfi)9702' 19404 4482324

45 1 2 0 16 (i _1 + llJ=I5)
3 ' 6 18

48 1 2 (1!? _M + 185v'3) 06' 12 36

56 1 2 ( 10469 _ 13 857 + 46275 v'I4) 4( ~ , -* - ~A)3388 ' 6776 65 219

57 1 2 ( 852 2141 _ 10076265 _ 62 74 142315 V57) 4 ( 63 13 629 v=I9)
1554124 ' 3108248 42 2255 49 08 - 76' -152 - 722 -

61 1 1 2 (21 _2§ + 22v'6I) 09' 9 27

65 2 2 2 (15, -8 - 7J65) + 4 (3, - 2 + V5) 0

73 1 1 2 (lli2 _ 1579 _ 351 5 J73) 036 ' 72 108

80 1 2 2 (3, -2 + V5) 4(~ ,-~ - Jfi)

88 1 2 (116837 56 25699 _ 1561 830708335 + 3634412 106732 76 055 .J22) 4 (5 13 85A)
39 3455082 63 6 ' 786 910165272 8 18538445 5447 77496 8 ' -16 + 32 -

92 1 2 (1621 831557551 _ 1624704598365 _ 29 19003 15460 1635 125 J23) 2 (l _2 - ll i)
287304 08 14' 57 4608 1628 1044459511439932 2 ' 4 4

96 2 4 (131 _143 + 1015 J6) + 2 (1!? _ M - 185 v'3) 2 (1 _2 + lli)
12 ' 24 72 6 ' 12 36 2 ' 4 4

97 1 1 2 ( 497 65 67189 330455 J97) 017424 ' - 34848 - 2299968

TABLE 3. Stark-Heegner points on Xo(17), with D ::; 100.

and the - superscript denotes the minus-eigenspace for
complex conjugation. This prediction is borne out by
the calculations whose outcome is summarised in Tables
1 and 2.

Remark 3.1. In Table 1 all the Stark-Heegner points
for discriminants D < 100 (not necessarily fundamental)
were calculated to an accuracy of 8 significant 11-adic
digits. In all cases it was possible to find a global point
defined over the appropriate class field, of fairly mod 
est height, approximating the Stark-Heegner point to the
calculated accuracy. In many cases , however , this accu
racy was not enough to recognize these 11-adic points
as global points over the appropriate class field H with
out making an a priori calculation of the Mordell-Weil
groups E(H). This calculation in turn was facilitated by

the fact that the class fields that arise for discriminants
D < 100 in which 11 is inert are composita of quadratic
extensions of Q.

Remark 3.2. Note that the points PIj seem generally to
be of larger heights than the points Pi) . The authors
know of no theoretical justification (even heuristic) for
t his empirical observation.

Remark 3.3. Table 2 lists the Stark-Heegner points on
X o(l1) in the range 100 ::; D ~ 200.

Remark 3.4. The entries marked - in Table 2
(as in the tables following it) correspond to situations
where the Stark-Heegner points have not been calcu
lated. In most cases , this is because the (rudimentary)
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D h p+
D

8 1 2(ll _1+~J2)
2 ' 2 4

12 1 (¥,-! + ¥J3)
13 1 2 (4, -! - ~v'i3)

21 1 ( 9 58 1 30 47 9 .j2I)
175 ' - 2" + 12 250

29 1 2 (l87766 _1 + 17260511 J29)
50625 ' 2 22781250

32 1 (ll _1 _ ~J2)
2 ' 2 4

33 1 ( 839 _1 + 14209 J33)
44 ' 2 968

37 1 2 (21 _1 - 159 J37)
4 ' 2 8

40 2 (1201 _1 _ 41781 VTO) + 3 (ll _1 + ~J2)
10' 2 100 2' 2 4

41 1 2 e28071349 1 173802949917 .J4I)
100600900 ' - 2" - 1009027027000

48 1 (ll _1 - 21J3)
4 ' 2 8

52 1 0

53 1 2 (171802 _1 + 19788441 V53)
5 929 ' 2 91 3066

56 1 (81689740196849 _1 _ 747294455075136103407 v'i4)
3 1826686083 50 ' 2 21244726707655335500

60 2 (177592727 _1 + 1380972233981 VI5) + 3 (ll _1 + 21J3)
5304500' 2 27318175000 4 ' 2 8

65 2 (460138373 _1 + 2745872872863 J65) + 3 (4 _ 1 _ ~ v'i3)
29799 20 ' 2 11 502491200 ' 2 2

69 1 2 (136 _1 + 339 v'69)
25 ' 2 250

72 1 2(ll _1_~J2)
2 ' 2 4

84 1 0

88 1 ( 35 29 1 44589 J22)
1078' - 2" + 166012

89 1

97 1 2 (78721 _1 + 2270031 J97)
3136' 2 175616

TABLE 4. Stark-Heegner points on 19A , with D ::; 100.

search algorithm that was used to compute the relevant
Mordell-Weil group did not produce a point in the rel
evant Mordell-Weil group, even though the existence of
such a point is guaranteed by the Birch and Swinnerton
Dyer conjecture. At any rate, the authors are satisfied
with the strong evidence for Conjecture 1.5 provided by
the data they have compiled , and believe that the miss
ing entries in their tables are on ly a manifestation of their
lack of persistence in fully carrying out their calculations .

The elliptic curve of cond ucto r 17. Table 3 summarizes
the calculation of Stark-Heegner points on the elliptic
curve 17Al of coonductor 17, with equation given by

y2 + xy + y = x 3 - x 2 - X - 14.

The points were computed to an accuracy of 5 significant
17-adic digits. When their height was too large to allow

easy recognit ion of their coordinates as algebraic num
bers, t he Mordell-Weil group of E over the appropriate
ring class field was computed, allowing the recognit ion
of the points PiJ and Pi) as global points in most cases.
Here, piJ (resp. Pi)) is associated to the functional /3
sending 0 + to 8 (resp. 0_ to 8) and 0_ (resp. 0 +) to O.

The el liptic curve of conductor 19. Table 4 summarizes
the data for the elliptic curve of conductor 19, denoted
19A1 in Cremona's tables, and with equation given by

In this case on ly the point PiJ- defined by let t ing /3 be
the functional sending 0+ to 6 and 0_ to O-was calcu
lated , to an accuracy of 4 significant 19-adic digits.
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D h h+ p+ p-
D D

5 1 1 2· (0,0) 0
8 1 1 2 · (0,0) 0
13 1 1 2 . (0,0) 0
17 1 1 2· (0,0) 0
20 1 1 -4· (0,0) 0
24 1 2 -(0,0) (~ , -~ ± iN)
29 1 1 4 · (0,0) 0
32 1 2 -3· (0,0) (~ , -~ ± iN)
45 1 2 -3 · (0,0) (~ , -~ ± fsyCI5)
52 1 1 -4 · (0,0) 0
56 1 2 (0,0) (~, -~ ± iN)
57 1 2 (0,0) ( 149 1 ± 449 J=I9)324' -2 5832 -
60 2 4 (2 ± v'3, -4 =t= 2v'3) ± (-1 ± v'3, -~ - A± ~yCI5)

61 1 1 0 0
68 1 1 -8 · (0,0) 0
69 1 2 0 (-2, -~ ± ~V-23)

72 1 2 -3· (0,0) (~ ,-~ ± 3\A)
76 1 2 (0,0) ( 149 1 ± 449 J=I9)324 ' -2 5832 -
80 1 2 (0,0) (~,-~±~A)

88 1 2 -(0,0) (1 _1 ± 1N)2' 2 4
89 1 1 -2· (0,0) 0
92 1 2 -2 · (0,0) (-2, -~ ± V-23)

93 1 2 2· (0,0) (-10 _l±.l.v=3I)9' 2 54
96 2 4 (1 ± v'3,2 ± v'3) ±(_1±1v'3 _1 +lA=t=1A)2 2 , 2 4 4
97 1 1 0 0
105 2 4 (!s ± f5 v'21, - 1

3225
=t= r:5v'21) (-i + iv'21, -~ + toV- 15 + 215 V-35)

109 1 1 2(0,0) 0
113 1 1 0 0
116 1 1 -8(0,0) 0
117 1 2 -5(0,0) a,-~ ± fsV-39)
124 1 2 0 (-~,-~ ± t4v=3I)
125 1 1 -6(0,0) 0
128 1 2 4(0,0) 2 (~, -~ ± iN)
129 1 2 -(0,0) (14470973 1 ± 5466310441 .J=43)

2TIiii24oii' - 2 102503232000 -
133 1 2 -(0,0) ( 149 1 ± 49 J=I9)324' -2 5832 -
140 2 4 -(0,0) + (2 ± V7,4 ± 2V'7) (-1- ~V7,-~ - ~A- iV-35)

153 1 2 -3(0,0) ( 967 1 ± 1819 v=5I)
l2Oo' - 2 72000 -

156 2 4 ( 2 ± ~ - 4 =t= 2v'3) (-* - f3v'3, -~ - 1~9V-13 - i01452V-39)
161 1 2 2(0,0) (-2, -~ ± ~V-23)

165 2 4 (~± ~v'33, -H ± fBv'33) (-i + iv'33, -~ + fsyCI5)
168 2 4 (!s ± f5 v'21, - 13225 =t= 11225v'21) (-~ - iv'21, -~ - ~A - iyCM)
172 1 2 (0,0) (14470973 1 ± 5466310441 .J=43)

21902400' - 2 102503232000 -
177 1 2 0 (171 1 ± 227 v=59)-100 ' -2 1000 -
180 1 2 6(0,0) 2 (t, -~ ± fsyCI5)

193 1 1 -2(0,0) 0

200 2 2 -2(0,0) + 2 (-~ , -~ ± iVTO) 0

TABLE 5. Stark-Heegner Points on Xo(37)+, with D ~ 200.
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D h h+ p + PDD

5 1 1 2(0 ,0) 0
8 1 1 - 2(0, 0) 0
12 1 2 -(0,0) ( 5 1 3 ")- 4 ' - "2 + 8 ~

20 1 1 - 4(0, 0) 0
28 1 2 (0, 0) ( 5 1 3 ")- 4' - "2 + 8~

29 1 1 2(0,0) 0
32 1 2 3(0, 0) ( -~ , -4 - ~ i)

33 1 2 (0, 0) (_ ill. _ 1 _ 1381 yCIT)
44' 2 96 8

37 1 1 2(0, 0) 0
45 1 2 2(0,0) - - -

48 1 2 3(0, 0) (_ .9. _ 1_ ;!i)
4' 2 8

61 1 1 2(0,0) 0
65 2 2 - (0, 0) + (~ , -4 - 1

6
3
7
5
5
2 V13) 0

69 1 2 (0,0) ( 3 6 1 235 J=23)-23 ' -"2 + 1058 -

72 1 2 2(0,0) -- -

73 1 1 - 2(0, 0) 0
76 1 2 0 2 ( 5 1 3 .)- - - - + -~4 ' 2 8

77 1 2 - 3(0,0) (_ ill. _1 _ 1381 J - 11 )
44 ' 2 9 68

80 1 2 (0, 0) (_ .9. _ 1 ± ;!J=T)
4 ' 2 8

85 2 2 - (0,0) + (-H, - 4 ± 5~8 JI7) 0
88 1 2 (0, 0) (_ill. _1 ± ll§.! yCIT)

44' 2 968

89 1 1 2(0,0) 0
93 1 2 3(0, 0) ( _ 3 9 2 _1 ± 14895J_31)

3 1 ' 2 1922

104 2 2 (0,0) + (~ , - 4 ± 1
6
; 5

5
2 Ji3) 0

105 2 4 (1 _1±1J2I) (-2, -4 + 4yCI5) + (- * , - 4 + 2\96 J - 35)4 ' 2 8

108 1 2 3(0,0) (- ~ , - 4 ± ~ J=T)

112 1 2 -3(0, 0) 3 (- .9. _ 1 ± ;!J=T)
4 ' 2 8

113 1 1 4(0, 0) 0
116 1 1 - 4(0,0) 0
120 2 4 (-4 , - 4 ± tJ6) (- i~~, - 4 + 2~4156 J - I0) + (-2, - 4 + 4 yCI5)
125 1 1 -10(0,0) 0
128 1 2 - 4(0, 0) 2(- ~ ,- 4 ± ~J=T)

132 1 2 -4(0,0) 0
136 2 4 ( ~ ± 4JI7,3 ± JI7) - - -

137 1 1 4(0,0) 0
141 1 2 - 2(0, 0) 2 (- 7, - 4 ± ~J-47)

148 3 3 Cf. example 1, sec. 2. 0
149 1 1 0 0
156 2 4 (4 ± Ji3, 11 ± 3Ji3) ( _ 152233963 _ 20226293 Ji3

56 647368 56647368 '
_ 1 _ 285199304263 J=T - 12 76481 351 2 3 J=I3)

2 75 369 32 31 24 15073 864624 8

157 1 1 -4(0,0) 0
161 1 2 (0, 0) (-~ , -4 ± 1

2
0
3;8 J - 23)

168 2 4 -(0,0) + (t ,-4 - kJ21) (- ~ , -4 + t J - 14) + (- ~ , -4 + ~ J=6)
177 1 2 -2(0,0) 2 (-* , - 4 ± l:i J-59)
180 1 2 4(0, 0) - --
184 1 2 - (0,0) ( 36 1 ± 23 5 J=23)- 23 ' - "2 1058 -

192 2 4 -2(0,0) + (-4 , - 4 ± tJ6) (-~ , - 4 ± ~J=6)
200 2 2 4(0,0) + 2 (4, - 4 ± t VW) 0

TABLE 6. Stark-Heegner Points on 43A, with D :::; 200.
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3.2 Elliptic Curves with w = -1

The elliptic curve X o(37)+. Calculations similar to
those of the previous section were performed for the el
liptic curve

E : y2 + y = x3 - X

of conductor N = 37 denoted by 37Al in Cremona's ta
bles. For all real quadratic discriminants D satisfying
(g) = -1, write pi; (resp. Pi)) for the Stark-Heegner
points of discriminant D attached to the choice of func
tional (3 sending n+ (resp n_) to 1 and n_ (resp. n+)
to o.

Conjecture 5.9 of [Darmon 02], which apply directly in
this situation because E is unique in its Ql-isogeny class,
predicts that

1. The point pi; belongs to E(H) , where H is the ring
class field attached to the discriminant D.

2. The point Pi) belongs to E(H+), where H+ is the
narrow ring class field of discriminant D, and is sent
to its negative by complex conjugation, so that in
particular it is a torsion point if h = h+.

In light of the fact that the eigenvalue of the Atkin
Lehner involution W p at p acting on f E is equal to
1, Proposition 5.10 of [Darmon 02] (which is condi
tional on Conjecture 5.9) also predicts that

3. If 0 has class number one, so that H = K , the point
pi; belongs to E(Ql) .

These predictions are borne out by the calculations,
performed to 5 significant 37-adic digits in the range
D ~ 200, whose outcome is summarised in Table 5.
In these calculations, the heights of the Stark-Heegner
points are quite small, and so they could usually be recog
nised directly as algebraic points without an independent
calculation of the Mordell-Weil groups E(H).

The elliptic curve 43A . Table 6 displays the correspond
ing data for the elliptic curve

of conductor 43 (denoted 43A in Cremona's tables),
which has rank one over Ql and Mordell-Weil group gen
erated by the point P = (0,0) . The point pi; (resp. Pi))
corresponds to the choice of functional (3 sending the pe
riod n+ to 2 (resp. n+ to 0) and n_ to 0 (resp. n_
to 1).

The elliptic curve 61A. Table 7 displays the correspond
ing data for the elliptic curve

y2 + xy = x3 - 2x + 1

of conductor 61 (denoted 61A in Cremona's tables),
which has rank one over Ql and Mordell-Weil group gen
erated by the point P = (1,0). The point pi; (resp. Pi))
corresponds to the choice of functional (3 sending the pe
riod n+ to 2 (resp. n+ to 0) and n_ to 0 (resp. n_
to 1).

4. A GROSS-ZAGIER CONJECTURE

If K is a real quadratic field of narrow class number h,
and E is an elliptic curve of prime conductor p which is
inert in K, let

where 71, .. . , 7 h range over a complete set of representa
tives for the SL2(Z[1/p])-orbits of even 7 E Hp with sta
biliser isomorphic to the maximal Z[l/p]-order 0 of K .
The Shimura reciprocity law predicts that PT 1 , · · · , PT h

belong to E(H), where H is the Hilbert class field of K ,
and that these points are permuted simply transitively
by Gal(H/K). This implies that PK belongs to E(K).
Guided by the classical Gross-Zagier formula, the follow
ing conjecture is natural:

0 2

Conjecture 4.1. L'(E/K, 1) = 4~h(PK).

Assume furthermore that E satisfies the following ad
ditional assumption:

1. E is a quotient of Xo(p)+

2. E is alone in its Ql-isogeny class, so that in particular
it has no rational torsion.

In this case, the Shimura reciprocity law of [Darmon
02] predicts that the Stark-Heegner point PK belongs to
E(Ql).

Remark 4.2. The curves of conductor ~ 101 satisfying
these assumptions are the curves denoted 37A, 43A, 53A,
61A, 79A, 83A, 89A , and lOlA in Cremona's tables.

The assumptions on E imply that w = 1, and hence
that the sign in the functional equation for L(E/Ql, s) is
-1, so that

L'(E/K, 1) = L'(E/Ql, l)L(E(D) /Ql, 1), (4-1)
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D h h+ PD PD
8 1 1 2(1,0) 0
17 1 1 -2(1, 0) 0
21 1 2 (1, 0) (_ll! ll! ± 1377 P)

7 ' 14 98
24 1 2 0 2(-2 1-~
28 1 2 -(1,0) (_ll! ll!' _ 1377 -7

7 ' 14 98
29 1 1 -2(1,0) 0
32 1 2 -2(1, 0) ~-2 , 1 +(jk
33 1 2 (1, 0) (-h, +¥ ± 1

2;1
- 11)

37 1 1 2(1, 0) 0
40 2 2 -1(1,0) + (~ , - %± -!sV5) 0
44 1 2 (1, 0) (- f¥, +¥ ± 1

2
; 1 FIT)

53 1 1 - 4( 1, 0) 0
68 1 1 6(1 ,0) 0
69 1 2 (1, 0) ( 1039 1039 ± 188 99.J=23)

- 575 ' 1150 132 250 -
72 1 2 -2(1 ,0) -- -

84 1 2 -(1 ,0) (_ll! ll! ± 1377 P)
7 ' 14 98

85 2 2 (1, 0) + ( ~ , -% ± -!s J5) 0
89 1 1 0 0
92 1 2 (1, 0) ( 1039 1039 ± 188 99.J=23)

- 575 \ b15P9 l rFJ -)
93 1 2 0 2(- g 'I8 ± 5"4 - 31
96 2 4 (l _1 ± 1 J3) (_11±1R)

2' 4 4 4' 8 8
101 1 1 2(1,0) 0
104 2 2 - (1, 0) + (-ts ' - iJ - 1

3
; 9 JI3) 0

105 2 4 (-4 ± 4J5,0) (_ 16 3 _ 1J5 163 + 1J5+ 2909 P + llJ- 35)
14 2 ' ( 8 ~ #6 4

112 1 2 2(1,0) 2 _ll! ...2 ± ll...-p)
7 , 14 98

116 1 1 2( 1, 0) 0
120 2 4 - (1 ,0) ( - 96 2 481 + 20927 J=TIl) + (-2 1 + J=2)

45 ' 45 675 ,
124 1 2 0 2 (_.!Q .!Q ± .!l J=3i)

(. , 18 54
128 1 2 0 2 -2"±~
129 1 2 0 4 (_ll II ±;). - 43

4 ' 8
132 1 2 - 3( 1, 0) (-TI'ij ± t~7 - 11 )
133 1 2 (1, 0) (-7 '14 ± gsp)
140 2 4 (- 4± 4J5,4=f 4J5) ( _ 16 3 _ 1J5 163 + 1J5 + 2909 P + llJ- 35)

14 2 , 28 4 19 6 4
145 4 4 -- - 0
148 3 3 cr. example 1, sec. 2. 0
152 1 2 -2(1 ,0) 2 (-2 ,1 ± J=2)
153 1 2 2( 1,0) -- -
157 1 1 2(1 , 0) 0
160 2 4 (1,0) (- 962 481 + 20927 J=TIl) + (-2 1 + J=2)

45 ' 45 6 75 '
165 2 4 (-4± 4J5,4=f 4J5) ( _ 486813 _ 13637 J5 486 81 3 + 13637 J5+

765 82 fg8~ .;=rl5316;h Ug24
5 3624 - 11 + L!2l!..-J-55)

172 1 2 2(1,0)
9940343~ ~76
4 (- L II ±;). -43

4 ' 8 4
173 1 1 4( 1, 0) 0
176 1 2 -2(1,0) 0
177 1 2 (1, 0) ( 79849300 39924650 ± 4345204244 17 J=59)

- 36542771 , 36542771 1696790485843 -
181 1 1 0 0
185 2 2 -(1, 0) + ( ~ , - %± -!sJ5) 0
189 1 2 -3(1, 0) ( _ll! ll! ± 1377 p)

7 ' 14 98
193 1 1 0 0
200 2 2 - 3(1, 0) + (t - ~ ± ~J5) 0

TABLE 7. St ark-Heegner Points on 61A , with D ::; 200.
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D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D)
5 2 4 193 2 4 393 2 4 584 -6 36 796 0 0
8 2 4 204 2 4 401 2 4 597 0 0 797 -8 64

13 2 4 205 -2 4 409 0 0 609 0 0 808 2 4
17 2 4 209 -2 4 412 -2 4 616 2 4 809 4 16
24 -2 4 217 0 0 413 12 144 649 0 0 812 - 8 64
29 4 16 220 -2 4 421 -2 4 652 2 4 829 0 0
56 2 4 236 -4 16 424 -2 4 653 0 0 849 0 0
57 2 4 237 6 36 429 6 36 661 -2 4 853 4 16
60 -2 4 241 0 0 449 2 4 664 2 4 856 0 0
61 0 0 253 0 0 457 -2 4 668 -14 196 857 6 36
69 0 0 257 -4 16 461 -10 100 680 4 16 865 2 4
76 2 4 264 2 4 473 -6 36 681 0 0 869 - 6 36
88 -2 4 265 2 4 476 2 4 685 -4 16 893 6 36
89 -2 4 273 2 4 489 2 4 689 -2 4 901 2 4
92 -4 16 277 4 16 501 2 4 697 -2 4 905 -6 36
93 4 16 281 4 16 505 -2 4 701 -8 64 908 -12 144
97 0 0 301 -2 4 520 0 0 705 -2 4 917 -6 36

105 -2 4 309 -2 4 524 2 4 709 2 4 920 -4 16
109 2 4 313 2 4 533 -6 36 716 4 16 933 6 36
113 0 0 316 2 4 536 0 0 717 4 16 940 - 2 4
124 0 0 328 -2 4 537 0 0 721 -2 4 949 -2 4
129 -2 4 341 8 64 541 -4 16 732 4 16 956 8 64
133 -2 4 348 4 16 553 2 4 745 2 4 957 0 0
140 - 6 36 353 2 4 557 - 16 256 748 -2 4 977 4 16
156 -2 4 357 6 36 561 -2 4 753 -2 4 984 2 4
161 4 16 364 2 4 568 -2 4 757 -4 16 985 2 4
165 2 4 365 6 36 569 4 16 760 0 0 993 0 0
168 -2 4 376 2 4 572 -6 36 764 0 0 997 -4 16
172 2 4 385 -2 4 573 0 0 769 0 0
177 0 0 389 - 4 16 577 -2 4 785 -2 4

TABLE 8. Traces of Stark-Heegner points on Xo(37)+, with D :::; 1000.

D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D)
5 2 4 184 - 2 4 409 -2 4 593 -2 4 793 2 4
8 -2 4 201 2 4 413 - 8 64 601 0 0 796 0 0

12 -2 4 204 2 4 417 -2 4 604 2 4 808 -6 36
28 2 4 205 -2 4 421 4 16 609 0 0 813 6 36
29 2 4 209 0 0 424 2 4 620 6 36 824 -6 36
33 2 4 217 -2 4 429 -2 4 629 -4 16 829 -4 16
37 4 16 220 2 4 433 2 4 632 12 144 844 0 0
61 -2 4 233 0 0 437 -12 144 636 -2 4 849 2 4
65 -2 4 237 0 0 449 -2 4 641 2 4 856 -4 16
69 2 4 241 0 0 456 4 16 652 6 36 865 0 0
73 -2 4 248 -2 4 457 2 4 653 -8 64 872 6 36
76 0 0 249 2 4 460 2 4 664 2 4 888 4 16
77 -6 36 257 -2 4 469 2 4 665 4 16 889 2 4
85 -2 4 265 2 4 472 0 0 673 2 4 892 2 4
88 2 4 277 2 4 476 6 36 677 8 64 893 -4 16
89 2 4 280 4 16 481 0 0 696 4 16 897 -2 4
93 6 36 284 4 16 485 -2 4 716 -2 4 905 0 0

104 2 4 285 -4 16 492 -2 4 717 -12 144 908 8 64
105 0 0 309 2 4 493 6 36 721 --':2 4 921 -2 4
113 4 16 313 2 4 501 -2 4 733 8 64 929 0 0
120 0 0 321 0 0 505 2 4 749 0 0 933 2 4
136 -2 4 328 -2 4 521 -2 4 753 2 4 937 2 4
137 4 16 329 0 0 524 0 0 757 4 16 940 4 16
141 -4 16 349 2 4 536 2 4 760 0 0 949 -2 4
149 0 0 364 2 4 545 2 4 761 0 0 953 -2 4
156 2 4 373 - 4 16 553 -4 16 764 4 16 965 2 4
157 -4 16 376 0 0 561 2 4 773 18 324 973 2 4
161 2 4 377 6 36 577 2 4 776 -2 4 985 0 0
168 -4 16 381 2 4 581 -2 4 777 -4 16 988 8 64
177 - 4 16 389 0 0 589 0 0 781 -4 16 997 -2 4

TABLE 9. Traces of Stark-Heegner points on 43A, with D:::; 1000.
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D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D) D a(D) A(D)
8 2 4 181 0 0 389 - 4 16 593 -2 4 82 1 4 16

17 -2 4 185 - 2 4 397 - 2 4 604 - 2 4 824 8 64
21 2 4 193 0 0 401 0 0 616 - 2 4 844 0 0
24 0 0 20 1 2 4 409 0 0 617 - 4 16 856 0 0
28 -2 4 204 - 4 16 417 - 6 36 620 8 64 860 0 0
29 - 2 4 209 2 4 421 2 4 633 0 0 86 1 - 2 4
33 2 4 213 - 4 16 429 2 4 636 4 16 865 4 16
37 2 4 220 2 4 433 - 4 16 641 - 4 16 872 - 6 36
40 - 2 4 221 2 4 437 - 6 36 645 - 4 16 877 0 0
44 2 4 233 - 2 4 444 0 0 653 0 0 885 2 4
53 - 4 16 236 -2 4 445 0 0 661 2 4 889 -2 4
69 2 4 237 - 6 36 453 - 2 4 664 - 4 16 892 2 4
85 2 4 265 0 0 456 0 0 665 - 6 36 897 - 6 36
89 0 0 268 - 2 4 457 2 4 669 2 4 904 - 2 4
92 2 4 273 2 4 460 - 2 4 673 2 4 905 4 16
93 0 0 277 -2 4 465 0 0 677 12 144 908 -6 36

101 2 4 28 1 4 16 481 2 4 68 1 2 4 913 0 0
104 -2 4 284 0 0 505 - 2 4 689 0 0 917 - 2 4
105 - 2 4 312 - 4 16 509 2 4 697 2 4 92 1 2 4
120 - 4 16 313 0 0 517 0 0 701 0 0 933 - 2 4
124 0 0 316 2 4 520 - 2 4 709 2 4 941 -6 36
129 0 0 328 - 2 4 521 2 4 721 2 4 952 0 0
133 2 4 329 - 4 16 541 0 0 749 0 0 953 - 10 100
140 2 4 337 - 4 16 556 -2 4 753 - 4 16 965 12 144
145 2 4 345 2 4 557 -4 16 760 0 0 969 0 0
152 - 4 16 348 4 16 572 6 36 761 2 4 984 0 0
157 2 4 349 2 4 573 2 4 764 2 4 993 - 2 4
165 2 4 364 2 4 577 2 4 769 - 2 4 997 - 2 4
172 4 16 373 6 36 581 0 0 776 4 16
173 4 16 376 0 0 584 - 2 4 785 - 2 4
177 2 4 377 2 4 589 - 4 16 817 0 0

TABLE 10. Traces of Stark-Heegner poi nt s on 61A , with D ::::; 1000.

where E (D) is t he twist of E by Q(JD). Suppose that
E (Q) has rank 1 and is generated by P . T he Birch and
Swinnerton-Dyer conjectur e predicts that

L' (E/ Q, 1) = O+h (P )# III (E / Q). (4- 2)

Combining (4- 1) and (4-2) with Conjecture 4.1 leads to
the following:

Conjecture 4.3. Let s2 be the cardin ality of the
Shafarevich-Tate group of E / Q, where s 2: O.

Let K be a real quadratic field of discriminant D . If
the rank of E (Q) is not equal to one, then PK is tors ion .
Otherwise,

PK = s · a(D ) . P,

where P is a generator for E (Q) and a(D ) is an integer
satisf ying

a(D)2 = A (D ) := VD ·L (E (D), 1)/0+. (4- 3)

The ellipt ic curve E : y 2 - Y = x 3 - x of conductor
N = 37 is equal to X o(37)+ and hence satisfies all the
assumptions mad e in the above conjecture.

Furthermore E(Q) = (P) is infinit e cyclic with P =
(0, 0). For all real qu adratic K of discriminan t D ~ 1000,
the points PK were calculated to 4 significant 37-adic
digits, as well as the integer a(D) defined as the smallest
int eger (in absolute value) satisfying the relati on

PK = a(D)( O,0),

to t his calculated accuracy. Tabl e 8 summarises the val
ues of a(D) that were obtained in this ran ge.

The integer A(D) was computed by calculating the
spec ial value of L (E (D), 1) numerically, and it can be ver
ified that in all cases relation (4-3) holds. Tables 9 and
10 provide similar data, wit h the points PK calculated
to an accuracy of 43- 4 and 61- 3 respectively, lead ing to
the same kind of experimental confirmat ion for Conje c
t ure 4.3 on the elliptic cur ves 43A and 61A t reated in
Section 3.2.

Remark 4.4. It would be interest ing to underst an d more
about the nature of t he numbers a(D) . Are they the
Fouri er coefficients of a modular form of half-integral
weight ?
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Remark 4.5. Note that the coefficients a(D) in Tables 8,
9 and 10 are all even. The authors are unable to prove
that the Stark-Heegner point PK is always an integer
multiple, not to mention an even integer multiple, of
the generator P. But it does follow from the Birch and
Swinnerton-Dyer conjecture that A(D) is even .
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