Synthesis, Stereostructure, Pyramidal Inversion, and Alkylation of 1-Thioniabicyclo[4.4.0]decane Salts¹

David M. Roush, Elisabeth M. Price, Lieselotte K. Templeton, David H. Templeton,*^{2a} and Clayton H. Heathcock*^{2b}

Contribution from the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720. Received July 28, 1978

Abstract: Eastman's sulfonium salt, 1-thioniabicyclo[4.4.0] decane tetrafluoroborate, has been prepared by an improved process and shown to be an equimolar mixture (molecular compound) of "trans" and "cis" stereoisomers 1a and 1b, each of which has been isolated in pure form. The 6-methoxycarbonyl analogue 9 has also been prepared. Stereostructures have been assigned by a combination of ¹³C NMR, 360-MHz ¹H NMR, and single-crystal X-ray analysis of salt 9 ($X^- = 1^-$). Crystals of **9** are monoclinic, space group $P2_1/n$, a = 8.890 (3) Å, b = 20.120 (7) Å, c = 8.150 (3) Å, $\beta = 110.17$ (4)°, Z = 4, t = 20 °C, R = 0.042 for 1432 X-ray reflections with $F^2 > 2\sigma$. Although stereoisomer 1a is favored over 1b by 0.64 kcal mol⁻¹ at 110 °C, the 6-methoxycarbonyl analogue 9 prefers the "cis" configuration by more than 2.2 kcal mol⁻¹ at this temperature. The unexpectedly large effect of the angular substituent is shown to be the result of the small C-S-C bond angles, which cause an angular substituent to have a larger effective size in this system than in decalin. Force-field calculations are presented to support this view. Activation parameters for inversion of salt 1a are found to be $\Delta H^{\pm} = 28.0 \pm 0.9$ kcal mol⁻¹ and $\Delta S^{\pm} = -3.8 \pm 2.5$ eu in the range 90.07-105.80 °C. Unstabilized sulfonium ylides 15 and 16 have been prepared and their interconversion by pyramidal inversion of sulfur has been investigated; activation parameters for conversion of 15 to 16 are found to be $\Delta H^{\pm} = 20.5$ kcal mol⁻¹ and $\Delta S^{\pm} = 6$ eu. The "cis" ylide 16 is found to be much more stable than the "trans" form 15, and the effect has been explained in terms of interactions of the vicinal lone pairs on sulfur and carbon. The reactions of ylides 15 and 16 with methyl iodide and acetone have been studied. Three of the four stereoisomeric 2-methyl-1-thioniabicyclo[4.4.0]decanes have been prepared and their stereostructures assigned by ¹³C NMR. Evidence is adduced that both ylides react with electrophiles in a stereoselective manner. Treatment of salt 1 with tert-butyllithium at -72 °C yields the corresponding ylide anions, which undergo stereoselective methylation to provide the 2,10-dimethyl-1-thioniabicyclo[4.4.0]decanes 24 and 25, stereostructures of which are assigned by ¹³C NMR. The ring fusion bond of 9 undergoes reductive cleavage, leading to an interesting synthesis of 6-methoxycarbonylthiacyclodecane (30).

Introduction

The synthesis of multifunctional macrocycles such as the macrolide antibiotics³ confronts the chemist with two vexing problems: formation of the macrocycle and stereospecific introduction of a number of chiral centers on the conformationally mobile ring. Both these problems can be circumvented if the macrocycle is constructed as the periphery of a rigid polycyclic system of smaller rings. Proper relative chirality may be imparted to the various centers by taking advantage of the rigidity of the intermediate polycycle, after which appropriate bond cleavages will yield the macrocycle. Various versions of this strategy have been studied.⁴ In our version of this approach, the macrocycle would be constructed in several steps around a template atom, which would be removed in a final stage. As the template, we selected sulfur, since it could provide activation for carbon-carbon bond formation, and might be more easily removable than other atoms. This approach is illustrated below for the possible synthesis of a simple macrocycle, cyclododecane. The method would be applicable to the

synthesis of rings of virtually any size, given the required starting cyclic sulfides, which themselves might be available by carbon-sulfur bond cleavage at the bicyclic stage. However, several fundamental questions must be answered before this

approach can be utilized in complex synthesis. First, an efficient annelation⁵ technique (e.g., $i \rightarrow ii$, $ii \rightarrow iii$) must be developed. Second, bicyclic and tricyclic salts such as ii and iii may each exist in two diastereomeric forms. One must know something of their relative stability and ease of interconversion. Third, one must know something of the stereochemistry of alkylation of rigid salts such as ii. Finally, the practicality of working with intermediate salts such as ii and iii must be examined. In this paper, we present the results of our initial steps toward answering some of these questions.

Synthesis of Bicyclic Sulfonium Salts

In 1959, Eastman and Kritchevsky reported the synthesis of salt $1,^8$ which seemed an ideal model for our purposes.

However, in Eastman's synthesis of 1, the bicyclic salt is formed by closure of both rings starting with a symmetrical dihydroxythiol. This procedure is not sufficiently general for the purpose we have in mind, which is to construct the two rings consecutively and thus have access to both symmetrical and unsymmetrical bridgehead sulfonium salts. Consequently, we developed the alternate synthesis outlined in Chart I, which produces 1 ($X^- = Br^-$) in 30-40% overall yield. The 6-methoxycarbonyl analogue 9 ($X^- = I^-$) was prepared in 16% overall yield, as outlined in Chart II.

Stereostructure

Bicyclic sulfonium salt 1, prepared either by Eastman's method⁸ or by the method outlined in Chart I, is formed as a 1:1 mixture of stereoisomers 1a and 1b, as shown by its ${}^{13}C$ NMR spectrum. Thermal equilibration in CHCl₃ or CH₂Cl₂

© 1979 American Chemical Society

^{*a*} Data are presented in parts per million downfield from internal trimethylsilane. ^{*b*} Spectra were determined on ca. 25% solutions in CDCl₃. ^{*c*} Ca. 5% solution in CDCl₃.

Chart I

Chart II

a, PCl₃, Br₂; b, 1, NaHCO₃, 2, Na₂S·9H₂O; c; CH₃OH, H⁺; d, 1, LDA, 2, ICH₂CH₂CH₂CH₂CH₂I

at 110 °C for 24 h affords an equilibrium mixture (70% 1a, 30% 1b) from which pure 1a ($X^- = BF_4^-$) may be obtained by recrystallization. Pure diastereomer 1b ($X^- = BF_4^-$) is obtained by treating the 1:1 mixture of 1a and 1b with *n*-butyllithium in THF at -23 °C, allowing the resulting mixture of ylides to equilibrate for 2 h, then quenching with fluoboric acid. Salt 9 is obtained from the synthesis outlined in Chart II as a single stereoisomer, subsequently shown to have the "*cis*-thioniadecalin" configuration (vide infra).

The ¹³C NMR chemical shifts of salts **1a**, **1b**, and **9** ($X^- = BF_4^-$) are tabulated in Table I. Each carbon in sulfonium salt **1a** resonates downfield of the analogous carbon in its less stable

Table II. ¹³C NMR Chemical Shifts of Pentane and Methyl Hexanoate

	F		
carbon	$\frac{10}{(R = H)^{10}}$	$(R = CO_2CH_3)^{11}$	$\delta_{10} - \delta_{11}$
1	13.7	14.3	-0.7
2	22.6	23.4	-0.8
3	34.5	32.2	+2.3
4	22.6	25.5	-2.9
5	13.7	33.9	-20.2

stereoisomer 1b, a situation parallel to that found in *trans*- and *cis*-decalins.⁹ The last two columns in Table I are $\Delta\delta$ between stereoisomers 1a and 1b and the 6-methoxycarbonyl analogue 9. For comparison, we list in Table II the ¹³C NMR chemical shifts for pentane (10)¹⁰ and methyl hexanoate (11),¹¹ along with $\Delta\delta$'s for the five corresponding carbons. Comparison of the $\delta_{10} - \delta_{11}$ values in Table II with the $\Delta\delta$ values in Table I clearly indicates that sulfonium salts 1b and 9 have the same stereostructure. Considering the fact that 1b and 9 are cyclic structures with only two stable ring conformations each, while 10 and 11 are acyclic, with many possible conformations, the correspondence of $\Delta\delta$'s between the two cases is remarkable.

Stereostructures for 1a, 1b, and 9 may confidently be assigned on the basis of the 360-MHz ¹H NMR spectra of the three tetrafluoroborates in D₂O.¹² Pertinent resonances for salts 1a and 1b have been discussed elsewhere.¹ For salt 9, the protons next to sulfur (H₁ and H₂) appear as a complex multiplet in the region around δ 3.5. (J = -13+8, 8.9, 3.3, and 0 Hz) and 3.56 ppm (J = -13.8, 7.0, 3.4, and 0.9 Hz). The higher field resonance was assigned to H₂ in analogy to the results of Barbarella et al.¹³ The -13.8-Hz splitting is obviously the geminal constant, while the 3.3- and 3.4-Hz splittings are weighted averages of J_{ae} and J_{ea} with a proton on C₃. The 8.9- and 7.0-Hz splittings are too small for J_{aa} and too large for J_{ae} or J_{ee} , and must be weighted averages of J_{aa} and J_{ce} . Thus, the ¹H NMR results also indicate that this salt has the "*cis*-decalin" configuration 9.

The cis configuration of 9 was confirmed by determination of the crystal structure of its iodide salt by X-ray diffraction. The crystals of $C_{11}H_{19}IO_2S$ are monoclinic, space group $P2_1/n, a = 8.890(3)$ Å, b = 20.120(7)Å, c = 8.150(3)Å, β = 110.17 (4)°, Z = 4, $d_{calcd} = 1.661$ g/cm³, $d_{obsd} = 1.665$ g/cm^3 , t = 20 °C. Atomic coordinates are listed in Table III, bond distances in Table IV, and bond angles in Table V.56 Carbon-hydrogen distances (not listed) range from 0.83 to 1.05 Å with standard deviations of about 0.1 Å, values typical of X-ray diffraction determinations in the absence of correction for the electronic polarization of the hydrogen atom. Other bond lengths are within a standard deviation or two of accepted values for aliphatic compounds. The molecular structure of the cation, shown in Figure 1, has both rings in chair conformations and approximately at a right angle to each other, the same as found for cis-decalin in the gas phase by Bastiansen and Hassel.¹⁴ These ions are packed in the crystal as shown in Figure 2. Each iodide ion is surrounded by six cations, and its nearest neighbors are 13 hydrogen atoms at distances ranging

Table III. Atomic Coordinates in	
6-Methoxycarbonyl-1-thioniabicyclo[4,4,0]decane Iodide	

atom	x	<u></u>	Z
1	0.145 44 (8)	0.114 72 (3)	0.206 23 (9)
S	0.78 6 (2)	0.2990(1)	0.2743 (3)
O(1)	-0.2249 (6)	0.3450 (3)	0.2312 (7)
O(2)	-0.1852 (6)	0.4552 (2)	0.2439 (7)
C(1)	0.291 (1)	0.3001 (5)	0.306(1)
C(2)	0.312(1)	0.3407 (5)	0.160 (2)
C(3)	0.264 (1)	0.4140 (5)	0.165 (2)
C(4)	0.090(1)	0.4229 (5)	0.146 (1)
C(5)	0.042(1)	0.3886 (4)	0.290(1)
C(6)	0.070(1)	0.2655 (5)	0.477 (1)
C(7)	0.150(1)	0.3078 (5)	0.636(1)
C(8)	0.094 (1)	0.3794 (5)	0.619 (1)
C(9)	0.134(1)	0.4159 (4)	0.473 (1)
C(10)	-0.139(1)	0.3929 (4)	0.251 (1)
C(11)	-0.356(1)	0.4635 (5)	0.213 (2)
H(1)	0.30(1)	0.254 (4)	0.28 (1)
H(2)	0.34(1)	0.323 (5)	0.42(1)
H(3)	0.24 (1)	0.321 (4)	0.05(1)
H(4)	0.42(1)	0.340 (5)	0.17(1)
H(5)	0.33(1)	0.433 (4)	0.27 (1)
H(6)	0.27(1)	0.431 (4)	0.07(1)
H(7)	0.03(1)	0.402 (4)	0.05(1)
H(8)	0.06(1)	0.470 (4)	0.15(1)
H(9)	0.11(1)	0.228 (5)	0.48 (1)
H(10)	-0.04(1)	0.265 (4)	0.45(1)
H(11)	0.15(1)	0.281 (5)	0.74 (1)
H(12)	0.25(1)	0.304 (3)	0.67(1)
H(13)	0.15(1)	0.397 (4)	0.72(1)
H(14)	-0.03 (1)	0.380 (5)	0.60(1)
H(15)	0.26(1)	0.416 (4)	0.50(1)
H(16)	0.11(1)	0.460 (4)	0.46(1)
H(17)	-0.38(1)	0.504 (5)	0.19 (1)
H(18)	-0.42(1)	0.445 (5)	0.10(1)
H(19)	-0.37 (1)	0.454 (6)	0.32 (2)

Table I' Dong Distances (A	Table IV. Bond Dista	inces (Å)
----------------------------	-----------------------------	----------	---

I-S	3.825 (3)	C(5)-C(9)	1.54 (1)
S-C(1)	1.81(1)	C(6) - C(7)	1.51(1)
S-C(6)	1.81(1)	C(7) - C(8)	1.52(1)
S-C(5)	1.85(1)	C(8) - C(9)	1.54(1)
C(1)-C(2)	1.51(1)	C(5)-C(10)	1.52(1)
C(2) - C(3)	1.54 (1)	C(10)-O(1)	1.21(1)
C(3) - C(4)	1.51 (1)	C(10) - O(2)	1.32(1)
C(4)-C(5)	1.55(1)	C(11)-O(2)	1.46 (1)

from 3.1 to 3.8 Å. It has a sulfur atom at 3.82 Å as its closest heavy-atom neighbor. This contact is indicated by a line in Figure 2, and the structure can be regarded as a molecular packing of these ion pairs.¹²

Pyramidal Inversion

The 1:1 mixture of salts 1a and 1b (X⁻ = BF₄⁻) was thermally equilibrated at 110 °C in several solvents. In each case the "trans" diastereomer 1a was found to be slightly more stable than the "cis" isomer 1b, the equilibrium constants being CHCl₃, 2.33; CH₂Cl₂, 2.33; THF, 1.50; CH₃CN, 1.70; D₂O, 1.50. Rates of equilibration were determined in CD₂Cl₂ and CDCl₃ over the range 90.07-105.80 °C; data are summarized in Table VI. Application of the Eyring equation to these data gives $\Delta H^{\ddagger} = 28.0 \pm 0.9$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -3.8 \pm 2.5$ eu. The calculated rate at 100 °C, 4.6 × 10⁻⁵ s⁻¹, compares well with that obtained by Fava, 8.1 × 10⁻⁵ s⁻¹, for equilibration of 1,3,3-trimethylthianium perchlorate.¹⁵

The ΔG° for the equilibrium **1b** \Rightarrow **1a** is -0.64 kcal mol⁻¹ at 110 °C. For comparison, *trans*-decalin is 2.7 kcal mol⁻¹ more stable than *cis*-decalin in the range 268-378 °C.¹⁶ The

fable '	V.	Bond	Angl	les ((deg)	
---------	----	------	------	-------	-------	--

C(1)-S-C(5)	100.3 (5)	C(4)-C(5)-C(10)	111.5 (7)
C(1)-S-C(6)	104.2 (6)	C(9)-C(5)-C(10)	110.6 (6)
C(5)-S-C(6)	103.6 (5)	S-C(6)-C(7)	114.6 (5)
S-C(1)-C(2)	107.5 (6)	C(6)-C(7)-C(8)	114.5 (8)
C(1)-C(2)-C(3)	112.5 (9)	C(7)-C(8)-C(9)	111.4 (8)
C(2)-C(3)-C(4)	113.2 (9)	C(5)-C(9)-C(8)	113.1 (7)
C(3)-C(4)-C(5)	114.2 (8)	O(1)-C(10)-O(2)	125.4 (6)
S-C(5)-C(4)	106.3 (4)	O(1)-C(10)-C(5)	123.8 (6)
S-C(5)-C(9)	111.5 (4)	O(2)-C(10)-C(5)	110.7 (6)
S-C(5)-C(10)	103.9 (4)	C(10)-O(2)-C(11)	114.2 (7)
C(4)-C(5)-C(9)	112.6 (7)		

Table VI. Rates of Inversion

 $1b \stackrel{k_1}{\longrightarrow} 1a$

		1	
temp, °C	solvent	$\frac{10^5 k_{1}}{s^{-1}b}$	corr coeff
$\begin{array}{r} 90.07 \pm 0.02 \\ 96.30 \pm 0.02 \\ 104.05 \pm 0.02 \\ 105.80 \pm 0.02 \end{array}$	$\begin{array}{c} CD_2Cl_2\\ CD_2Cl_2\\ CDCl_3{}^a\\ CD_2Cl_2\end{array}$	$\begin{array}{c} 1.57 \pm 0.03 \\ 3.34 \pm 0.01 \\ 6.9 \pm 0.2 \\ 8.5 \pm 0.1 \end{array}$	0.9983 0.9968 0.9944 0.9995

^a The sulfonium salt partially separates as an oil at this temperature, although it is soluble in CDCl₃ at 25 °C. ^b The reverse rate constant (k_{-1}) is equal to $k_1/2.33$.

observed difference in stability has been ascribed to the fact that cis-decalin contains three more gauche-butane interactions than the trans isomer.¹⁷ However, Eliel and Willer have recently shown that ΔG° for SCH₃ in 1-methylthianium salts in small $(0.0-0.3 \text{ kcal mol}^{-1})$, suggesting that gauche interactions of the type $C-C-S^+-C$ are much smaller than gauche-butane interactions.¹⁸ In salts 1a and 1b, the gauche four-atom interactions may be divided into three types (C-C-C-C, C-C-C-S, and C-C-S-C), of which there are 4,4,4 and 5,4,6, respectively. If (for a first approximation) we ignore the C-C-S-C interactions on the basis of the work of Eliel and Willer,¹⁸ then the difference in energy between the "trans" and "cis" diastereomers 1a and 1b should be one gauche-butane interaction (0.85 kcal mol⁻¹) plus ΔS° , which should favor diastereomer 1b, since it has two equivalent chair-chair conformations, while **1a** has only one. For the equilibrium transdecalin \rightleftharpoons *cis*-decalin, ΔS° has been reported to be 0¹⁹ or 0.55 \pm 0.3 eu.¹⁶ Thus, at 110 °C, ΔG° for the equilibrium **1b** \rightleftharpoons **1a** should be -0.52 to -0.85 kcal mol⁻¹, in good agreement with the experimental value of -0.64 kcal mol⁻¹.

No isomerization of salt 9 ($X^- = BF_4^-$) was observed by ¹³C NMR on heating at 110 °C for 72 h (conditions under which **1a/1b** are completely equilibrated). With the assumption that the NMR detection limit is $\leq 5\%$ of isomer **12**, $\Delta G^\circ_{9\rightarrow 12}$ exceeds 2.2 kcal mol⁻¹.

An alternative explanation for the failure of **9** to undergo thermal isomerization might invoke an unusually high inversion barrier caused by the methoxycarbonyl group. However, it has been found that ΔG^{\pm} 's for pyramidal inversion of ethylmethylphenacylsulfonium perchlorate and benzylethylmethylsulfonium perchlorate at 100 °C are 27.3 and 26.9 kcal mol⁻¹, respectively.²⁰ In order to provide a further check on

Figure 1. Stereodrawing (ORTEP) of the bicyclic sulfonium cation 9. Hydrogen atoms are drawn with fictitious spherical thermal parameters of 0.5 $Å^2$.

Figure 2. The unit cell, viewed along the c axis. The long axis is b. A line connects each iodide ion with its nearest sulfur neighbor.

this point, we heated a 9:1 mixture of thianium salts 13 and 14 at 110 °C in 1:1 acetone- d_6 /CDCl₃; after 10 h an equilibrium

mixture (7:3, unchanged by further heating) resulted. Thus, it would seem that the barrier for inversion of salt 9 should be comparable to that for inversion of salt 1a, and that 9 is indeed substantially more stable than 12.

If it is accepted that 9 is more than 2.2 kcal mol^{-1} more stable than 12, then replacement of angular hydrogen by methoxycarbonyl disfavors the trans-1-thioniabicyclo[4.4.0]decane configuration by at least 2.2 + 0.6 = 2.8 kcal mol^{-1} , relative to the cis configuration. A similar phenomenon is observed with the decalins. While trans-decalin is 2.7 kcal mol⁻¹ more stable than is *cis*-decalin, 9-methyl-*trans*-decalin is estimated to be only 0.3 kcal mol⁻¹ more stable than 9methyl-cis-decalin at 250 °C.21,22 The effect has been ascribed to the fact that replacement of the C_9 H by CH_3 adds four new gauche-butane interactions in the trans isomer and only two in the cis isomer.²¹ The same explanation may be offered for the effect of substitution at C_6 in compound 1. However, the A value for the methoxycarbonyl group on a cyclohexane ring is only 1.3 kcal mol^{-1,24} Even allowing for the possibility that the A value for a tertiary methoxycarbonyl is as high as 1.55 kcal mol⁻¹,²⁵ the group seems to be exerting too large an effect in destabilizing isomer 9 by at least 2.8 kcal mol⁻¹.

The reason for this larger than expected apparent "size" of an angular substituent in the thioniadecalin system originates in the small C-S-C bond angles (100-104°; see Table V). This has the effect of tilting the axial bonds at C_2 and C_{10} toward that at C_6 , thus increasing 1:3 diaxial interactions. This question was addressed by carrying out molecular mechanics calculations on 1a, 1b, and their 6-methyl analogues using the Allinger 1973 force field.²⁶ Preliminary calculations were performed on 1-methylthianium ion (for which an X-ray structure is known²⁷) and eight pairs of diastereomeric Smethylthianium ions (for which equilibrium constants have been determined¹⁸). Using Allinger's equilibrium C-S⁺-C bond angle of 94.3°, it was found that the computed bond angles in 1-methylthianium ion are about 4° too small and that the stability of the equatorial S-methyl diastereomers is overestimated by 0.9-1.2 kcal mol⁻¹. By employing an equilibrium $C-S^+-C$ angle of 101°, we were able to adequately reproduce the bond distances (within 0.02 Å), bond angles (within 1°), and torsion angles (within 3°). Furthermore, the Alliger program reproduces the experimental enthalpies of equilibration for the eight pairs of diastereomeric S-methylthianium ions by 0.15 ± 0.2 kcal mol⁻¹, with the computed stability of equatorial S-methyl groups still being slightly exaggerated. The force field predicts trans isomer 1a to be 0.84 kcal mol⁻¹ more stable than cis isomer **1b** (compared to the experimental value of 0.64 kcal mol^{-1}). On the other hand, the 6-methyl derivative of **1b** is predicted to be 2.8 kcal mol⁻¹ more stable than its trans counterpart.28

Pyramidal Inversion of Unstabilized Sulfonium Ylides

As mentioned earlier, pure diastereomer 1b may be obtained by forming the sulfonium ylide from the 1:1 mixture of salts 1a and 1b ($X^- = BF_4^-$) with *n*-butyllithium in THF at -23 °C, followed by a fluoboric acid quench after 2 hr this temperature. Ylides 15 and 16 presumably interconvert by py-

ramidal inversion at sulfur, with diastereomer **16** being at least 1.5 kcal mol⁻¹ more stable than **15**. We propose that lone pair-lon pair interaction²⁹ is responsible for the preponderance of cis ylide **16**. Bernardi et al. have recently reported ab initio calculations of ${}^{+}SH_2CH_2{}^{-}$ which show a minimum energy

Table VII. Values of θ (deg) for Structures 15a-16d

	15a	15b	16a	16b	16c	16d
$\frac{\theta^{a}}{\theta^{b}}$	50	170	46 44	168 176	50 51	75 76

^{*a*} Dihedral angle between the axes of the lone pairs, measured from Dreiding scale stereomodels.^{31 *b*} Dihedral angles calculated between the sulfur lone pair and the appropriate C-H bonds calculated from the atomic coordinates of salt **9**. The lone-pair axis was assumed to pass through the midpoint of the triangle described by C_1 , C_5 , and C_6 (crystallographic numbering).

structure for the vlide when the lone pairs on carbon and sulfur are orthogonal, with maxima at lone pair-lone pair dihedral angles of 0 and 180° (11.0 and 7.6 kcal mol⁻¹, respectively).³⁰ If we assume that both sulfur and the carbanion are pyramidal, then there are two stereochemical possibilities for ylide 15 (15a,b) and four for ylide 16 (16a-d) which must be considered (Figure 3). Using Dreiding scale models³¹ and assuming a perfect tetrahedral geometry for the carbanion, one may estimate θ , the dihedral angle between the axes of the two lone pairs in structures 15a,b and 16a-d; values are summarized in Table VII, along with the dihedral angles calculated from the atomic coordinates of salt 9. Clearly, structure 16d allows the lone pairs to approach orthogonality with the least structural reorganization.³² Attempts to obtain experimental evidence for the relative disposition of the lone pairs in ylide 16 by deuteration were unsuccessful. Best results were obtained by inverse quench of the equilibrated ylide mixture with DCI in ether or D_2SO_4 in CH₃OD, but even under these conditions a mixture of 15% d_2 , 70% d_1 , and 15% d_0 products was obtained.

The rate of isomerization of trans ylide 15 to cis ylide 16 was measured in tetrahydrofuran at -23 and -32 °C; activation parameters were found to be $\Delta H^{\pm} = 20.5$ kcal mol⁻¹ and ΔS^{\pm} = 6 eu. Activation parameters for pyramidal inversion of an unstabilized sulfonium ylide have not been previously reported. Trost and Hammen have demonstrated that the vlide derived from optically active 1-adamantylallylethylsulfonium salt undergoes [2,3]-sigmatropic rearrangement with at least 94% transfer of chirality from sulfur to carbon.^{35a} This experiment demonstrates that the activation energy for [2,3]-sigmatropic rearrangement of an allylsulfonium ylide is lower than that for pyramidal inversion at sulfur in such an ylide. Our results, in conjunction with those obtained by Trost and Hammen, would seem to place an upper limit of $\Delta G^{\pm} = 19 \text{ kcal mol}^{-1} \text{ at } -35$ °C, the temperature at which the rearrangement experiment was carried out.35b

Alkylation of Ylides 15 and 16

Since one of our main goals in this study was to obtain information regarding the stereochemistry of alkylation of bicyclic sulfonium ylides, we examined the methylation of ylides 15 and 16. We first formed a mixture of the ylides by slow addition of *n*-butyllithium to a 1:1 mixture of salts 1a and 1b in THF at -72 °C, and allowed the ylides to react with methyl iodide at -72 °C. After conversion to tetrafluoroborate salts. ¹³C NMR spectroscopy showed the product formed under these conditions to consist mainly of two isomers, subsequently shown to be 17 and 18, present in nearly equal amount. When this mixture is heated at 110 °C in CHCl₃, the amount of isomer 18 increases, while that of isomer 17 decreases. Pure isomer 18 (X^- = picrate) may be obtained by recrystallization of the picrate salts. When the ylide mixture is equilibrated at -23 °C for 2 h, then methylated at -72 °C, the alkylation product consists of isomer 17 and a new isomer (19) in a ratio of 3:2; isomer 18 is not produced under these conditions.

Figure 3. Possible conformations of ylides 15 and 16.

Table VIII. ¹³C NMR Chemical Shifts of Salts 17, 18, and 19^a

9 S	M	e	X ⁻

carbon	18	$\delta_{18} - \delta_{1a}$	17	19
2	49.6	11.0	45.3	38.6
3	35.9	12.0	26.1	31.5
4	23.8 ^b	0.3	23.3	18.5
5	30.9¢	0.2	22.1	28.4
6	53.4	0.0	44.7	43.9
7	30.9°	0.2	29.2	$(24.5)^{d}$
8	23.86	0.3	16.8	$(23.6)^{d}$
9	23.8 b	-0.1	22.9	$(21.5)^{d}$
10	33.3	-5.3	22.7	30.7
CH3	17.4		17.7	18.0

^a Spectra were determined on ca. 5% solutions of the picrates in CDCl₃; data are presented in parts per million downfield from internal Me₄Si. ^b Triple intensity peak. ^c Double intensity peak. ^d These assignments are uncertain.

Thermal equilibration of this mixture affords a 3:2 mixture of isomers 18 and 19.

Stereostructures were assigned to salts 17, 18, and 19 on the basis of their ¹³C NMR spectra, which are tabulated in Table VIII. First, it is clear that isomer 18 has the *trans*-1-thioniabicyclo[4.4.0]decane structure, from the values of $\Delta\delta$ given in the second column of Table VIII. The equatorial disposition of the methyl group is shown by the fact that C₁₀ is shifted upfield (γ -gauche interaction),³⁶ while C₄ and C₆ resonate at nearly the same frequency as in salt 1a. The large shifts of C₂ and C₃ result from the expected α and β effects.³⁶ Since isomer 17 is converted to isomer 18 by pyramidal inversion of sulfur, 15

Table IX. ¹³C NMR Chemical Shift of Salts 21, 22, and 23^a

^a Spectra were determined on ca. 5% solutions of the tetrafluoroborate salts in CDCl₃; data are presented in parts per million downfield from internal Me₄Si. ^b These assignments are considered to be slightly uncertain. ^c Resonance not found; assumed to coincide with another peak. ^d These resonances could be either 20.1 or 23.0; the 23.0 peak is large enough for at least three carbons. e Could be either 22.8 or 23.9.

63.0

13.5

63.4

13.5

62.6

13.5

it must have the stereostructure indicated, and, since isomer 19 is produced after equilibration of the vlides to the "cis" form, it must be the remaining cis isomer, as indicated. Assignment of resonaces to 17 and 19 was made on the basis of consideration of the number of α , β , and γ -gauche interactions in these isomers, relative to the spectrum of the parent salt 1b. The chemical shifts of the various carbons in isomers 17 and 19 do not correspond as closely to those in the parent unmethylated salt 1b, mainly owing to the fact that 1b has two equivalent conformations, while 17 and 19 probably exist primarily in the conformation in which the methyl is equatorial, with a resultant change in the number of effective γ -gauche interactions.³⁷

The stereochemistry of these methylations is of interest. When methylation is carried out without allowing the ylide mixture to warm above -70 °C, the equatorial methylated salts 17 and 18 are produced in a ratio close to that of the starting salts 1a and 1b. Furthermore, these products are precisely those expected for replacement of the proton most nearly orthogonal to the lone pair in each isomer (1a and 1b).³⁸ It is noteworthy that isomer 19 is not produced in this reaction, although it is produced after the ylides are allowed to equilibrate. These results are consistent with the hypothesis that 15a is the kinetic ylide derived from 1a, 16d is the kinetic ylide derived from 1b, and that these ylides do not undergo stereomutation, either at sulfur or at carbon at -72 °C. Upon warming to -23 °C for 2 h prior to methylation, the ylides equilibrate by pyramidal inversion at both sulfur and carbon, giving a mixture of ylides 16d and either 16a or 16c (which are chair-chair conformers).

The foregoing hypothesis demands that ΔG^{\ddagger} for pyramidal inversion of the carbanion exceed ΔG^{\pm} for methylation (or reaction with acetone, vide infra). Calculations of the inversion barrier for methyl anion range from 1.7 to 25.2 kcal mol⁻¹,⁴⁰ with the most sophisticated calculations giving a value of 9.9 kcal mol^{-1,41} However, the adjacent sulfonium group should raise the barrier,⁴² although the magnitude of this effect is unknown.43

The reactions of ylides 15 and 16 with acetone are qualitatively similar to the methylations. If the intermediate zwitterion is allowed to warm to room temperature, epoxy sulfide 20 is produced. However, the zwitterion can be trapped by

quenching at -72 °C with fluoboric acid or ethyl chloroformate. When the zwitterion is quenched with HBF4, salts 21a and 22a are produced in roughly equal amounts. A trace of the other cis isomer 23a may be seen in the ¹³C NMR spectrum of the crude product. Pure salt 22a ($X^- = BF_4^-$) may be iso-

a, R = $C(CH_3)_2OH$ b, R = $C(CH_3)_2OCOC_2H_5$

lated by recrystallization of the product. Thermal equilibration (CDCl₃, 110 °C, 5 h) of the crude product provides essentially pure trans salt **21a**. When the zwitterion is trapped with ethyl chloroformate, an equimolar mixture of carbonates 21b and 22b is produced. When the ylide mixture is allowed to thermally equilibrate at -23 °C before formation of the zwitterion at -72 °C, which is then trapped with ethyl chloroformate, cis sulfonium salts 22b and 23b are produced in a ratio of 3:1.

Stereostructures were assigned to salts 21-23 on the basis of arguments analogous to those used for assignments of methylated salts 17-19.37 Table IX summarizes the ¹³C NMR chemical shifts.

We have also briefly examined the formation and alkylation of sulfonium ylide anions. When the 1:1 mixture of salts 1a and 1b is treated with 2.5-3.0 equiv of tert-butyllithium in THF under careful conditions so that the temperature is maintained at -76 ± 2 °C, and the resulting solution then treated with excess methyl iodide, an equimolar mixture of salts 24 and 25

 $(X^- = picrate)$ is isolated in 12% yield. If the ylide anion solution is kept at -65 to -70 °C for 1 h before methylation, the

sole product is salt **25**, isolated in 12% yield. Attempted thermal equilibration of the 1:1 mixture of **24** and **25** (CHCl₃, 110 °C, 10 h) produces no change in composition.

The ¹³C NMR chemical shifts of salts 24 and 25 are summarized in Table X. The correspondence in chemical shifts between isomer 24 and the analogous resonances in salts 18 (Table VIII) and **1a** (Table I) is striking and clearly supports the assigned stereostructure. The alternative trans-1-thioniabicyclo[4.4.0]decane structure having one methyl axial is ruled out by symmetry (11 resonances would result). The alternative *trans*-1-thioniabicyclo[4.4.0]decane structure having one methyl axial is ruled out by symmetry (11 resonances would result). The "trans" salt having both methyls axial is eliminated by the lack of γ -gauche shifts on C₄ and C₆, and also because this isomer would thermally equilibrate to "cis" isomer 25. Isomer 25 is assigned the indicated stereostructure first on symmetry grounds. Since this isomer has two equivalent conformations, the molecule has average C_s symmetry and should show only six resonances, as is observed. The alternative structure having both methyls equatorial would show 11 resonances. The isomer having both methyls trans to the angular hydrogen would also show average C_s symmetry, but should thermally equilibrate to isomer 24. The spectrum of 25 may be most profitably compared to that of its parent unmethylated salt 1b, since both exist as a mixture of two enantiomeric chair-chair conformers. In addition to the expected large downfield shifts of C₂ and C₃ (α and β effects), C₄ experiences a moderate upfield shift in 25, resulting from the fact that this carbon experiences a new γ -gauche interaction in one of its two conformations. The γ -gauche effect expected on C₆ is not observed, perhaps because of the greater length of the C2-S and C_6 -S bonds.

Although the isolated yields in the alkylations leading to 24 and 25 are low, we feel that the results are significant since dimethylated isomers 24 and 25 are the only sulfonium salts isolated; no starting material or monomethylated material may be detected in the crude product by ¹³C NMR spectroscopy. The results definitely suggest that ylide anion undergoes stereomutation at sulfur with a considerably lower barrier than that for ylide 15.⁴³ It also seems that the stabel structure of this species is one having a *cis*-1-thioniabicyclo[4.4.0]decane structure, as in the case of the ylide itself. The most reasonable hypothesis is that the "trans" salt 1a gives an ylide anion 26 in which both carbanion lone pairs are gauche to the sulfur lone pair; after the first methylation, the product ylide 27 is formed.

The cis salt 1b might afford ylide anion 28, which would probably react first on the more basic carbon lone pair (e.g., the one having the most unfavorable interaction with the sulfur lone pair) to give 29, which might exist either in conformation 29a or 29b, depending on whether the unfavorable lone-pair interactions in 29b or the axial methyl group in 29a are more important. Of course, since the precursors of products 24 and 25 are not neutral species, they may exist as ion pairs or aggregates, or may even by C-lithiated ylides. Finally, we should point out that these reaction intermediates are apparently the first known sulfonium ylide anions, although analogous species derived from ammonium and phosphonium salts have been previously described.⁴⁴ Dianions derived from sulfones⁴⁵ and nitroalkanes⁴⁶ have also been studied.

		$Me Me \\ + \\ S \\ - \\ 6 \\ 5 \\ 4$		
carbon	24	$\delta_{24} - \delta_{1a}$	25	$\delta_{25} - \delta_{1b}$
2	50.2	11.6	41.0	10.3
3	34.9	11.0	28.4	8.4
4	23.7	0.2	17.2	-2.7
5	31.0	0.3	26.5	0.4
6	53.9	0.5	42.2	-0.4
CH ₃	20.5		18.0	

^a Spectra were determined on ca. 5% solutions of the picrate salts in CDCl₃; data are presented in parts per million downfield from internal Me₄Si.

Conversion of Salt 9 to 6-Methoxycarbonylthiacyclodecane

In the Introduction, we considered the possibility that the sulfur-template approach might be employed to synthesize cyclic sulfides with ring sizes not conveniently accessible by direct cyclization. Bicyclic salt 9 provided us with an excellent opportunity to test this hypothesis. In fact, treatment of 9 with zinc dust in refluxing acetic acid affords the ten-membered cyclic sulfide 30 in 96% yield, thus establishing the feasibility of this approach to large-ring sulfides.

Conclusions

The present study has provided answers to a number of our original questions regarding the feasibility of a sulfur template approach to macrocycles. Bicyclic sulfonium salts *can* be prepared and their ylides alkylated stereoselectively. At this point, yields are not exceptional, but additional research may remedy this problem. The greatest obstacle we have encountered thus far stems from the difficulty with handling the sulfonium salts (they are usually produced as oils, often highly hygroscopic), and with separating mixtures of salts. In the future, use of ion-exchange or reverse-phase high-pressure liquid chromatography may alleviate these problems.

Experimental Section

The ¹H NMR spectra were determined on a Varian T-60 NMR spectrometer or on a Bruker HXS-360 (Stanford Magnetic Resonance Laboratory). The ¹³C NMR spectra were measured at 25.14 MHz with a Nicolet TT-23 spectrometer. Chemical shifts are expressed in parts per million downfield from internal tetramethylsilane (Me₄Si) or sodium trimethylsilylpropionate (TSP). Significant ¹H NMR data are tabulated in order (number of protons, multiplicity, proton assignment). Infrared spectra were determined on a Perkin-Elmer 137 infrared spectrophotometer. Mass spectra were obtained with Atlas MS-12 and Consolidated 12-110B mass spectrometers. Melting points (Pyrex capillary) and boiling points are uncorrected. Microanalyses were performed by the College of Chemistry Microanalytical Laboratory, University of California, Berkeley. Ether solvents were distilled from LiAlH₄ or sodium/benzophenone prior to use. All reactions involving ylides were performed under a nitrigen atmosphere.

4-Chloro-1-phenoxybutane. To a solution of 120 g (3.0 mol) of sodium hydroxide dissolved in 1 L of water is added 282 g (3.0 mol) of phenol. To this solution is added 381 g (3.0 mol) of 1,4-dichlorobutane. The heterogeneous mixture is refluxed until it becomes nearly neutral (several days). Ether (300-500 mL) is added and the aqueous layer is separated and extracted again with 500 mL of ether. The combined ether extracts are washed with 5% sodium hydroxide and saturated brine and dried with MgSO₄. The solvent is evaporated in vacuo and the residue is distilled through a 30-cm Vigreux column to yield 390 g (77%) of pure chloro ether (bp 86-87 °C, 0.5 Torr): IR (neat) 1600, 1580, 1500, 1460, 1250 cm⁻¹: ¹H NMR (CCl₄) δ 1.78 (4 H, m), 3.38 (2 H, t, J = 6 Hz), 3.78 (2 H, t, J = 6 Hz), 6.80 (3 H, m), 7.02 (2 H, m). Anal. (C₁₀H₁₃ClO) C, H, Cl.

2-(4-Phenoxybutyl)pentamethylene sulfide (4) is prepared by the method of Tuleeen and Bennett.⁴⁷ In a 2-L flask, 25 g (1.0 g-atom) of magnesium turnings is stirred under nitrogen with 250 mL of dry ether. A solution of 174 g (0.95 mol) of 4-chloro-1-phenoxybutane in 300 mL of dry ether is added dropwise so as to maintain a gentle reflux. The reaction mixture is refluxed for an additional 1 h after the addition of chloride is complete. In a 500-mL inversion addition flask is placed 48.5 g (475 mmol) of pentamethylene sulfide in 250 mL of benzene. The solution is cooled to 10 °C and 63.0 g (475 mmol) of N-chlorosuccinimide (NCS) is added in portions so as to maintain the temperature below 20 °C. The mixture is stirred for an additional 1 h after the final addition of NCS and is then filtered into the Grignard reaction mixture at a rate so as to keep the temperature between 10 and 15 °C. After the mixture is stirred overnight at room temperature, CO_2 is bubbled through the reaction mixture to remove excess Grignard reagent, and a 10% HCl solution is added dropwise. The aqueous layer is separated and extracted with ether. The combined ether layers are washed with 10% NaOH and saturated brine and dried over potassium carbonate. Removal of the solvents gives crude sulfide 4, which is used without further purification. In a similar reaction, a sample was purified by distillation (bp 145-150 °C, 0.2 Torr): ³H NMR (CCl₄) δ 1.6 (12 H, m), 2.6 (3 H, m), 3.90 (2 H, t, J = 6 Hz, OCH₂), 6.8 (3 H, m), 7.0 (2 H, m). Anal. (C₁₅H₂₂OS) C, H.

1-Thioniabicyclo[4.4.0]decane Bromide (1, $X^- = Br^-$). To 300 mL of acetic anhydride, cooled with an ice bath, is added 300 mL of 48% HBr. The crude sulfide 4 is added slowly, while cooling with an ice bath. This reaction mixture is refluxed for 6–10 h, and is then cooled and extracted with benzene (2 × 250 mL). The aqueous layer is evaporated in vacuo to near dryness and triturated with THF. Recrystallization from THF/ethanol yields an off-white product (30 40%). An analytical sample is obtained by an additional recrystallization; mp 264-265 °C dec (lit.⁸ mp 266-267 °C); ¹H NMR (D₂O, external Me₄Si) δ 1.5-2.2 (12 H, m), 2.8-3.6 (5 H, m); (CDCl₃) δ 1.7-2.4 (12 H, m), 3.8-4.6 (5 H, m); ¹³C NMR (CDCl₃) trans δ 23.3 (double intensity), 30.5, 38.0, 50.8; cis δ 19.6, 19.9, 26.0, 31.5, 42.5. Anal. (C₉H₁₇BrS) C, H, Br, S.

1-Thioniabicyclo[4.4.0]decane Tetrafluoroborate (1, $X^- = BF_4^-$): Method A. To a solution of 5.5 mL (50 mmol) of trimethyl orthoformate in 6 mL of dry methylene chloride, cooled to -72 °C, is added 7.3 mL (56 mmol) of boron trifluoride etherate, and the resulting mixture is stirred at -72 °C for 0.5 h and at 0 °C for 0.5 h. To the dimethoxycarbonium tetrafluoroborate reaction mixture is added 3.88 g (16.4 mmol) of sulfonium bromide 1. After the mixture is stirred overnight at room temperature, several milliters of ethanol are added and the mixture is stirred for 1 h. Removal of the solvents and trituration with ether give is 1 ($X^- = BF_4^-$) in quantitative yield. Recrystallization from ethanol yields 3.41 g (85%) of pure salt, mp 174-175 °C.

Method B. To a cold solution of 125 mL of acetic acid and 125 mL of 48% fluoboric acid is added crude 2-(4-phenoxybutyl)pentamethylene sulfide (4), prepared from 245 mmol of pentamethylene sulfide. This mixture is refluxed for 4 days, and is then cooled and neutralized with sodium hydroxide. The resulting mixture is extracted three times with ether. The water is removed in vacuo and the sulfonium salt is removed from the sodium tetrafluoroborate by extraction with methylene chloride. Removal of the solvent and trituration with THF yields 10 g (17%) of sulfonium salt 1 ($X^- = BF_4^-$): ¹H NMR $(360 \text{ MHz}, 1\% \text{ in } D_2 \text{O}) \text{ trans } \delta 1.67 (4 \text{ H}, \text{m}), 1.85 (2 \text{ H}, \text{ br } \text{d}, J = 14)$ Hz), 1.97 (2 H, br \bar{d} , J = 15 Hz), 2.12 (2 H, br d, J = 15 Hz), 2.31 (2 H, br d, J = 15 Hz), 3.16 (2 H, ddd, J = -11.8, 13.3, 2.5 Hz), 3.27 $(1 \text{ H}, \text{tt}, J = 11.9, 2.3 \text{ Hz}), 3.56 (2 \text{ H}, \text{dd}, J = -11.8 2.3 \text{ Hz}); \text{cis } \delta 1.60$ (2 H, m), 1.94 (6 H, m), 2.13 (4 H, m), 3.23 (2 H, ddd, J = -13.9)(3.3 Hz), 3.48 (2 H, dddd, J = -13, 7, 3.4, 0.9 Hz), 3.69 (1 H, tt, J = -13, 7, 3.4, 0.9 Hz)7.8, 3.9 Hz); ¹³C NMR (CDCl₃) trans 23.5, 23.9, 30.7, 38.3, 53.3; cis 19.9, 20.0, 26.1, 30.7, 42.6. Anal. (C₉H₁₇BF₄S) C, H, S

Thermal Equilibration of 1-Thioniabicyclo[4.4.0]decane Tetrafluoroborate (1). A solution of 495 mg of salt 1 (1:1 mixture of 1a/1b) dissolved in 10 mL of CDCl₃ (or ethanol-free CHCl₃) was heated at 110 °C (sealed tube) for 21 h to give a 70:30 mixture of 1a/1b. The ratios were determined by 360-MHz ¹H NMR (by comparing the resonance at δ 3.69 of the cis isomer to the resonance at δ 2.31 of the trans isomer) and ¹³C NMR (by comparing resonances of **1a** to the corresponding resonances of 1b and using the average of the values obtained). Further heating did not change this ratio. Salt 1 was equilibrated in other solvents in the same manner and the ratios were determined by ¹³C NMR. Pure trans salt (1a) is obtained by dissolving the equilibrated salt (1a/1b = 7:3) in a minimum amount of hot ethanol. THF is added and the solution is allowed to cool. The 1:1 mixture of 1a and 1b preciptates and is removed by filtration. The filtrate is evaporated to dryness and the process repeated. After three crystallizations of the molecular compound 1a/1b, the concentrated filtrate (ca. 25% yield) is pure **1a**, as shown by its ¹³C NMR spectrum. The pure salt is obtained as a clear glass; we have not attempted to crystallize it.

2,6-Dibromohexanoic acid (6) was prepared in 94% yield by Hell-Volhard-Zelinsky bromination of bromo acid **5**⁴⁸ after the method of Clarke and Taylor;⁴⁹ mp 45-47 °C (lit,⁵⁰ oil at room temperature); ¹H NMR (CCl₄) δ 1.6-2.4 (6 H, m), 3.42 (2 H, t, *J* = 7 Hz), 4.25 (1 H, t, *J* = 7 Hz), 12.1 (1 H, s). Anal. (C₆H₁₀Br₂O₂) C, H, Br.

2-Carboxypentamethylene Sulfide (7). A mixture of 14 g (164 mmol) of NaHCO₃, 45 g (164 mmol) of 2,6-dibromohexanoic acid, and 40 g (167 mmol) of finely ground Na₂S·9H₂O in 200 mL of water is kept at room temperature for 20 h. Concentrated HCl (40 mL) is added and the squeous mixture is extracted with ether. The extract is dried and evaporated to yield 16.5 g (70%) of crude acid 7, which may be used in the subsequent esterification. The analytical sample was obtained by distillation (bp 103-105 °C, 1 Torr): IR (neat) ν_{max} 3000 (broad), 1710 cm⁻¹; ¹H NMR (CCl₄) δ 1.6-2.2 (6 H, m), 2.7 (2 H, m), 3.62 (1 H, dd, J = 4 and 6 Hz), 12.0 (1 H, s). Anal. (C₆H₁₀O₂S) C, H. S.

2-Methoxycarbonylpentamethylene Sulfide (8). A solution of 16.5 g (113 mmol) of crude acid 7 and 1 mL of concentrated H₂SO₄ in 100 mL of CH₃OH is stirred overnight. Sodium carbonate is added and the CH₃OH removed under vacuum. The residue is taken up in ether, washed with aqueous Na₂CO₃ and saturated brine, and then dried. Removal of the solvent affords an oil which is distilled under vacuum to obtain pure ester **8** (15.4 g, 86%): IR (neat) ν_{max} 1740 cm⁻¹; ¹H NMR (CCl₄) δ 1.8-2.2 (6 H, m), 2.7 (2 H, m), 3.45 (1 H, dd, J = 4 and 6 Hz), 3.70 (3 H, s). Anal. (C₇H₁₂O₂S) C, H, S.

6-Methoxycarbonyl-1-thioniabicyclo[4.4.0]decane lodide (9). To a solution of 11.2 mL (78 mmol) of diisopropylamine in 100 mL of dry tetrahydrofuran, cooled to 0 °C, is added 78 mmol of a solution of *n*-butyllithium in hexane. After 30 min at room temperature, the lithium diisopropylamide solution is cooled to -76 °C in a bath of dry ice/acetone and 12.5 g (78 mmol) of ester 8 is added. The cold enolate solution is added to a solution of 12 mL (90 mmol) of 1,4-diiodobutane in 50 mL of dry tetrahydrofuran, which has been precooled to -76 °C. After 3 h at -76 °C and 2 h at room temperature, the solvent and diisopropylamine are removed under vacuum and the residue is partitioned between ether and water. The ether layer is separated and the aqueous layer extracted again with ether. The combined ether extracts are quickly dried by filtration through a column of anhydrous MgSO₄ and then refluxed for 3 days. The resulting salt is removed by filtration and the mother liquors are again refluxed for 3 days, yielding more insoluble salt. The combined salts are recrystallized from ethanol to obtain 8.64 g (31%) of analytically pure **9**: mp 144-145 °C; ¹H NMR (60 MHz, CDCl₃) δ 1.6-3.0 (12 H, m), 3.8-6.2 (m), 3.95 (s); ¹³C NMR (CDCl₃) δ 19.0, 29.5, 32.9, 54.2, 58.7, 169.4. Anal. (C₁₁H₁₉IO₂S) C, H, S, I.

The fluoborate salt (mp 121–122 °C) is prepared by adding 1 equiv of AgBF₄ to a methylene chloride solution of the iodide salt (100%): IR (CHCl₃) ν_{max} 1740, 1050 cm⁻¹; ¹H NMR (360 MHz, D₂O, external Me₄Si) δ 1.68 (2 H, m), 1.94 (4 H, m), 2.18 (4 H, m), 2.48 (2 H, ddd, J = 15, 9, and 2.5 Hz), 3.48 (2 H, ddd, J = 13.8, 8.9, and 3.3 Hz), 3.56 (2 H, dddd, J = 13.8, 7.0, 3.4, and 0.9 Hz), 3.95 (3 H, s); ¹³C NMR (CDCl₃) δ 19.5, 29.7, 32.3, 54.6, 59.3, 169.9. Anal. (C₁₁H₁₉BF₄O₂S) C, H.

6-Methoxycarbonylthiacyclodecane (30). Zinc dust (3.5 g) is added to a solution of 426 mg (1.24 mmol) of salt $9(X^- = I^-)$ in 20 mL of acetic acid. The heterogeneous mixture is refluxed for 20 h, and is then diluted with 100 mL of water. The excess zinc is removed by filtration and the filtrate is extracted with ether (4 × 50 mL). The combined ether extracts are washed with saturated NaHCO₃ solution until the washings are neutral and then with saturated brine. After drying, the ether is removed under vacuum and the resulting oily product is purified by bulb-to-bulb distillation. In this way, 257 mg (96%) of analytically pure 30 is obtained: IR (neat) ν_{max} 1740 cm⁻¹; ¹H NMR (CCl₄) δ 1.4–2.0 (13 H, m), 2.3–2.8 (5 H, m), 3.58 (3 H, s). Anal. (C₁₁H₂₀O₂S) C, H. HRMS: Found, 216.1189.

X-ray Diffraction. Crystals of the iodide of 9 were found as plates and needles. The plate-like crystals seemed less perfect, and Weissenberg photographs indicated many to be multiple crystals. The needles appeared to be single under the microscope with optical extinction approximately parallel with the long direction (c axis). One of these $(0.174 \times 0.070 \times 0.030 \text{ mm})$ was glued to a glass fiber for examination by Weissenberg and diffractometer technique. Cell dimensions were determined from setting angles for 12 reflections (2 θ in the range 25-32°) with a Picker FACS-I diffractometer with Mo $K\alpha$ radiation (λ 0.709 26 Å for $K\alpha_1$). Intensity data were measured by θ -2 θ scans (2 θ from 0.5° below K α_1 to 0.5° above K α_2) with 10-s background counts (20 s at some of the higher angles) near each end of the scan. Three standard reflections, indicated a linear decrease in intensity of 10% in the course of the measurements, and a compensating correction was applied. Absorption corrections ($\mu = 22.99$ cm⁻¹) were calculated using dimensions of the crystal which were adjusted to minimize the variation of intensity with azimuthal angle for several test reflections. The corrections ranged from 1.07 to 1.18. Measurements were made of 5499 reflections not excluded by the space group in the hemisphere $\pm h$, $\pm k$, $\pm l$; the maximum 2θ was 50°. Averaging of equivalent reflections yielded 2426 unique ones, of which 1432 with $F^2 > 2\sigma$ were used in the least-squares refinement.

The structure was solved by the heavy-atom method. A Patterson function revealed the position of the iodine atom. Other nonhydrogen atoms were found in a ΔF map. After some refinement by least squares, another ΔF map revealed the hydrogen atoms. With isotropic thermal parameters for hydrogen and anisotropic ones for other atoms, refinement reduced $R = \sum |\Delta F| / \sum |F_0|$ to 0.042 for 1432 reflections stronger than 2σ and 0.089 including zero-weighted data: $R_w = [\sum w (\Delta F)^2 / \sum w F_0^2]^{1/2} = 0.042$. The goodness of fit was 0.97. Scattering factors for spherical hydrogen from Stewart, Davidson, and Simpson⁵¹ and for other atoms from Doyle and Turner⁵² and dispersion corrections from Cromer and Liberman⁵³ were used. Calculations were made with the CDC-7600 computer and programs listed elsewhere.⁵⁴

Kinetics of Equilibration of 1-Thioniabicyclo[4.4.0]decane Tetrafluoroborate (1). The 1:1 mixture of 1a and 1b was dissolved in deuteriochloroform or deuteriomethylene chloride (0.33-0.57 g/mL). The solution was sealed in an NMR tube, which was placed in a constant-temperature bath (± 0.02 °C) and periodically cooled to room temperature to analyze the isomer ratio by ¹³C NMR. Several values were corroborated by 360-MHz ¹H NMR, and analyses by the two methods corresponded within 2-3%. Rate constants were obtained using the equation

$$\ln \left[1 - F_t(1 + 1/K)\right] - \ln \left[1 - (F_t)_0(1 + 1/K)\right] = -(k_1 + k_{-1})t$$

where F_1 is the mole fraction of trans salt **1a**, $(F_1)_0$ is the initial mole fraction of **1a** (0.50), and K is the equilibrium constant (2.33 ± 0.03).

Table XI		
temp, °C	% 1a	time, h
-23	34.9	0
	20.1	1.0
	12.3	2.0
-33	50.0	0
	33.0	4
	28.8	5

Data were analyzed by plotting $\ln [1 + F_t(1 + 1/K)]$ vs. time; the negative slope of the resulting line is the sum of the rate constants k_1 and k_{-1} . Results are summarized in Table VI.

2-Methoxycarbonyl-1-methylthianium Hexafluorophosphate (13 + 14). A mixture of 2.94 g (14.3 mmol) of trimethyloxonium hexafluorophosphate (Aldrich Chemical Co., Inc.) and 2.52 g (15.7 mmol) of 2-methoxycarbonylpentamethylene sulfide in 10 mL of dry ether is stirred for 7 h at room temperature. Filtration of the mixture gives a 9:1 mixture of 13 and 14 in quantitative yield. Recrystallization from ethanol provides an analytical sample: mp 102–104 °C; ¹H NMR (D₂O/Me₂SO-d₆, internal TSP) δ 1.8–2.6 (6 H, m), 2.86 (minor, s, +SCH₃), 3.00 (major, 3 H, s, +SCH₃), 3.2–3.8 (2 H, m), 3.84 (3 H, s, OCH₃). Anal. (C₈H₁₅F₆O₂PS) C, H.

A sample of the 9:1 mixture of 13 and 14 was dissolved in a 1:1 mixture of acetone- d_6 and CDCl₃ and heated in a sealed NMR tube for 10 h at 110 °C. After this period of time, the ratio of 13/14 was 7:3; further heating at 110 °C for 62 h did not alter this ratio.

Kinetics of Inversion of Ylide 15. In three separate flasks were placed a 1:1 mixture of sulfonium salts 1a and 1b and sufficient dry THF to make a 0.34 (\pm 0.01) M solution. The solutions were cooled to -72°C (internal temperature) and a slight excess (5%) of n-butyllithium was added simultaneously to each flask over a 15-min period. By this slow addition there was no noticeable temperature rise. The reaction mixtures were stirred for 1 h at -70 °C to ensure complete formation of the ylide. The three flasks were placed in the constant-temperature bath $(\pm 1 \,^{\circ}C)$ and allowed to warm to the desired temperature. When the internal temperature reached that of the constant-temperature bath, one reaction mixture was quenched by addition of aqueous fluoboric acid for an initial ratio (t = 0). The remaining two reaction flasks were kept at constant temperature and quenched after an appropriate amount of time. The solvents were removed in vacuo and the isomer ratios were determined by comparing the ¹³C resonances of the trans isomer to the corresponding ¹³C resonances of the cis isomer. Data are tabulated in Table XI. Rate constants were determined in the same manner as that used for equilibration of salt 1a (vide supra).

2-Methyl-1-thioniabicyclo[4.4.0]decane Salts (17, 18, 19). To a slurry of 102.6 mg (0.420 mmol) of 1-thioniabicyclo[4.4.0]decane tetrafluoroborate (1a/1b = 1:1) in 1 mL of dry THF, cooled to -72 °C, is added a 10% excess of *n*-butyllithium. After the mixture is stirred for 1.5 h at -72 °C, 0.5 mL (8 mmol) of methyl iodide is added, giving an immediate precipitate. The reaction mixture is allowed to stir at -72 °C for 0.5 h, then allowed to warm to room temperature over a 1-h period. The solvents are removed and chloroform is added. After filtration, the chloroform is evaporated to obtain 106.9 mg (85-99%, mixture of iodide and tetrafluoroborate salts) of a mixture of salts 17 and 18, shown by ¹³C NMR to be present in an approximate equimolar ratio. ¹H NMR (CDCl₃) δ 1.58 (minor, 3 H, d, *J* = 6.8 Hz, CH₃), 1.65 (major, 3 H, d, *J* = 6.6 Hz, CH₃), 1.5-2.8 (12 H, m), 3.5-4.8 (5 H, m). The product was converted to the picrate⁸ for analysis. Anal. (C₁₆H₂₁N₃O₇S) C, H, N.

Isomer 18. In a similar alkylation, employing 4.08 mmol of salt 1, the reaction mixture was filtered and a hot solution of 1 g of picric acid in 75 mL of water was added. Filtration yielded 383.4 mg (24%) of a mixture of 17 and 18 (mp 155–159 °C). The solvents were removed from the filtrate and the resulting oil was redissolved in THF and treated with hot aqueous picric acid as above to obtain 180.0 mg (11%) of pure salt 18: ¹H NMR (360 MHz, CDCl₃) δ 1.50 (3 H, d, J = 66 Hz, CH₃), 1.6 (2 H, m), 1.9 (5 H, m), 2.2 (3 H, m), 2.32 (1 H, d, J = 15 Hz), 2.44 (1 H, br d, J = 10 Hz), 3.45 (1 H, dd, J = -11.5, 2.3 Hz), 4.25 (qdd, J = 12.6.5, 3 Hz); ¹³C NMR (CDCl₃) δ 5.3.4, 49.6, 35.9, 33.3, 30.9 (double intensity), 23.8 (triple intensity), 17.4.

Isomers 17 and 19. A slurry of 189.9 mg (0.778 mmol) of salt 1 (X-

= BF₄⁻, **1a**/**1b** = 1:1) in 2 mL of dry THF is cooled to -23 °C. *n*-Butyllithium (20% excess) is added and the mixture is stirred for 2 h at -23 °C. The ylide solution is cooled to -76 °C and 1 mL (16 mmol) of methyl iodide is added. After several hours of stirring, approximately 5 mmol of dimethoxycarbonium tetrafluoroborate⁵⁵ is added and the mixture is stirred at room temperature for 4 h. A few milliliters of methanol is added and the mixture is stirred for 1 h. The solvents are removed and the product is triturated with THF and filtering. ¹³C NMR (D₂O, external Me₄Si): major isomer (60%) δ 45.1, 44.6, 28.8, 25.4, 22.9 (double intensity), 21.5 (double intensity), 17.3, 16.0; minor isomer (40%) δ 43.8, 38.4, 31.0, 30.7, 28.0, 23.8, 22.3 (double intensity), 18.1, 17.3.

The product is converted to the picrate by adding a hot picric acid solution containing a 10-20% excess of picric acid. ¹³C NMR (CDCl₃): major isomer δ 45.3, 44.7, 29.2, 26.1, 23.3, 22.9, 22.7, 22.1, 17.7, 16.8; minor isomer δ 43.9, 38.6, 31.5, 30.7, 28.4, 24.5 (?), 23.6 (?), 21.5 (?), 18.5, 18.0.

The foregoing mixture of tetrafluoroborate salts 17 and 19 is dissolved in CHCl₃ and heated at 110 °C (sealed tube) for 4 days. The solvent is removed and the product analyzed by ¹³C NMR. The ¹³C NMR resonances of the major isomer are nearly identical with those of salt 18 (X⁻ = picrate). ¹³C NMR (CDCl₃): major isomer (60%) δ 53.5, 49.9, 35.9, 32.7, 31.1, 30.3, 23.8, 23.5, 23.3, 16.9; minor isomer (40%) δ 43.6, 38.2, 31.1, 28.4, 24.3, 21.5, 18.4, 17.7.

2-(4-Epoxy-5-methylhexyl)thiane (20). A slurry of 93.3 mg (0.382 mmol) of 1-thioniabicyclo[4.4.0]decane tetrafluoroborate in 1 mL of dry THF is cooled to -72 °C. A 20% excess of *n*-butyllithium is added and the solution is stirred for 1 h at -72 °C. To the ylide solution is added 1 mL (14 mmol) of purified acetone. The reaction mixture is allowed to slowly warm up to room temperature and is added to 100 mL of water. After extraction with ether (2 × 100 mL), the organic layers are combined and washed with a saturated salt solution, then dried over K₂CO₃. Removal of the solvents and bulb-to-bulb distillation yields 48.4 mg (59%) of sulfide **20.** ¹H NMR (CCl₄) δ 1.22 (3 H, s, CH₃), 1.25 (3 H, s, CH₃), 1.2–2.3 (12 H, m), 2.4–2.8 (3 H, m). Anal. (C₁₂H₂₂OS) C, H.

2-(2-Hydroxyisopropyl)-1-thioniabicyclo[4.4.0]decane Tetrafluoroborate (21a, 22a). To a slurry of 758.3 mg (3.11 mmol) of 1 in 5 mL of dry THF, cooled to -72 °C, is added a 20% excess of *n*-butyllithium. After stirring for 1 h at -72 °C, a large excess of acetone is added and the solution is stirred for 4 min; the reaction is then quenched by addition of aqueous fluoboric acid. The solvents are removed and the salt is dried in vacuo overnight. Chloroform is added and the lithium salts are filtered. The CHCl₃ is removed and the product is dissolved in THF, leaving behind 24.0 mg (0.10 mmol) of starting material. Evaporation of solvent yields an equimolar mixture of 21a and 22a. ¹³C NMR (CDCl₃): **21a**, δ 73.5, 66.7, 54.6, 42.6, 31.5, 31.0, 28.3, 27.8, 24.4, 23.9 (double intensity), 23.7; 22a, δ 72.1, 61.9, 44.6, 29.9 (?), 28.9 (?), 27.5 (?), 23.5, 23.4, 19.5, 17.6. Crystallization of this mixture from THF yields 303.2 mg (32%) of analytically pure 22a: mp 178.5–179.0 °C; ¹H NMR (CDCl₃) δ 1.32 (3 H, s, CH₃), 1.45 (3 H, s, CH₃), 1.4-2.6 (13 H, m), 3.4-4.3 (4 H, m). Anal. (C₁₂H₂₃BF₄OS) С. Н.

A solution of 189 mg of the 1:1 mixture of salts **21a** and **22a** (X⁻ = BF₄⁻) is dissolved in CDCl₃ and heated at 110 °C (sealed NMR tube) for 5 h. The ¹³C NMR spectrum showed that isomer **22a** had disappeared. ¹³C NMR (CDCl₃) δ 73.6, 66.7, 54.5, 42.5, 31.7, 31.3, 28.3, 28.1, 24.6, 23.9 (triple intensity).

2-(2-Oxyethoxycarbonylisopropyl)-1-thioniabicyclo[4.4.0]decane Tetrafluoroborate (21b, 22b, 23b). Method A. To a flask containing 219.3 mg (0.897 mmol) of salt $1 (X^- = BF_4^-)$ and 3 mL of dry THF, cooled to -72 °C, is added an equivalent amount of *n*-butyllithium. The reaction mixture is stirred at -72 °C for 2 h, at which time 0.75 mL (10 mmol) of acetone is added. After stirring for 5 min, 1 mL (10 mmol) of ethyl chloroformate (distilled from potassium carbonate) is added. The solution is allowed to stir for 0.5 h at -72 °C, then allowed to warm to room temperature. The resulting salt is dissolved in water and extracted with ether. The water is removed at reduced pressure. Chloroform is added and any undissolved material is removed by filtration. Removal of the CHCl₃ yields 261.5 mg (78% as BF4⁻, 90% as Cl⁻) of product. The product was converted to the tetrafluoroborate by ion exchange and recrystallized from THF to give analytically pure carbonate: mp 155-157 °C; ¹H NMR (360 MHz, CDČl₃) δ 1.28 (3 H, m, CH₃), 1.62 (3 H, s, CH₃, major isomer), 1.67 (3 H, s, CH₃, minor isomer), 1.70 (3 H, s, CH₃, minor isomer), 1.72 (3 H, s, CH₃, major isomer), 1.8–2.0 (6 H, m), 2.0–2.4 (6 H, m), 3.16 (1 H, m, minor isomer), 3.57 (1 H, broad t, J = 13 Hz, minor isomer), 3.83 (1 H, m), 4.13 (3 H, m), 4.35 (1 H, broad d, J = 12 Hz, major isomer); ¹³C NMR (CDCl₃) **21b** δ 151.4, 84.2, 63.4, 63.0, 54.3, 37.8, 27.6, 26.0, 24.1, 23.0, 20.1; **22b** δ 151.8, 82.5, 63.4, 60.4, 45.0, 30.1, 27.5, 26.8, 25.4, 23.9, 23.3, 22.8, 19.3, 18.6, 13.5; **23b** δ 151.5, 84.4, 62.6, 55.0, 44.6, 35.3, 34.1, 28.3, 28.0, 24.2, 21.8, 16.9. Anal. (C₁₅H₂₇BF₄O₃S) C, H.

Method B. A slurry of 891.0 mg (3.65 mmol) of salt $1 (X^- = BF_4^-)$ in 5 mL of dry THF is cooled to $-23 \degree$ C. *n*-Butyllithium (10% excess) is added and the mixture is stirred for 2 h keeping the temperature between -20 and $-23 \degree$ C. The reaction mixture is cooled to $-72 \degree$ C and 2.7 mL (37 mmol) of acetone is added. After 5 min of stirring at $-72 \degree$ C, 0.4 mL (4 mmol) of ethyl chloroformate is added; the solution is stirred for 0.5 h and allowed to warm to room temperature. The solvents are removed at reduced pressure and CH₂Cl₂ is added. Any material that does not dissolve is removed by filtration. The CH₂Cl₂ is evaporated and the product is triturated with ether. The product is dried in vacuo to yield 880 mg (65-75%): IR (CHCl₃) ν_{max} 1730, 1000-1100 cm⁻¹; ¹³C NMR (CDCl₃), **22b** (75%) δ 151.8, 82.5, 63.4, 60.4, 45.0, 30.1, 29.2, 27.5, 26.8, 25.4, 23.9, 23.3, 22.8, 13.5; **23b** (25%) δ 151.5, 84.4, 62.6, 55.0, 44.6, 35.3, 34.1, 28.3, 28.0, 25.7, 21.8, 18.6, 16.9.

1,10-Dimethyl-1-thioniabicyclo[4.4.0]decane Picrate (24 + 25). Method A. To a slurry of 212.4 mg (0.870 mmol) of salt 1 (X⁻ = BF_4^-) in 2 mL of dry THF, cooled to -76 °C, is slowly added 3 equiv of *tert*-butyllithium. After the mixture is stirred for 1 h at -76 °C, 2 mL (32 mmol) of methyl iodide is added and the mixture is stirred for 0.5 h at -72 °C. The solvents are evaporated and the crude product is converted to the picrate to yield 42.4 mg (12%) of dimethyl isomers 24 and 25: ¹H NMR (D₂O, external Me₄Si, 60 MHz) δ 1.54 (d, *J* = 7 Hz, CH₃), 1.60 (d, *J* = 6 Hz, CH₃), 1.5-2.4 (m), 3.5-4.2 (m); ¹H NMR (360 MHz, D₂O) δ 1.54 (3 H, d, *J* = 7.0 Hz, CH₃), 1.60 (3 H, d, *J* = 6.5 Hz, CH₃), 1.6-2.3 (12 H, m), 3.46 (1 H, m), 3.78 (1 H, m), 3.88 (1 H, tt, *J* = 7.8, 3.9 Hz), 3.95 (1 H, t, *J* = 7 Hz); ¹³C NMR (CDCl₃) 24 δ 53.9, 50.2, 34.9, 31.0, 23.7, 20.5; 25 42.4, 41.0, 28.4, 26.5, 18.0, 17.2. Anal. (C₁₇H₂₃N₃O₇S) C, H, N.

Method B. A slurry of 281.3 mg (1.15 mmol) of salt $1 (X^- = BF_4^-)$ in 2 mL of dry THF is cooled to -72 °C and 3 equiv of *tert*-butyllithium is added. After the mixture is stirred at -65 to -70 °C for 1 h, an excess (2 mL) of methyl iodide is added and the mixture is stirred for 15 min. Several drops of 48% fluoboric acid is added and the solvents are removed. A hot picric acid solution is added to yield 58.8 mg (12%) of salt 24: ¹³C NMR (CDCl₃) δ 42.2, 41.0, 28.4, 26.5, 18.0, 17.2.

Acknowledgments. This research was supported by a grant from the U.S. Public Health Service (AI-11607), and by the U.S. Energy Research and Development Administration. We also thank the Stanford Magnetic Resonance Laboratory for making time available on the Bruker HXS-360 spectrometer (National Institutes of Health Grant RR-00-711) and Dr. Woodrow Conover for his expert assistance in its use. The force field calculations were done in the laboratory of Professor P. von R. Schleyer at the Universitat Erlangen-Nurnberg by C.H.H. while he was visiting there as a U.S. Senior Scientist sponsored by the Alexander von Humboldt Foundation. Numerous fruitful discussions with Professor Schleyer are gratefully acknowledged.

Supplementary Material Available: Tables of thermal parameters and structure factors for compound 9; 360-MHz ¹H NMR spectra of compounds 1a, 1b, and 9 (14 pages). Ordering information is given on any current masthead page.

References and Notes

- For a preliminary communication of a protion of this work, see D. M. Roush and C. H. Heathcock, J. Am. Chem. Soc., 99, 2337 (1977).
- (2) (a) MMRD, Lawrence Berkeley Laboratory; (b) Department of Chemistry.
 (3) For a review, see W. Keller-Schierlein, *Fortschr. Chem. Org. Naturst.*, 30, 313 (1973).
- (4) (a) I. J. Borowitz, G. J. Williams, L. Gross, H. Beller, D. Kurland, N. Suciu, V. Bandurco, and R. D. G. Rigby, *J. Org. Chem.*, **37**, 581 (1972); (b) I. J. Borowitz, V. Bandurco, M. Heyman, R. D. G. Rigby, and S.-N. Ueng, *ibid.*, **38**, 1234 (1973); (c) E. Vedejs and J. P. Hagen, *J. Am. Chem. Soc.*, **97**, 6878 (1975).
- (5) The term "annelation", to create a new ring, usually onto a preexisting one,

was popularized by W. S. Johnson to describe the Robinson-Mannich process.⁶ The word has usually been spelled as above, although recently it has appeared as "annulation".⁷ Although the latter spelling is correct, being derived from the Latin anulus (ring), we would like to point out that a more ancient Latin word for ring, annelis, leads to the traditional spelling of annelation.

- (6) W. S. Johnson, J. J. Korst, R. A. Clement, and J. Dutta, J. Am. Chem. Soc., 82, 614 (1960).
- M. E. Jung, *Tetrahedron*, **32**, 3 (1976).
 R. H. Eastman and G. Kritchevsky, *J. Org. Chem.*, **24**, 1428 (1959).
 J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New
- York, 1972, p 66.
- D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984 (1964).
 E. Lippman and T. Pehk, Eesti NSV Tead, Akad. Toim. Deem. Geol., 17, (11)210 (1968).
- (12) See paragraph at end of paper regarding supplementary material
- (13) G. Barbarella, P. Dembech, A. Garbesi, and A. Fava. Tetrahedron, 32, 1045 (1976)
- (14) O. Bastiansen and O. Hassel, Tidskr. Kjemi, Bergves. Metall., 6, 70 (1946).
- (15)A. Garbesi, N. Corsi, and A. Fava, Helv. Chim. Acta, 53, 1499 (1970).
- N. L. Allinger and J. L. Coke, *J. Am. Chem. Soc.*, **81**, 4080 (1959). E. L. Eliel, N. L. Allinger, S. Y. Angyal, and G. A. Morrison, "Conformational (16) (17)
- Analysis", Interscience, New York, 1966, p 231
- (18) E. L. Eliei and R. L. Willer, J. Am. Chem. Soc., 99, 1936 (1977).
 (19) J. P. McCollough, H. L. Finke, J. F. Messerly, S. S. Todd, T. C. Kincheloe, and G. Waddington, J. Phys. Chem., 61, 1105 (1957).
 (20) D. Darwish, Mech. React. Sulfur Compd., 3, 33 (1968).
 (21) N. L. Allinger and J. L. Coke, J. Org. Chem., 26, 2096 (1961).

- The experimental difference in enthalpy of the cis and trans isomers is 1.39 (22) \pm 0.64 kcal mol⁻¹ from heat of combustion data, or 0.55 \pm 0.28 kcal mol⁻¹ from temperature dependence of equilibrium
- W. G. Dauben, O. Rohr, A. Labbauff, and F. D. Rossini, J. Phys. Chem., 64, (23)283 (1960).
- (24) E. L. Eliel and M. C. Reese, J. Am. Chem. Soc., 90, 1560 (1968).
- (25) E. L. Eliel and R. M. Enanoza, *J. Am. Chem. Soc.*, **94**, 8072 (1972).
 (26) See N. L. Allinger and D. Y. Chung, *J. Am. Chem. Soc.*, **98**, 6798 (1976), and previous papers in the series.
- (27) R. Gerdil, Helv. Chim. Acta, 57, 489 (1974).
- (28) An inherent danger in using such an empirical approach is the possible incursion of some unforeseen effect in moving from one type of compound to another. For example, in the present case, the force field was reparameterized so that it does an excellent job of reproducing structures and energies for thianium ions. However, the computed C-S⁺-C bond angles for the 6-methyl derivative of **1b** are $3-4^{\circ}$ too large. On the other hand, if one uses a smaller equilibrium C-S⁺-C angle, the predicted difference in energy between the two 6-methyl isomers actually increases. Using Allinger's value of 94.3°, the cis isomer is calculated to be 4.3 kcal mol⁻¹ more stable than the trans isomer. With this value, the bond angles in 9 are well reproduced, although the calculated ΔH_0 for the equilibrium 1b == 1a is 1.8 kcal mol⁻¹. A better combination of C-S⁺-C angle and bending constant can no doubt be found which will bring the monocyclic structures and energies into line with those of the bicyclic compounds.
- (29) S. Wolfe, Acc. Chem. Res., 5, 102 (1972).
- (30) F. Bernardi, H. B. Schlegel, M.-H. Whangbo, and S. Wolfe, J. Am. Chem. Soc., 99, 5633 (1977).
- The models used have r_{C-C} 2.72 cm, r_{C-S} 3.38 cm, $\angle C-C-C$ 109.5°, and $\angle C-S-C$ 105°. They are available from Brinkmann Instruments, Inc., Westbury, N.Y. 11590. (31)
- This approach to understanding relative acidities has been considered previously and rejected,^{33,34} mainly because it did not appear to explain the relative acidities of the diastereotopic ring protons in salts vi and vii.^{34b} (32)

The relative rates of deprotonation of the four ring protons in vii are H₁, 1; H₂, 700; H₃, ca. 90; H₄, ca. 90.^{34b} Because the NMR signals of H₃ and H₄ overlap, separate exchange rates were not determined, although it is asserted that they appear to exchange at about the same rate. Examination of a scale model of vil³¹ reveals the relevant dihedral angles to be H_1 , 5°; H_2 , 100°; H_3 , 20°; H_4 , 125°. Thus, it is clear that H_2 should exchange most

rapidly and H1 least rapidly, with H3 and H4 being of intermediate acidity. Since Fava and co-workers have shown that the more flexible salt vi exists in a conformation with maximum puckering at C₃-C₄ and minimum puckering at C₂-S-C₅,^{34a} the same argument may be used to explain the enhanced acidity of the protons syn to methyl in this salt. Furthermore, this argument serves to explain why H_2 in vii and the syn protons in vi are more acidic than either ring proton in salt viii.^{33a} For compound viii, which may

- exist in conformations viila and viilb ($\Delta G^{\circ} = 0.0$ kcal mol⁻¹),^{33b} estimated dihedral angles for the C1-H and C2-H bonds are 55, 60° and 55, 175° respectively. Experimental dihedral angles for the analogous 4-tert-butyl salts^{33b} are 51, 64° and 57, 175°, respectively.
 (33) (a) O. Hofer and E. L. Eliel, *J. Am. Chem. Soc.*, **95**, 8045 (1973); (b) E. L.
- Eliel, R. D. Willer, A. T. McPhail, and K. D. Onau, ibid., 96, 3021 (1974).
- (34)(a) G. Barbarella, A. Garbesi, A. Boicelli, and A. Fava, J. Am. Chem. Soc. 95, 8051 (1973); (b) G. Barbarella, A. Garbesi, and A. Fava, ibid., 97, 5883 (1975)
- (35) (a) B. M. Trost and R. F. Hammen, J. Am. Chem. Soc., 95, 961 (1973); (b) B. M. Trost, private communication.
- (36) See ref 9, p 65.
- (37) For a complete discussion, see D. M. Roush, Ph.D. Dissertation, University of California, Berkeley, 1977.
- (38) After the completion of our studies, Fava and co-workers reported that the equatorial protons in 1a are exchanged by NaOD in D_2O 35 times faster than the axial ones.³⁹ Furthermore, they also note in passing that the protons in 1b undergo exchange more than ten times faster than those in 1a.
- (39) G. Barbarella, P. Dembech, A. Garbesi, F. Bernardi, A. Bottini, and A. Fava, J. Am. Chem. Soc., **100**, 200 (1978). (a) A. J. Duke, *Chem. Phys. Lett.*, **21**, 275 (1973); (b) P. H. Owens and A
- (40)(a) A. J. Budy, J. C. Barris, J. C. B. Streitwieser, Jr., Tetrahedron, 27, 4471 (1971); (c) M. J. S. Dewar and M. Shansal, J. Am. Chem. Soc., 91, 3654 (1969); (d) M. S. Gordon and H. Fischer, ibid., 90, 2471 (1968); (e) T. A. Lewis, Tetrahedron, 25, 4117 (1969); (f) R. Kari and I. Czimadia, J. Chem. Phys., 50, 1443 (1969)
- (41) J. E. Williams, Jr., and A. Streitwieser, Jr., J. Am. Chem. Soc., 97, 2634 1975).
- (42) C. Levin, J. Am. Chem. Soc., 97, 5649 (1975).
- (43) Ab initio calculations at the STO-3G level predict an inversion barrier at carbon in Me₂S⁺CH₂⁻ of 24.5 kcal mol⁻¹. This basis set does a reasonable job on the barrier at sulfur in Me₃S⁺ (32.4 kcal mol⁻¹) and Me₂S⁺CH₂⁻ (28.1 kcal mol⁻¹). Experimental values of ΔH^{+} for inversion at sulfur in salt the and yilde 15 are 28.0 and 20.5 kcal mol⁻¹, respectively. For yilde anion MeS⁺(CH₂⁻¹)₂, a sulfur inversion barrier of 22.3 kcal mol⁻¹ is predicted. Since these calculations are done with standard, unoptimized geometries, the absolute magnitudes are probably too great. However, the differences appear to be fairly consistent with experiment. Full details will be reported in a subsequent paper (C. H. Heathcock and S. L. Graham).
- (a) G. Wittig and M. Rieber, Justus Liebigs Ann. Chem., 562, 117 (1949); (44)
- (b) G. Wittig and R. Polster, *ibid.*, **599**, 1 (1956).
 (45) (a) A. Bongini, D. Savoia, and A. Umani-Rouchi, *J. Organomet. Chem.*, **112**, 1 (1976);
 (b) K. Kondo and D. Tunemoto, *Tetrahedron Lett.*, 1397 (1975).
- (46) D. Seebach, R. Henning, F. Lehr, and J. Gonnermann, Tetrahedron Lett., 1161 (1977)
- D. L. Tuleen and R. H. Bennett, J. Heterocycl. Chem., 6, 115 (1969).
- (48) G. B. Brown and C. W. H. Partridge, J. Am. Chem. Soc., **66**, 839 (1944).
 (49) H. T. Clarke and E. R. Taylor, "Organic Syntheses", Collect. Vol. I, Wiley,
- New York, 1941, p 115.
- (50) R. Merchant, J. N. Wickert, and C. S. Marvel, J. Am. Chem. Soc., 49, 1828 (1927).
- (51) R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 42, 3175 (1965).
 (52) P. A. Doyle and P. S. Turner, *Acta Crystallogr., Sect. A*, 24, 390 (1968).
 (53) D. T. Cromer and D. Liberman, *J. Chem. Phys.*, 53, 1891 (1970).

- (54) K. Volz, A. Zalkin, and D. H. Templeton, Inorg. Chem., 15, 1827 (1976).
- (55) R. F. Borch, J. Org. Chem., 34, 627 (1969).
- (56) Note that a unique numbering system is employed in the tables of crystallographic data.