March 1998 SYNLETT 267

Preparation of 1,3-Diketones by the Reaction of Bis(iodozincio)methene with Acyl Cyanides or Palladium-Catalyzed Reaction with Acyl Chlorides

Seijiro Matsubara, Kazunari Kawamoto, and Kiitiro Utimoto*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan FAX +81 (0)75 7534863; e-mail utimoto@orgrx2.kuic.kyoto-u.ac.jp

Received 18 December 1997

Abstract: Bis(iodozincio)methane, prepared from lead-catalyzed reaction of zinc with diiodomethane, afforded 1,3-diketones either by the reaction with acyl cyanides or by palladium catalyzed reaction with acyl chlorides. Reaction with adipoyl dichloride gave cyclic enol ester by intramolecular reaction.

gem-Dimetallic reagents have been used as versatile reagents in organic synthesis. Recent preparation of bis(iodozincio)methane (1) in high purity has opened novel strategies of C-C bond formation including carbonyl-olefination and three component coupling by stepwise reaction of two different electrophiles. It is conceivable that double acylation of 1 provides a new entry to 1,3-diketones, but double acylation of dimetallic reagents containing Cu and Zn gave enol ester by O-acylation at the second step.

Scheme 1

As we have found that 1 reacted with various electrophiles under Pd catalysis, 2 reaction of 1 with two acyl groups was examined. This paper describes two procedures of double acylation on 1 affording 1,3-diketones 3; reaction with acyl cyanides 2 in THF and reaction with acyl chlorides 3 in THF-DMI under Pd catalysis.

Reaction of benzoyl cyanide (2, R = Ph; 2 mmol) with 1 (1 mmol) afforded 1,3-diphenyl-1,3-propanedione (3, R = Ph) in 44% yield. Yield of the diketone 3 was improved to 90% by the reaction of 1 with 2 in a molar ratio of 1:1, but reaction of 1 with 2 in a molar ratio of 1.5:2 gave 3 in 59% yield. ^{6,7} Combination of reagents ratio and the yield of 3 can be explained by equation 2; reaction of 1 with 2 gave zinciomethylated product 4, which reacted with 2 affording 1,3-diketone 3. Intermediary produced 3 reacted with dimetallic reagent 1 to produce stable zinc enolate 5 and methylzinc iodide. As any considerable formation of acetophenone could not be detected from the reaction mixture, reactivity of acyl cyanides 2 towards intermediary 4 is much higher than that towards any other nucleophiles in the reaction mixture; relative order of reactivity towards 2 is 4 >> 1 > methylzinc iodide. Other acyl cyanides 2 afforded the corresponding 1,3-diketones 3. Results are summarized in Table 1.8

Scheme 2

Table 1. Reactions of Bis(iodozincio)methane (1) with Acyl Cyanides 2

Entry	1	Acyl Cyanide 2		Reaction		1,3-Diketone 3	
	mmol	R	mmol	Temp (°C)	Time (h)	Yield (%)	
1	2.0	Ph	2.0	20	2	90	
2	1.0	Ph	2.0	20	2	44	
3	1.5	Ph	2.0	20	2	59	
4	2.0	n-C ₈ H ₁₇	2.0	20	2	85	
5	1.0	n-C ₈ H ₁₇	2.0	20	2	33	
6	2.0	n-C ₈ H ₁₇	2.0	0	6	39	
7	2.0	(CH ₂) ₂ CO ₂ Et	2.0	20	3	58	
8	1.0	PhCH=CH	1.0	20	5	20a	

^aBesides expected diketone **3** formation, Michael addition proceeded affording a mixture of 3-phenylbutyric acid, 4-phenyl-3-oxopropanenitrile and 4-phenyl-2-oxopentanamide after hydrolytic workup

Reaction of **1** with benzoyl chloride (**6**; R = Ph) gave 4-chlorobutyl benzoate (**7**; n = 1) as a major product; zinc salt-catalyzed reaction of acyl chlorides **6** with THF proceeded mainly. Coupling reaction under Pd catalysis proceeded smoothly yielding 1,3-diketone. Ligand tuning was necessary to obtain satisfactory results, although PPh₃ gave the expected 1,3-diketone **3** in good yield. As can be seen from the results shown in Table 2, $P(C_6H_4\text{-OMe-}p)_3$ gave better results. Use of 1:1 mixture of THF-DMI depressed the formation of by-product **7** and afforded **3** exclusively in 89% yield. Reaction using a bulky phosphine as a ligand proceeded sluggishly affording **7** mainly. Bidentate ligand also afforded an unsatisfactory result.

Scheme 3

In contrast to the reaction with benzoyl chloride (**6**; R = Ph), nonanoyl chloride (**6**; R = C_8H_{17}) gave a mixture of 1,3-diketone (**3**; R = n- C_8H_{17}), 4-chlorobutyl ester **7**, and O-acylated product **8**. The best yield of 1,3-diketone **3** was recorded using $P(C_6H_4$ -OMe- $p)_3$ as a ligand and a mixture of THF-DMI (1:1) as solvent at -15 °C.

Contrary to the above intermolecular reaction, reaction of **1** with adipoyl dichloride (**9**) under Pd catalysis in THF-DMI gave cyclic enol ester **10** in 75% yield by intramolecular O-acylation of intermediary **11**.^{3,10} Mechanistic studies on selective O-acylation in intramolecular reaction are underway.

Thus symmetrical 1,3-diketones can be produced from dimetallic reagent 1 and acylating agents, acyl cyanides 2 or acyl chlorides 6, by single operation.

Table 2. Pd-Catalyzed Reaction of 1 with Benzoyl Chloridea

Entry	Phosphine	Time (h)	3 (%)	7 (%)
1	PPh3	2	13	ndb
2	PPh ₃	4	58	22
3	P(2-fur)3	2	50	1
4	P(p-tol) ₃	2	77	4
5	$P(C_6H_4\text{-}OMe-p)_3$	2	79	5
6	$P(C_6H_4\text{-OMe-}p)_3$	2	89	ndc
7	$P[C_6H_2-2,4,6(OMe)_3]_3$	2	5	49
8	Ph ₂ P(CH ₂) ₄ PPh ₂	4	21	64

^aReaction was carried out at -15 °C using 1 (2.0 mmol) and 6 (R = Ph, 2.0 mmol) in THF (15 ml) with Pd catalyst that was prepared in situ by mixing of Pd₂(dba)₃•CHCl₃ (0.05 mmol) and phosphine (0.4 mmol). ^bReaction at 20 °C. ^{c)} A mixture of THF/DMI (1/1) was used as solvent

Table 3. Pd-Catalyzed Reaction of 1 with Nonanoyl Chloridea

Entry	Lignd	Solvent	Time (h)	3 (%)	8 (%)	7 (%)
1	PPh ₃	THF	2	10	8	12
2	P(p-tol)3	THF	2	20	15	20
3	P(p-tol)3	THF/DMI	2	62	8	nd^{b}
4	P(p-tol) ₃	DMI	2	34	19	$nd^{\mathbf{b}}$
4	$P(C_6H_4\text{-OMe-}p)_3$	THF	2	23	25	40
5	$P(C_6H_4\text{-}OMe-p)_3$	THF/DMI	2	81	14	nd

^aReaction was carried out at -15 °C using 1 (2.0 mmol) and 6 (R = n-C₈H₁₇, 2.0 mmol) in THF (15 ml) with Pd catalyst that was prepared in situ by mixing of Pd₂(dba)₃•CHCl₃ (0.05 mmol) and phosphine (0.4 mmol). ^bReaction was carried out at room temperature

Scheme 4

Table 4. Pd-Catalyzed Reaction of 1 with Adipoyl Dichloride (9)a

Entry	Concentration of 1 (M)	Temp (°C)	Time (h)	10 (%)	
1	0.05	-15	1	38	
2	0.05	0	0.5	45	
3	0.05	20	0.5	75	
4	0.25	-15	0.5	4	

 $^a \text{Reaction}$ was carried out with 2 mmol of 1, 1 mmol of 9, 0.05 mmol of Pd_2(dba)_3 , 0.4 mmol of tris(4-methoxyphenyl)phosphine in THF-DMI

Acknowledgement: This work is supported by the Ministry of Education, Science, Sports, and Culture (Grant in Aid #09231223, #09238221).

References and Notes

- (1) Marek, I.; Normant, J. F. Chem. Rev. 1996, 96, 3241.
- (2) Utimoto, K.; Toda, N.; Mizuno. T.; Kobara, M.; Matsubara, S. Angew, Chem. 1997, 109, 2886.
- (3) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem. 1994, 59, 2668.
- (4) Eisch, J. J.; Piotuwski, A. Tetrahedron Lett. 1983, 24, 2043.
- (5) Knochel, P.; Normant, J. F. Tetrahedron Lett. 1986, 27, 4427.
 - Typical procedure for the production of bis(iodozincio)methane (1): A THF solution of bis(iodozincio)methane (1) was prepared according to the reported procedure with slight modification. A mixture of acid-washed and dried zinc powder (Wako Pure Chemical Industries Ltd. Japan, containing 0.04-0.07 mol % of lead; 12.3 g, 188 mmol) and THF (7.5 mL) was added with CH₂I₂ (2.0 g, 7.5 mmol) and sonicated for 15 min. THF (50 mL) was added to the mixture, and then the mixture was cooled in a icewater bath. To the mixture, a THF (15 mL) solution of CH₂I₂ (20.1 g, 75 mmol) was added over 1 h. The reaction mixture was stirred for 1 h at 0 °C, then 1 h at room temperature. Yield of bis(iodozincio)methane (1) was determined by ¹H NMR using 2,2,3,3-tetramethylbutane as internal standard. Average yield of bis(iodozincio)methane (1) was 60%. Bis(iodozincio)methane (1) was also obtained in 50-60% yield by using a mixture of zinc powder (Merck Co. or Aldrich Chemical Co.) and 0.5-1 mol % of PbCl₂, in place of Wako zinc.
- (7) Reaction of bis(iodozincio)methane (1) with acyl cyanide 2: To a THF solution of 1 (3.6 mL of 0.55 M solution containing 2.0 mmol of 1), a THF (7.0 mL) solution of benzoyl cyanide (2, R = Ph; 262 mg, 2.0 mmol) was added at room temperature. After being stirred for 2 h at room temperature, the reaction mixture was added with 20 mL of 1 M aq. HCl. The mixture was extracted twice with ethyl acetate, then combined organic layer was washed, dried, concentrated, and purified by column chromatography. Dibenzoylmethane (3, R = Ph) was obtained in 90% yield.
- (8) Reaction of 1 with α,β -unsaturated acyl cyanide (2; R=PhCH=CH) proceeded both acylation and Michael addition (entry 8 in Table 1). Michael addition (or conjugated addition) of 1 to α,β -unsaturated carbonyl compounds will be published in a separate paper.
- (9) To a DMI (10 mL) solution of Pd₂(dba)₃•CHCl₃ (0.05 mmol) and P(C₆H₄-OMe-*p*)₃ (0.4 mmol), a THF solution of 1 (3.6 mL of 0.55 M solution containing 2.0 mmol of 1) was added. A THF solution (6 mL) of 6 (R = Ph, 263 mg, 2.0 mmol) was added dropwise to the reaction mixture maintained at -15 °C. After being stirred for 2 h, the reaction mixture was worked up as described above.
- (10) A DMI-THF solution containing catalyst and 1 was prepared as described above. To the solution, a THF solution of adipoyl dichloride (9, 183 mg, 2.0 mmol in 10 mL THF) was added dropwise at -10 °C. The reaction mixture was stirred for 1 h, then quenched by adding 20 mL of ethyl acetate and 1.0 g of NH₄Cl powder. Product 10 was purified by distillation and chromatography.