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Cyclopentadienides (Cp-) are aromatic charged 6π electron
ligands of importance in organometallic chemistry and beyond.1

In particular, a vast number of transition-metal (half)sandwich
complexes of Cp- have found extensive applications in catalysis
(i.e., electron transfer catalysis, asymmetric catalysis) as well as in
materials synthesis (i.e., olefin polymerization, synthesis of redox-
active conducting polymers). In order to extend the intriguingly
broad range of applications and to explore strikingly new ones,
tremendous efforts have been undertaken to gain access to Cp-

congeners containing heavier group 14 elements (Si, Ge, Sn, Pb).2

Recently, substantial progress has been achieved in synthesizing
isolable sila-,3 germa-,3e,4 and tin analogues5 of Cp-. Moreover,
even cyclobutadiene dianions (CBD2-), representing another class
of fascinating but much less explored 6π aromatic ligands, and their
analogues consisting of heavier group 14 elements attract a great
deal of attention.2 Milestones comprise also the synthesis of heavier
metallocenes containing Si and/or Ge atoms,6 and quite recently,
the first transition-metal complexes of a tetrasila-CBD2- ligand have
been reported, as well.7 We are particularly interested in the
synthesis of new types of Cp- analogues containing divalent group
14 elements, which may lead to electron-rich transition-metal
complexes with unusually high reduction potential, owing to the
presence of strong electropositive low-valent group 14 metals. To
our knowledge, no Cp- analogues containing low-valent heavier
group 14 elements are known as yet.

We now learned that reduction of the sterically encumbered but
coordinatively flexible �-diketiminato Ge(II) chloride, LGeCl 1 (L
) CH[CMe(NR)]2, R ) 2,6-iPr2C6H3),8a with potassium in THF
at ambient temperature furnishes the first cyclogermylidenide
derivative in the form of its potassium salt 2; the latter has been
isolated by fractional crystallization in diethylether in the form of
the highly air- and water-sensitive pale yellow crystals in 33% yield
(Scheme 1). Additionally, the reduction leads at the same time to
the �-diketiminato Ge(II) amide 3, LGe(NHR), which has been
isolated by fractional crystallization in hexane in the form of yellow
crystals in 31% yield. The new compounds have been characterized
by NMR spectroscopy (1H, 13C), EI-mass spectrometry (3), and
correct elemental analyses (see Supporting Information). Although
the mechanism is still unknown, we propose the formation of the
N-heterocyclic potassium germylidenide 4 as initial transient species
by halogen-metal exchange reaction. The latter undergoes a ring
contraction to give the transient germylene amide 5, which reacts
with 1 in a salt metathesis reaction, affording the NR-bridged
digermylene 6. Reductive fission of a Ge-N bond in 6 by elemental
K leads to 2 and formation of the K salt of 3, that is, compound 7;
its subsequent protonation at nitrogen by ether cleavage affords 3
(Scheme 1).

In contrast, reaction of 1 with K in toluene even at 0 °C leads
merely to the complete replacement of Ge by K via reduction of
Ge(II) to elemental Ge powder and concomitant formation of the
corresponding known �-diketiminato potassium complex, LK,8b

which has been isolated in 72% yield and identified by 1H NMR
and X-ray diffraction. According to NMR spectroscopy, 2 is a
K(Et2O)2 salt. This is confirmed by a single-crystal X-ray diffraction
analysis (Figure 1): 2 crystallizes in the triclinic space group P1j
and consists of a dimeric half-sandwich complex interconnected
via intermolecular GefK dative bonds. Each half-sandwich moiety
consists of a K(Et2O)2 cation which is η5-coordinated to the anionic
five-membered planar C3NGe ring.

As expected, the K1-Ge1 distance of 344.9(1) pm is much
shorter than the intermolecular K1-Ge1′ distance of 357.3(1) pm.
Somewhat shorter K-Ge distances have been observed in a related
dipotassium(18-crown-6) tetraphenylgermol dianion (330, 335
pm)4b,9a and in a (18-crown-6)-solvated potassium silylgermanides
(342 pm) both containing tetraValent germanium atoms.9b Accord-
ingly, the K-C(ring) distances in 2 (309.2(2)-333.0(2) pm) are
also longer than that in the aforementioned dipotassium germol
dianion (288-317 pm). The Ge1-N1 distance of 194.4(2) pm are
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Scheme 1. Synthesis of 2 and 3

Figure 1. Molecular core structure of dimeric 2 (R ) 2,6-iPr2C6H3). The
Et2O donor molecules coordinated to K1 and K1′ and the H atoms were
omitted for clarity; for details see Supporting Information.
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ca. 6 pm shorter than those in 18a but longer than that in an
N-heterocyclic, 6π aromatic germyliumylidene cation (189 pm) and
related compounds.10 Correspondingly, the Ge1-C2 distance
(188.7(2) pm), the endocyclic C-C distances (C3-C4 137.1(3),
C2-C3 141.1(3) pm), and the C4-N1 bond length (138.2(3) pm)
suggest appreciable π-resonance stabilization in the C3NGe ring.
In line with that, the remarkable deshielding of the resonance signal
for the γ-H atom at the C3 ring atom in the 1H NMR spectrum (δ
6.18 ppm) is consistent with a considerable Cp--like resonance
stabilization in the C3NGe ring. This is supported by density
functional theory (DFT) calculations, which reveal pronounced
aromaticity of the C3GeN ring, indicated by the negative nucleus-
independent chemical shift (NICS) values [NICS(1) ) -7.4 ppm
and NICS(0) ) -7.7 ppm; see Supporting Information]. The
molecular structure of 3 has also been determined by X-ray
diffraction (here not shown; see Supporting Information). Com-
pound 3 consists of a puckered six-membered C3N2Ge ring with
bond lengths and angles similar to those observed in 18a and related
systems.10 Interestingly, the terminal Ge-N distance of 190.5(2)
pm is considerably shorter than the endocyclic ones (202.6(2),
205.1(2) pm). It is striking that 2 and 3 are also accessible by
dehalogenation of the related �-diketimiate-substituted organo-
germanium trichloride 88c employing KC8 as a gentle reducing
agent. In fact, this method is more convenient (no application of
Ge(II) starting materials) and improves the yield for 2 and 3 by 42
and 39%, respectively (Scheme 2). Additionally, colorless crystals
of the known �-diketiminato potassium complex, LK, have been
isolated as side products along with deep-red crystals of the
remarkable novel cluster compound 9 in 3% yield.

According to an X-ray diffraction analysis (Figure 2), 9 represents
a dipotassium salt of the first “heavy” cyclobutadiene-like dianion
(CBD2-) consisting of a Ge4 core. Up to now, only a few metal
complexes of “heavy” CBD2- have been reported, featuring a Si4

and Si2Ge2 core.7 Compound 9 consists of a planar L′2Ge4
2- dianion

(L′ ) C[CMe(NR)]2; R ) 2,6-iPr2C6H3), in which the two unusual

chelate ligands L′ are attached to the Ge4 core each with terminal
Ge-C and Ge-N σ-bonds. The dianion accommodates two η3-
coordinated K(Et2O) cations each coordinated to Ge1, Ge2, and
N2, and Ge1′, Ge2′, and N2′, respectively. The K-Ge distances
of 335.5(1) pm (K1-Ge1) and 347.7(1) pm (K1-Ge2) are similar
to those in 2 and in related potassium germanides.9 The structure
is also notable for the parallelogram configuration of the planar
Ge4 core and the unusual coordination of the Ge atoms. The
Ge1-Ge2 (251.2(1) pm) and Ge1-Ge2′ distances (255.3(1) pm)
represent Ge-Ge single bonds close to values observed in bulky
substituted cyclotetragermanes (ca. 251 pm),11 while the trans-
annular Ge2-Ge2′ distance of 274.7(1) pm is much larger.
Remarkably, despite of the pyramidal coordination of the Ge atoms,
the Ge4

2- in 9 shows extremely strong aromaticity as shown by
the negative NICS (1) of -21.5 ppm and NICS (0) value of -38.9
ppm, respectively, determined by DFT calculations (see Supporting
Information).
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Scheme 2. Facile Synthesis of 2, 3, and 9 from 8

Figure 2. Molecular core structure of 9 (R ) 2,6-iPr2C6H3). The Et2O
donor molecules coordinated to K1 and K1′ and the H atoms were omitted
for clarity; for details see Supporting Information.
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