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Abstract: An azobenzene-based L-valinamide derivative waghggized, and its
gelation ability and self-assembly in organic salgewere investigated. Results
suggested that it is an excellent gelator and fdrorganogels in many solvents, such
as 3-pentanone, aniline;dichlorobenzene (ODCB), GRBIl,, THF, ethanol, DMSO,
and DMF. Its self-assembly in ODCB gel was studi@dansmission electron
microscopic observation suggested that the gelatan self-assemble into
one-dimensional nanofibers in the gel, and thisnphgnon is driven by hydrogen
bonding between amide units ama interaction between azobenzene moieties. With
the increase in gelator concentration, the gebtoghase transition temperature
increased and the gelation time of the solventtehed. Moreover, the gel exhibit
anion response. A gel-to-sol phase transition wasd after fluoride anion was added,
exhibiting selective response to F

Keywords: gelator; self-assembly; anion; stimulus-response

1. Introduction

Supramolecular organogels formed by a low-molecwiaight gelator recently
attracted a growing attention because of their umiself-assemblies and wide
applications. Different functional groups are appesh to the molecular
structures of gelators to impart specific applimasi, such as sensors (including
gas>® anion®*? catiort**? and neutral molecul&y, drug releases systerfis->
medical treatment$!’ stimuli-responsive soft materidi$?° solar celf*

molecular recognitiof? field effect transistor§’ enantioselective sensiffgand
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dyes absorbing>?® Gelators form various assemblies, such as nansfibe
nanotubes, nanoribbons, nanorods, and plate-liketates, and the formation
of these assemblies is driven by weak intermolecidteractions (van der
Waals forcen-n interaction, hydrogen bonding, coordination, halogponding,
and charge transfer interactions). These assemtaies a three-dimensional
(3D) network to prevent solvent from flowing, resug in gel formation.
Generally, chiral carbon, hydrogen bonding moietyd long alkyl chain are
important factors that induce a gelator to seleasse into a 3D network in
different solvent$! A chiral center prevents molecules from orderlgcking
and then forming large aggregation or depositfolthe hydrogen bonding
groups may help a gelator to self-assemble intd asdperstructuréd®=>° The
long alkyl chain not only can adjust the solubilitbut also promotes
crosslinking of 1D aggregate through nodes in coattbn with the chiral
center’’

In this work, based on the above designed princatel-valinamide derivative
with dodecyl group as long alkyl chain, amide mietas hydrogen bonding
units and chiral centefl was designed and synthesized. Its gelation wnlahd
anion response were investigated. It was foundetat excellent gelator in
many kinds of organic solvents, including aromaligdrocarbon, ketone,
aromatic amine, aromatic ketone, alcohol, chlomfomHF, and polar DMF,
and DMSO. Moreover, its self-assembly in gel wasstigated too. The results

indicated that the gelator formed 1D nanofibersgel. FT-IR and UV



absorption spectra revealed that the main drivarges of gel formation were
hydrogen bonding and-n interaction. Gelator concentration determined the
gel-to-sol phase transition temperaturgeffTand the gelation speed. Moreover,

a gel-to-sol phase transition was observed upoadidéion of fluoride anion.

2. Results and discussion
2.1 Synthesis of gelator 1

Compound? was synthesized in an aqueous solution as prdyidescribed?
The reaction oR and laurylamine in the presence of EDC-HCI in @i.Cl,
yielded compound. A deprotection process & by diethylamine provided
compound4 with a moderate yield (78%). Compourtd could be easily
obtained through an amidation reactionsofvith succinic anhydride at a yield
of 93%. CompoundL was prepared via a condensation reactiod aihd 6,
producing a moderate yield (66%).

2.2 Gelation ability

Through a standard heating and cooling mettiade gelation ability ofl. was
investigated, and the results are listed in Tabl€dmpoundl is insoluble or
has a low solubility in measured solvents at ro@mgerature and poorly
soluble in nonpolar alkane (such as hexane analogghne), petroleum ether,
acetone, benzene, and toluene even upon heatitigpufgh1 dissolves in ethyl
acetate upon heating, only yellowish deposition vedserved when the

solution was cooled to room temperature. Fortugatale gel phases in other



solvents were formed while the hot solution codlfie gelation solvents
include aromatic solvents, for instance mesityleared o-dichlorobenzene
(ODCB), aromatic amines, and aromatic ketone. 8tgbls formed in C§Cly,
CHCI;, THF, and ethanol with low boiling points. Moreoyvd can gelate
DMSO and DMF. The above results clearly indicateat the long alkyl chain
and chiral amino acid indeed rendetkedn excellent gelator of many organic

solvents.

Table 1. Gel properties ot in organic solvent8.

Solvent Status® Solvent Status
Hexane I Aniline TG
Cyclohexane I N-Methylaniline TG
Petroleum ether I N-Dimethylaniline TG
Ethyl acetate I CH,Cl, TG
Acetone P CHCl; TG
3-Pentanone 0G THF TG
2,4-Dimethylpentanone 0G Ethanol 0G
Benzene I Acetophenone TG
Toluene I DMF 0G
Mesitylene TG DMSO TG
o-Dichlorobenzene TG Benzyl alcohol TG

®TG : transplant gel; OG: opaque gel; S: soluble; I: insoluble; P:
precipitate. ® Gelator = 5.0 mg/mL.

2.3 Géel-to-sol phasetransition temperature

When the formed gels were heated to a given teriyrerand transformed into
a sol, this temperature was defined as.*f While the hot sol was cooled to
room temperature, a gel phase reappeared, demamgtiaermal reversibility.
Here, the influence of gelator concentration o3 Was examined. Fig. la
shows the relationship betweeneTand gelator concentration.gl values

increase nonlinearly with increasing gelator com@ion. Tye reaches 78 °C



when concentration is 1.0 mg/mL. The system witlsoacentration of 2.5
mg/mL did not maintain a gel phase when the temperancreased to 94 °C.
If the gel-to-sol transition is comparable to thelting of crystals, the phase

transition enthalpy can be estimated by the follmpequation:
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Fig. 1. Plots of (a) Te Vversus concentration df and (b) 1/Te versus the natural

logarithm of the concentration @fin ODCB.

where C is the molar gel concentratiettd and 4S are the standard enthalpy
and entropy for the sol-gel transition, respecyivedind R is the gas
constant>®” The reciprocal melting temperature was linearlpedelent on the
natural logarithm of the concentration (Fig. 1b)JasBd on the fitted linear

equation4H and4Swere—6.31x 10* J mol* (-109.4 J ¢)and -126.2 J mdl



K. The Gibbs free-energy chang& and the aggregation constant K at room
temperature were25.5 kJ mof and 2.89x 10" M™%, respectively. Such a
moderate aggregation constant is possibly resplenéils the good gelation
abilities of1 in many solvents®

2.4 Morphological observation

Fig. 2. TEM image of ODCB xerogel.

To observe the morphology of self-assemblies of gieé phases of 1, we
obtained a transmission electron microscopic (THigge of the xerogel film.

Fig. 2 shows the TEM image of ODCB xerogel, in whiong nanofibers with

widths of 25-100 nm are observed. Moreover, withers consist of thin fibers.
This result suggests that 1 tends to self-assetobleom 1D aggregate in the
gel phasé?®

25FT-IR and *H NMR spectra

As discussed above, amide moieties may promotedimeation of 1D aggregate
through intermolecular hydrogen bonding; we thutaimled the FT-IR spectrum of
xerogel film. As shown in Fig. 3, the stretchindpnational peak of N-H is located at

3288 cn. The vibration peaks at 1664 and 1635'ame assigned to the aromatic



100

80

60

Transmittance %

40 2851
1664
2921
o 3288 1529
1635
0 ¥ ’ T » I//I/ . T » T o 1
3300 3000 2700 1500 1000 500

Wavenumber (cm™)

T T T
9.0 8.5 8.0 7.5 7.0 6.5 6.0

ppm

Fig. 3. (a) FT-IR spectrum of ODCB xerogel film, and (loncentration-dependent
NMR spectra in CDGI

and aliphatic C=0 vibrational peaks, respectiv8Jhe locations of these vibrational
peaks indicate that all of the amide groups arelired in hydrogen bondint. In
addition, the antisymmetric and symmetric stretghuibrational bands of CHin
xerogel film are located at 2921 and 2851 *cmespectively, implying that the alkyl
chains adopt an all-trans extended conformdfiand the van der Waals interaction

among the alkyl chains plays an important rolehia $elf-assembly df. IR spectral



results also reveal that intermolecular hydrogendibmy is a major driving force in
gel formation. In addition, the IR spectrum of #mesynthesized solid was measured
and found to be the same as that of gel, indicativag there is intermolecular
hydrogen bonding in as-synthesized solid. Fig.8ins the concentration-dependent
NMR spectra in CDGI It is clear that the peaks ascribed to three Nrblps in
higher concentration shifted to low field. This ukssuggests that hydrogen bonding

in higher concentration became stronger relatiihdse in low concentration.
2.6 UV-Vis spectral change during gelation.

To monitor the interaction between azobenzene megieturing gelation, we
investigated the UV-Vis absorption spectral chamdgel in ODCB during
gelation. As shown in Fig. 4a, the maximal absorppeak in the hot solution
is located at 355 nm and slightly increased andsteffed to 357 nm aftet
min; this phenomenon is ascribed to planarizatibazobenzene moiefy. This
peak rapidly decreased with time and remained ynesrthanged after 10 min.
Moreover, a new peak at 314 nm, which is ascribealjgregates, appeared and
gradually increased during gelation. An isoabsggtpoint at 326 nm was
observed, suggesting an equilibrium reaction of the components. The
disappearance of the peak at 357 nm and the appeaoh a new peak at 314
nm clearly revealed a large blueshift of 43 nm,gasging that the gelators
stack together in a face-to-face H-aggre§aMoreover, absorption spectral
shift of 41 nm illustrates that stromgr interactions exist between azobenzene

moieties, which is a main driving force for molesmubhggregation in organic



solvents. Based on these results, a suggestedngapkocess forl during
gelation is shown in Fig. 5. Molecules as mononmexist in hot solution.
During gelation molecules stack together in a palrdashion and all three
amide groups are involved in intermolecular hydrogending. A gelator
forms six hydrogen bonds with two adjacent gelattereover, azobenzene
moieties form H-aggregates through hydrogen bondingaddition, XRD
spectrum was measured, but no obvious diffractieakp were observed. So,

stacking model in the long-distance period is unkmo
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Fig. 4b shows the normalized absorption spectrged$ in different ODCB
concentrations. The absorbance at around 350 nm fnonomeric molecules
gradually weakened with increasing concentratidrs Tesult suggests that the
proportion of monomeric molecules relative to tlohtaggregates decreases
under increased concentration. Furthermore, thatigal speed ol in ODCB
was dependent on the concentration of the composmahown in Fig. 6, the
absorbance at 360 nm at a concentration of 1.5 ingioreases first within 18
s and then rapidly decreases. When the concemtrddoreases to 1.2 mg/mL,
the arising time in absorbance extends to 20 s,tlamdlescending rate of the
absorbance slows down, indicating a slow gelatimtgss. If the concentration
further decreases to 1.0 mg/mL, the absorbancelysistarts down after 52 s.
These results imply that a low gelator concentratequires a low temperature

to form gel, resulting in a slow gelation speed.
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2.7 Anion response of gel

The anion responsive propertieslajel toward different anions (FCI', Br,
I, AcO and BPQO, as tetrabutylammonium (TBA) salts) were examined |
DMSO. It was found that the gel was destroyed dmahged into a sol when
the TBAF solution was added on surface of gel aaglesl for 1 h. However,

other TBA salts did not induce such phase transitMoreover, fluoride anion



can prevent the gel formation. The hot solutionlgfl.0 mg/mL) in ODCB
could not be changed into a gel upon the additioh equiv. TBAF even when
the solution was left over one day. The gel stdtel an ODCB could be
maintained after adding the same amount of othitéhanions. It suggests that
the anions, not the TBA cation, should be respdadir the phase transition
from a gel to a sdl’®Absorption spectra were further used to investighi®
phenomenon. As shown in Fig. 7a, the absorptiontsp@ the presence of Cl
Br, I, AcO are similar to that of the neat gel. The absorpgeak at 314 nm,
ascribing to H-aggregate, disappeared in the poeseh 1.0 equiv F, and a
new peak at 378 nm emerged. This result suggeatsRimay destroy the
molecular aggregaf8. The absorption peak at 314 nm decreased and the
absorption at 360 nm emerged while 1.0 equiP® existed, indicating that
H.PO, could partly destroy aggregate. In addition, itswaund that a sol
phase was observed when 5.0 equiyP®, existed, suggesting thatPO,
may destroy a gel phase in higher concentratiocaBse the absorption peak
located at 357 nm in hot solution, meaning a smedlshift of 21 nm, the
hydrogen bonding between amide and should be responsible for the
dissociation of gelator’'s aggregate. The reasosetdctive response to fluoride
anion is due to weaker ability of other anions ¢onf hydrogen bond with
amide group. Furthermore, the ¢oncentration strongly impacted the phase
transition. When the ratio of ko 1 was lower than 0.5, a gel phase could be

still kept. Fig. 7b shows the concentration-depahddsorption spectra. The



absorption band at 314 nm gradually decreasedhendiisorbance at more than
365 nm gradually increased upon the addition of FBWhile the ratio of Ro
1reached 0.5, the peak intensity at 366 nm was gérothan that at 314 nm. At
the moment, there were enough fibrous aggregatéwltb a gel phase. As a

result, only a sol was observed.

Conclusions

An azobenzene-based L-valinamide derivative beailuong alkyl chain, chiral
carbon, and amide moieties was synthesized, andsdlieassembly of this
compound into a gel was investigated. The resntigate that the synthesized
compound is an excellent gelator and can form igelarious organic solvents,
such as, aromatic solvents, ketone, alcohols, kgdtolcarbons, THF, DMF,
and DMSO. The gelator may self-assemble into naeofin gels, and this
process is driven by multiple hydrogen bonds andinteractions. Je and gel
speed are strongly dependent on gelator concemtraMoreover, the gel
exhibited selective response to fluoride anion. &lddition of fluoride anion
could result in a gel-to-sol phase transition. Curdings suggest that
introduction of long alkyl chain, chiral carbon,damamide groups render a
compound to be an excellent gelator and the existeri amide group may

promote a gel to response anions.

Experiment section



Instruments and experimental methods: All the raw materials were used
without further purification. All the solvents asaytical reagents were
purchased from Beijing Chemical Works (Beijing, @dn, and were used
without further purification. Infrared spectra waneasured with a Nicolet- 360
Fourier transform infrared (FT-IR) spectrometeribgorporating the samples
in KBr disks. The UV-vis spectra were determinedaoiMapada UV-1800pc
spectrophotometer. C, H, and N elemental analysese werformed on a
Perkin-Elmer 240C elemental analyzéH NMR spectra were recorded on
Mercury plus 500 MHz.

TEM investigation: A piece of the gels was placed on a carbon-coatpger
grid (400 mesh) followed by naturally evaporatirite tsolvent. The TEM
specimens were examined with a Hitachi mode H60D #@pparatus with an
accelerating voltage of 100 kV.

Gelation test of organic fluids: The solution of gelator (pre-weighed) in
organic solvent was heated in a sealed test tubméter = 1 cm) in an oil bath
until the solid was dissolved. The solution wasow#d to stand at room
temperature for 6 h, and the state of the mixtume avaluated by the “stable to
inversion of a test tube” method.

Light response of gel: The gel at a concentration of 1.0 mg/mL was prepare
in a cell with 1 mm optical path, aged for 6 h amekerted, and then exposed to
a high pressure mercury lamp (500 W) with a 365fitter. UV-vis absorption

spectra of the gels before and after illuminaticarevmeasured.



Gelator synthesis:
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Scheme 1. Synthesis route df.

N-Fmoc-L-valine @) and5 were synthesized by the reported procedut&.
(9)-(9H-fluor en-9-yl)methyl-1-(dodecylamino)-3-methyl-1-oxobutan-2-ylca
rbamate (3)

N-Fmoc-L-valine (2.79 g), DMAP (0.2 g) and lauryle® (1.58 g) were
dissolved in 100 mL dried Ci&l,. EDC-HCI (2.0 g) was added into the above
solution at 0 °C. The mixture was stirred at roemperature for 24 h. After the
solvent was removed, ethanol (100 mL) was addedlsdixture was treated
for 5 min in an ultrasonic cleaner. The compound watained by filtration and
washing with ethanol. Yield = 71%. mp = 146-148 ®I-IR (cm'): 32109,
3065, 2956, 2920, 2851, 1692, 1648, 1549, 1250, HONMR (500 MHz,
CDCl): § 7.76 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.5 Hz, ZH}0 (t, J = 7.5 Hz,
2H), 7.31 (td, J = 7.5, 1.1 Hz, 2H), 5.77 (s, 1687 (d, J = 8.9 Hz, 1H), 4.40
(dt, J = 17.6, 10.4 Hz, 2H), 4.22 (t, J = 6.9 H#),13.88 (t, J = 7.8 Hz, 1H),

3.45 — 3.04 (m, 2H), 2.21 — 2.01 (m, 1H), 1.49)(& 7.3 Hz, 2H), 1.34-1.18



(m, 18H), 0.95 (t, J = 7.2 Hz, 6H), 0.88 (t, J © Az, 3H). Element analysis for
Cs2HaeN203: C, 75.85; H, 9.15; N, 5.53; found: C, 75.82; H9 N, 5.51.
(S)-2-amino-N-dodecyl-3-methylbutanamide (4)

3 (2.0 g) and diethylamine (5 mL) was dissolved id,Cl, (20 mL) and the
mixture was heated for 1 h at 50 °C. After the sptwas removed and the
residues was treated by column chromatographycdsilCHCl.,/methanol =
10/1 (V/V)). Yield = 78 %. mp = 44-46 °C. FT-IR (Sn 3372, 3297, 3087,
2954, 2850, 1642, 1556, 146H NMR (500 MHz, CDCY): 6 3.24 (m, 3H),
2.31 (m, 1H), 1.50 (p, J = 7.2 Hz), 1.35-1.21 (BH) 0.99 (d, J = 7.0 Hz, 3H),
0.88 (t, J = 6.8 Hz, 3H), 0.83 (d, J = 6.9 Hz, 3H)ement analysis for
Ci7/H3sN20: C, 72.03; H, 12.44; N, 9.88; found: C, 72.07;14,41; N, 9.89.

(E)-4-oxo-4-(4-(p-tolyldiazenyl)phenylamino)butanoic acid (6)

5 (0.5 g, 2.4 mmol) and succinic anhydride (0.5 .9, ®dmol) were dissolved
in dried THF (10 mL) and the mixture were refluxed h. The solvent was
removed, 10 ml CHGlwas added and the mixture was treated for 5 mamin
ultrasonic cleaner. The solid was obtained bydiion. Yield: 93%. mp =
205-206 °C. FT-IR (Cr'ﬁ): 3430, 3309, 3042, 2925, 1718, 1668, 1594, 1533,
844.*H NMR (500 MHz, DMSO-g): 5 12.15 (s, 1H), 10.31 (s, 1H), 7.85 (d, J
= 7.6 Hz, 2H), 7.80 (d, J = 8.6 Hz, 2H), 7.76 (& 8.8 Hz, 2H), 7.38 (d, J =
7.7 Hz, 2H), 3.32 (s, 2H), 2.62 (t, J = 6.5 Hz, 3BB5 (t, J = 6.5 Hz, 3H), 2.40
(s, 4H). Element analysis for #117/N303: C, 65.58; H, 5.50; N, 13.50; found:

C, 65.50; H, 5.55; N, 13.49.



(E)-N1-(1-(dodecylamino)-3-methyl-1-oxobutan-2-yl)-N4-(4-(p-tolyldiazeny
Nphenyl)succinamide (1)

4 (0.23 g 0.8 mmol),6 (0.26 g 0.84 mmol) and a small amount of DMAP
were dissolved in 20 mL dried THF. EDC-HCI (0.2 was added into the
above solution at 0 °C. The mixture was stirredoam temperature for 48 h.
The compound was obtained by filtration and theshwag with ethanol. Yield
= 66%. mp = 237-239 °C. FT-IR (é'm 3288, 3098, 2958, 2921, 2851, 1664,
1635, 1528, 845H NMR (500 MHz, DMSO-¢): § 10.31 (d, 1H) , 7.91 (d, J =
8.9 Hz, 1H), 7.85 (d, J = 8.6 Hz, 2H), 7.80 (d, 8.% Hz, 3H), 7.77 (d, 3 = 8.1
Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 4.09 (t, J = AR 1H), 3.17 — 2.91 (m, 2H),
2.63 (m, 2H), 2.54 (m, 2H), 2.41 (s, 3H), 1.99 (Hi), 1.37 (M, 2H), 1.32-1.14
(m, 18H), 0.84 (m, 9H). Element analysis fouulds:NsO3: C, 70.68; H, 8.90;

N, 12.12; found: C, 70.73; H, 8.78; N, 12.17.
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. An azobenzene-based L-valinamide derivative was found to form gels in various
solvents.

The hydrogen bonding between amide units and =n-m interaction between
azobenzene moi eties were confirmed to be driving force of gel formation.

The gel exhibits selective response to fluoride anion.



