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Abstract: In a convergent approach, an advanced intermediate (2)
in a projected total synthesis of the alkaloid (–)-lemonomycin (1)
was prepared from readily available starting materials. The key
transformations were a Pictet–Spengler cyclization, a Strecker-type
amino alkylation, and an N-acyliminium cyclization.

Key words: lemonomycin, antitumor antibiotic, tetrahydroisoquin-
oline, acyliminium cyclization, Pictet–Spengler reaction

(–)-Lemonomycin (1), a tetrahydroisoquinoline antitumor
antibiotic,1 was first isolated from a fermentation broth of
Streptomyces candidus (LL-AP191) in 1964.2 The com-
pound was found to exhibit potent antibiotic activity
against Staphylococcus aureus, Bacillus subtilis, and En-
terococcus faecium, for example, as well as high cytotoxic
properties against a human colon cancer cell line (HCT-
116). Despite its early isolation, the structure of this com-
plex alkaloid could not be elucidated before 2000, when
this goal was finally achieved by He and co-workers.3

Lemonomycin (1) exhibits rare structural features such as
a unique 2,6-dideoxy-4-amino sugar attached to a com-

plex bridged tetracyclic core, a surprisingly stable hydrate
functionality and an unstable hemiaminal moiety
(Scheme 1).

No wonder that 1 has attracted the attention of the synthet-
ic community for quite a while, and indeed, several ap-
proaches to lemonomycin derivatives and intermediates
have been reported.4 However, only one total synthesis of
the natural product was completed thus far by Stoltz et al.
in 2003.5 Our retrosynthetic analysis of 1 leads back to
key intermediate 2, which contains the entire core frag-
ment of the molecule. Removal of the benzylic hydroxy
function, attachment of the amino sugar and elaboration
of the hydrate functionality, as well as the labile quinone
and hemiaminal moieties should be carried out at a late
stage of the synthesis. Herein, we report a stereocontrolled
access to enantiomerically enriched tetracycle 2 via tet-
rahydroisoquinoline 3, which in turn is assembled from
readily available starting materials 4,6 5, and 6.7 As illus-
trated in Scheme 2, the synthesis of 3 was started by con-

Scheme 1 Structure and retrosynthetic analysis of 1
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Scheme 2 Synthesis of tetrahydroisoquinoline 3 
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verting bromide 6 into the organolithium derivative,
which was added to aldehyde 4 to afford secondary alco-
hol 7 as a 2.5:1 mixture of the syn and anti diastereomers.
This mixture was subjected to an oxidation–reduction se-
quence in order to obtain the syn diastereomer 8 as the
only product. O-TBS protection followed by simulta-
neous removal of the Fmoc and acetonide protecting
groups smoothly provided amino alcohol 9. Protection of
the primary hydroxy function as triethylsilyl ether and
deprotection of the phenol OH group8 furnished interme-
diate 10 as a suitable substrate for the Pictet–Spengler re-
action.9 In fact, tetrahydroisoquinoline 3 was generated as
a single diastereomer via slow addition of benzyloxy acet-
aldehyde 5 to a mixture of 10, acetic acid and molecular
sieves.10 Addition of cyanohydrin sidechain 1111 in tri-
fluoroethanol furnished amino nitrile 12 as the main dia-
stereomer in acceptable yield (Scheme 3). Acetylation of
the free phenol OH function provided acetate 13.12 To set
the stage for the closure of the piperazine ring, the primary
OTES function was deprotected with HF in pyridine to
give alcohol 14. Dess–Martin periodinane oxidation13 led

to the aldehyde which was attacked in situ by the Fmoc-
protected nitrogen to furnish tricyclic hemiaminal 15.
Treatment of 15 with trifluoroacetic acid in THF triggered
a cascade reaction (Scheme 4) by generating an acylimin-
ium cation, which due to the steric repulsion from the
neighboring OTBS group, was intercepted by the si face
of the allylsilane moiety. Thus, the vinyl sidechain was di-
rected into the desired S configuration. Subsequently, the
cyano group at C-17 was isomerized into the less hindered
equatorial position via an iminium ion intermediate and
the TBS group was removed (Scheme 4). The resulting
tetracycle 2 contains all stereocenters with correct
relative14 and absolute configurations as required for the
synthesis of the (–)-lemonomycin aglycon.

In summary, we have developed a concise thirteen-step
synthesis of the tetracyclic lemonomycin core fragment
215 from simple building blocks with complete control
over all six stereocenters. Conversion of 2 to (–)-lemono-
mycin (1) is currently under investigation in our laborato-
ries.

Scheme 3 Synthesis of tetracyclic key intermediate 2
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Scheme 4 Cascade sequence from 15 to 2
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C33H56O6NSi2: 618.3634; found: 618.3624.
Synthesis of 12: Tetrahydroisoquinoline 3 (78 mg, 0.127 
mmol) and cyanohydrin 11 (55 mg, 0.127 mmol) were 
dissolved in anhyd 2,2,2-trifluoroethanol (800 mL). The 
reaction mixture was allowed to stir at r.t. for 24 h. The 
solvent was evaporated and the crude residue was purified 
by flash column chromatography (hexanes–EtOAc, 7:1) to 
afford a 1.6:1 mixture of two diastereomers of 12 (29 mg, 
23% less polar diastereomer, 46 mg, 35% more polar 
diastereomer; 75 mg, 58%, combined yield). Rf 0.69, 0.66 
(hexanes–EtOAc, 2:1); [a]D

20 +34.8 (c = 0.65, CHCl3). 1H 
NMR (400 MHz, CDCl3; major diastereomer): d = 7.77 (m, 
2 H), 7.61 (m, 2 H), 7.41 (m, 2 H), 7.27–7.34 (m, 5 H + 2 H), 
6.07 (m, 1 H), 5.43–5.59 (m, 1 H), 5.35 (m, 1 H), 5.20 (m, 1 
H), 4.49–4.61 (m, 2 H), 4.30–4.46 (m, 2 H + 1 H), 4.24 (m, 
1 H + 1 H), 4.08 (m, 1 H), 3.97 (m, 1 H), 3.81 (m, 3 H), 3.71 
(m, 1 H), 3.70 (m, 3 H), 3.42 (m, 1 H), 2.93 (t, J = 10.6 Hz, 
1 H), 2.55 (m, 1 H), 2.24 (s, 3 H), 2.21 (m, 1 H), 1.65 (m, 1 
H), 1.37 (m, 1 H), 0.92 (m, 9 H), 0.85 (s, 9 H), 0.60 (m, 6 H), 
0.18 (s, 3 H), –0.02 (m, 9 H), –0.08 (s, 3 H). 13C NMR (100 
MHz, CDCl3, two sets of signals corresponding to two 
rotamers, * denotes the minor rotamer): d = 157.7*, 155.6, 
150.0, 146.1, 146.1*, 144.2*, 144.1, 143.9, 143.8*, 141.7, 
141.6*, 141.3*, 141.2, 138.0, 137.9*, 131.7, 130.6, 128.4, 
128.4*, 128.8*, 128.8, 127.7*, 127.7, 127.6*, 127.6, 127.0, 
127.0*, 125.3, 125.2*, 123.6, 123.1, 123.1*, 122.1, 121.2*, 
121.1, 120.7, 120.5*, 120.0*, 119.9, 76.9, 73.1, 73.1*, 67.1, 
63.4*, 62.9, 62.1*, 61.6*, 61.4, 60.7, 60.3*, 60.1, 57.6, 
57.2*, 53.2, 53.1*, 50.0*, 49.6, 47.2, 34.0, 26.0, 25.7*, 23.1, 
18.7*, 18.0, 9.7, 6.8, 4.3, –1.9, –2.0, –4.9, –5.1. HRMS (100 
°C, 70 eV): m/z calcd for C58H83O8N3Si3Na: 1056.5386; 
found: 1056.5402.
Synthesis of 13: Acetic anhydride (13 mL, 0.134 mmol) and 
pyridine (18 mL, 0.223 mmol) were sequentially added to a 
solution of phenol 12 (46 mg, 0.045 mmol) in CH2Cl2 (0.7 
mL) at r.t. After stirring for 16 h, sat. aq NaHCO3 solution 
(20 mL) was  added and the resulting solution was extracted 
with CH2Cl2 (3 × 25 mL). The combined organic phases 
were dried over Na2SO4 and evaporated under reduced 
pressure. The residue was purified by flash column 
chromatography (hexanes–EtOAc, 5:1) to furnish acetate 13 
(47 g, 98%) as single product. Rf 0.69 (hexanes–EtOAc, 
2:1); [a]D

20 –136 (c = 0.10, CHCl3). 
1H NMR (400 MHz, 

CDCl3): d = 7.77 (d, J = 7.6 Hz, 2 H), 7.60 (dd, J = 3.1, 4.3 
Hz, 2 H), 7.40 (t, J = 7.5 Hz, 2 H), 7.28–7.35 (m, 2 H + 5 H), 
5.42–5.59 (m, 1 H), 5.38 (m, 1 H), 5.02–5.25 (m, 1 H), 4.58 
(m, 1 H), 4.27–4.47 (m, 5 H), 4.24 (m, 1 H), 4.09 (m, 1 H), 
3.95 (m, 1 H), 3.74 (s, 3 H), 3.73 (s, 3 H), 3.44 (m, 1 H + 1 
H), 2.88 (m, 1 H), 2.49 (m, 1 H), 2.27 (s, 3 H), 2.23 (s, 3 H), 
2.21 (m, 1 H), 1.60 (m, 1 H), 1.37 (m, 2 H), 0.93 (t, J = 7.9 
Hz, 9 H), 0.87 (s, 9 H), 0.60 (dd, J = 7.9, 7.9 Hz, 6 H), 0.20 
(s, 3 H), –0.01 (s, 3 H), –0.02 (s, 3 H), –0.03 (s, 6 H). 13C 
NMR (100 MHz, CDCl3, two sets of signals, * denotes the 
minor rotamer): d = 168.4, 168.4*, 155.6, 154.9, 150.8, 
144.1*, 143.9, 141.3, 138.3, 138.1*, 136.7, 136.6*, 131.5, 
130.5*, 128.3, 128.3*, 127.9, 127.8, 127.6, 127.0, 127.0*, 
125.2, 125.2*, 124.6, 124.6*, 124.1, 124.0*, 122.3, 119.9, 
77.6, 72.8, 67.0, 62.9, 62.5*, 61.3, 60.6, 60.4, 57.5, 57.0*, 
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53.8, 53.6*, 50.3*, 49.8, 47.2, 34.0, 26.0, 23.1, 20.5, 20.4*, 
18.8*, 18.0, 9.9, 6.8, 4.3, –1.8, –2.0, –4.8, –4.9. HRMS (120 
°C, 70 eV): m/z calcd for C60H85O9N3Si3Na: 1098.5491; 
found: 1098.5505.
Synthesis of 14: Compound 13 (86 mg, 0.080 mmol) was 
dissolved in a mixture of 30% HF–pyridine, (100 mL), 
pyridine (400 mL) and anhyd THF (2.7 mL). The reaction 
mixture was stirred at r.t. for 30 min. After total consumption 
of the starting material the reaction was quenched with 
buffer solution (pH 7.00, 20 mL) and extracted with CH2Cl2 
(2 × 25 mL). The organic extracts were washed with brine 
(40 mL), dried over Na2SO4 and evaporated under reduced 
pressure. The crude product was purified by flash column 
chromatography (hexanes–EtOAc, 3:1) to furnish primary 
alcohol 14 (68 mg, 88%) as single product. Rf 0.43 (hexanes–
EtOAc, 2:1); [a]D

20 +31.8 (c = 0.65, CHCl3). 
1H NMR (400 

MHz, CDCl3): d = 7.76 (d, J = 7.5 Hz, 2 H), 7.59 (m, 2 H), 
7.40 (m, 2 H), 7.28–7.35 (m, 7 H), 5.49 (m, 1 H), 5.22 (m, 1 
H), 5.16 (m, 1 H), 4.55 (m, 2 H), 4.32–4.43 (m, 4 H), 4.24 (t, 
J = 6.8 Hz, 1 H), 4.00 (m, 1 H), 3.94 (m, 1 H), 3.74 (s, 3 H), 
3.73 (s, 3 H), 3.55 (m, 1 H), 3.46 (m, 1 H), 3.11 (m, 1 H), 
2.48 (m, 1 H), 2.27 (s, 3 H), 2.23 (m, 1 H + 3 H), 1.35 (m, 2 
H), 0.86 (m, 9 H), 0.20 (s, 3 H), –0.02 (s, 3 H), –0.03 (s, 6 
H), –0.05 (s, 3 H). 13C NMR (100 MHz, CDCl3): d = 168.5, 
156.0, 154.6, 150.9, 143.9, 141.3, 138.3, 136.8, 131.9, 
128.4, 127.9, 127.7, 127.4, 127.1, 125.2, 124.7, 124.5, 
122.1, 120.2, 119.9, 77.8, 72.9, 67.1, 63.9, 61.7, 61.3, 61.0, 
60.6, 58.0, 54.2, 49.4, 47.1, 34.1, 25.9, 23.1, 20.4, 18.0, 9.9, 
–1.8, –2.0, –4.8, –5.0. HRMS (150 °C, 70 eV): m/z calcd for 
C54H71O9N3Si2Na: 984.4627; found: 984.4600.
Synthesis of 15: Primary alcohol 14 (53 mg, 0.055 mmol) 
was dissolved in CH2Cl2 (2 mL) and cooled to 0 °C, then 
Dess–Martin periodinane (67 mg, 0.22 mmol) was added. 
After stirring at 0 °C for 2 h the cooling bath was removed 
and the reaction mixture was stirred at r.t. for another 30 
min. Sat. Na2S2O3 (10 mL) and NaHCO3 solution (10 mL) 
were added and the mixture was extracted with CH2Cl2 (20 
mL). The combined organic phases were washed with brine 
(20 mL), dried over Na2SO4 and evaporated under reduced 
pressure. The crude product was purified by flash column 
chromatography (hexanes–EtOAc, 5:1) to furnish an 
epimeric mixture of the two diastereomeric carbinolamines 
15 (47 mg, 89%). Rf 0.71 (hexanes–EtOAc, 2:1); [a]D

20 +6.5 

(c = 1.10, CHCl3). 
1H NMR (400 MHz, CDCl3): d = 7.75 (m, 

2 H), 7.56 (m, 2 H), 7.28–7.44 (m, 9 H), 5.59 (m, 1 H), 5.37 
(m, 1 H), 5.15 (m, 1 H), 4.86–5.05 (m, 1 H), 4.79 (m, 1 H), 
4.67 (m, 1 H), 4.35–4.61 (m, 6 H), 4.30, 4.22 (m, 1 H), 3.66–
3.76 (m, 6 H), 3.43 (m, 1 H), 3.13 (m, 1 H), 2.38–2.60 (m, 2 
H), 2.36, 2.32 (s, 3 H), 2.22 (m, 3 H), 1.60 (m, 2 H), 0.82, 
0.79 (s, 9 H), 0.18 (m, 3 H), –0.03 (s, 3 H), –0.06 (s, 6 H), 
–0.09 (s, 3 H). 13C NMR (100 MHz, CDCl3): d = 170.9, 
170.8, 157.3, 157.0, 152.4, 145.6, 145.5, 143.3, 143.3, 
140.3, 138.3, 133.0, 129.9, 129.8, 129.4, 129.3, 129.2, 
129.2, 129.1, 127.4, 127.1, 126.9, 126.8, 124.8, 123.3, 
122.1, 122.0, 118.8, 75.4, 75.3, 73.1, 72.7, 70.1, 69.2, 66.1, 
63.4, 63.0, 62.6, 58.8, 57.8, 56.9, 56.8, 49.1, 31.7, 31.3, 27.8, 
25.0, 22.4, 20.0, 19.8, 11.8, 11.7, 0.2, 0.1, –3.1. HRMS (110 
°C, 70 eV): m/z calcd for C54H69O9N3Si2Na: 982.4470; 
found: 982.4455.
Synthesis of Tetracycle 2: Hemiaminal 15 (24 mg, 0.012 
mmol) was treated with a mixture of THF (500 mL) and 
trifluoroacetic acid (500 mL, 0.0065 mmol) at 0 °C. The 
white foam of the starting material turned pink immediately 
after addition of the acidic solvent mixture. After stirring for 
15 min the starting material had been completely consumed. 
Upon the removal of the trifluoroacetic acid under reduced 
pressure, the reaction mixture changed its color from 
colorless to orange and the crude product was dried under 
vacuum for another 30 min. The residue was dissolved in 
CH2Cl2 and the yellow solution was purified by flash column 
chromatography with gradient elution (hexanes–EtOAc, 9:1, 
then 3:1) to afford compound 2 (11 mg, 58%). Rf 0.50 
(hexanes–EtOAc, 2:1); [a]D

20 –4.4 (c = 0.22, CHCl3). 
1H 

NMR (600 MHz, CDCl3): d = 7.77 (d, J = 7.2 Hz, 2 H), 7.60 
(m, 2 H), 7.40 (t, J = 7.2 Hz, 2 H), 7.16–7.34 (m, 5 H), 7.07 
(m, 2 H), 5.81 (m, 1 H), 5.60 (m, 1 H), 5.52 (m, 1 H), 5.07 
(m, 2 H), 4.79 (m, 1 H), 4.78 (dd, J = 2.6, 6.9 Hz, 1 H), 4.61 
(m, 1 H), 4.43 (m, 1 H), 4.24 (m, 2 H + 2 H + 1 H), 3.77 (m, 
3 H), 3.71 (m, 1 H), 3.70 (s, 3 H), 3.01 (m, 1 H), 2.91 (m, 1 
H), 2.54 (m, 1 H), 2.28 (s, 3 H), 2.21 (m, 3 H), 2.00 (m, 1 H), 
OH not found. 13C NMR (125 MHz, CDCl3): d = 168.8, 
150.0, 141.4, 141.3, 140.1, 136.5, 128.4, 127.9, 127.7, 
127.2, 127.1, 125.3, 124.9, 122.3, 120.1, 120.0, 118.3, 
116.8, 115.0, 90.4, 73.3, 70.5, 62.7, 60.9, 60.8, 54.5, 54.3, 
50.8, 31.9, 20.5, 9.6. HRMS (100 °C, 70 eV): m/z calcd for 
C45H45O8N3Na: 778.3104; found: 778.3098.
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