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Interaction of knowledge-driven and data-driven

processing in category learning

AndreÂ Vandierendonck and Yves Rosseel
University of Ghent, Belgium

The present paper argues that category learning is both a data-driven and a
knowledge-driven process. This is described in a generic model that distin-
guishes between categorical knowledge, conceptual knowledge, and implicit
cognitive theories. The model assumes that each of these knowledge aspects
may aŒect the process of category learning by aŒecting the way similarities
between objects are perceived. This central assumption of the model is
tested in two experiments. The ® rst experiment shows that the presence or
absence of prior categorical and conceptual knowledge aŒects the psycholo-
gical stimulus space by changing the saliency of the stimulus dimensions.
The second experiment uses these weights to predict the distribution of
errors over the stimuli and the number of trials to criterion in category
learning by other participants under the same knowledge conditions. We
conclude that prior categorical and conceptual knowledge aŒect category
learning by mediation of similarity perception, and discuss the implications
of these results.

INTRODUCTION

In the last decade several authors have stressed the importance of prior
knowledge and general background knowledge in the formation of

e� cient and coherent categories (see e.g., LakoŒ, 1987; Medin & Watten-

maker, 1987; Murphy & Medin, 1985). The hypothesis that prior knowl-
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edge aŒects categorisation has found support in several empirical studies

that tested for the eŒects of knowledge.

Basically, three diŒerent methodologies have been used to study knowl-

edge eŒects. Some investigators assume that the evocation or activation of
knowledge in semantic memory will aŒect processes evoked during

category learning or category usage. By selecting speci® c labels or

examples, knowledge is activated that aŒects categorisation performance

(see e.g., Barsalou, 1985; Hayes & Taplin, 1995; Lamberts, 1994; Pazzani,

1991; Wisniewski, 1995; Wisniewski & Medin, 1994). Other investigators

have approached the study of knowledge eŒects by varying the meaning-
fulness and the familiarity of the stimulus materials (see e.g., Murphy &

Allopenna, 1994; Murphy & Spalding, 1995; Spalding & Murphy, 1996;

Vandierendonck, 1978). A few researchers directly manipulated prior

knowledge (see e.g., Heit, 1994, 1998; Nakamura, 1985).

The present paper speci® cally addresses the problem of interaction
between prior knowledge, similarity, and category learning. First, we will

argue that knowledge is organised in structures operating at diŒerent

levels. Next, a generic model is presented that not only embodies these

assumptions, but also implies that eŒects of prior knowledge on category

learning may be mediated by processes of similarity judgement. In order
to test this implication, two experiments are reported. The ® rst one shows

that similarity judgements are in¯ uenced by manipulations of prior

knowledge. The second one is intended to demonstrate that eŒects of

knowledge manipulation on category learning can be predicted from

changes in the similarity judgements obtained in an independent sample

of subjects.

KNOWLEDGE, SIMILARITY, AND CATEGORIZATION

Knowledge is assumed to be the complete body of accessible information
stored in the memory system.1 This information includes concepts,

schemata, frames, models, relationships, episodes, procedures, etc. In

addition, we assume that knowledge is structured. This means that knowl-

edge consists of interrelated entities that together form a structure;

concepts are basic components in these structures.
In their extensional meaning, concepts are related to a system of

categories, a categorisation. A central idea in many theories of categorisa-

1
This is a psychological de® nition of knowledge, and it excludes information available in

books, on audiotape, videotape, ® lm, etc. It also excludes information that is accumulated in

the memory system but which is temporarily or de® nitively not accessible.
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tion is the notion of similarity, and the acquisition of a categorisation is

generally thought to depend on similarity. In fact, it has been amply

shown that similarity is one of the key factors in categorisation (for a

collection of papers addressing this issue, see e.g., Thibaut & Vandieren-
donck, 1995). According to exemplar models (e.g., Medin & SchaŒer,

1978; Nosofsky, 1984; Nosofsky & Kruschke, 1992), categorisation is

based on the perceived similarity between a to-be-categorised instance

and one or more exemplars stored in memory, such that the new instance

will be placed in the category that contains the most similar exemplars.

In prototype models (e.g., Homa, 1984; Posner & Keele, 1968; Reed, 1972;
Rosch, 1975) similarity between the instance and one or more prototypes

is the basis of the categorisation. These prototypes are inferred from

previous experiences and they represent the central tendency and the

variability of the categories. It can even be said that in some rule models

(e.g., Anderson, Kline, & Beasley, 1979; Vandierendonck, 1995), where
the categories are represented by means of production rules, the similarity

or the correspondence between a to-be-categorised instance and the rule

is at the basis of the categorisation.

However, Medin (Medin, 1983; Medin, Goldstone, & Gentner, 1993;

Medin & Wattenmaker, 1987; Murphy & Medin, 1985) has quite convin-
cingly argued that similarity does not su� ce to explain conceptual coher-

ence. The category of `̀ protected buildings’ ’ gets its coherence from the

fact that all buildings in the category have been found worthy of conser-

vation. Even though the buildings may be as diverse as windmills,

churches, former city halls, farms, etc., while very similar buildings, such

as other windmills, farms, and so on do not belong to the category.
Clearly, perceptual similarity is sometimes subordinated to categorical

knowledge.

LEVELS OF KNOWLEDGE

It is clear from this exposition that categorisation and knowledge can be

described at a number of levels. Figure 1 presents a schematic overview

of these levels and the way they are supposed to interact with data-driven

processes in category learning. This viewpoint proposes that category
learning consists of the perception of similarities between objects and the

grouping of objects implied by these similarities. On this basis, a category

representation is constructed that contains the information necessary to

assign an instance to its category. This representation corresponds to the

extensional meaning of the concept (see e.g., Johnson-Laird, Herrmann,

& Cha� n, 1984; Vandierendonck, 1991), and in the overview this is
located at the level of categorical knowledge.
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Figure 1. Schematic representation of different levels of similarity and knowledge involved

in category learning and in the study of the effects of knowledge on similarity and category

learning. The levels above the dotted line represent the different levels of knowledge. The

top-down arrows represent the effects of knowledge on similarity perception. The bottom-up

arrows show the steps involved in inductive or data-driven learning.
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Categories and their representations are usually coupled to concepts,

which are considered to be cognitive entities that represent the relations

between diŒerent categories in terms of class inclusion relations, part-of

relations, schemata, mental models, etc. This is the conceptual level and it
refers to structural as well as functional aspects of the concept. This level

of representation is assumed to be the one necessary for using categorical

distinctions in reasoning, in discourse, etc. It corresponds to the inten-

sional meaning of the concept (again see Johnson-Laird et al., 1984;

Vandierendonck, 1991).

Clusters of categories that are linked by all sorts of interrelations may
be part of an implicit theory about the world or an implicit cognitive

model (LakoŒ, 1987). Such a model forces particular interrelations

between categories to become salient and particular categorisations to be

more salient than other ones. When such an implicit model is activated

by presenting a prime for instance, this activation is hypothesised to
spread to relevant conceptual representations, and so further on to parti-

cular relations and to particular categorisations.

The generic model in Figure 1 shows that the process of category

learning is both a data-driven and a knowledge-driven process. Considering

the data-driven aspects, it is a process in which the learner must acquire
knowledge allowing perceived objects to be assigned to a prede® ned

category. Whether the categorisation is eventually performed on the basis

of exemplar similarity, similarity to a prototype, or on the basis of rules

does not matter at this point. In any case, the criterion used to relate the

objects and the categories is the categorical knowledge obtained.

However, in this process it may be necessary to overcome the perceived
similarities and the tendency to group similar things together. Homa,

Rhoads, and Chambliss (1979) and Livingston, Andrews, and Harnad

(1998) report evidence supporting such a process; they have shown that

category learning changes the multidimensional similarity space. The

latter authors have also shown that within-category compression may
occur under some learning conditions. These ® ndings testify to the impor-

tance of the similarity processes in categorisation.

Category learning is also a knowledge-driven process. Knowledge origi-

nating either at the categorical level, the conceptual level, or at the level

of implicit cognitive models may aŒect the process of similarity percep-
tion. The changed estimation of similarities then aŒects the data-driven

construction of a categorical representation. Hence, the perceived

similarity of objects is the joint result of perceiving the objects and the

utilisation of relevant knowledge to select aspects or attributes to judge

the likeness. Consequently, if at any level, knowledge is activated that is

relevant for judging the similarity of the present object to objects or other
information in memory, then the similarity judgement will be aŒected by
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that knowledge, and in its turn the altered similarity judgements will

aŒect the process of category learning.

The model proposed here is one in which knowledge is in an interactive

causal relationship with the process of object perception: Experience with
new objects may result in a change of the representations at the diŒerent

levels of knowledge, and any level of knowledge may aŒect the perception

of similarities among objects. To be sure, this framework yields only a

® rst rough and rather vague approximation to the problem of the interac-

tion between data-driven and knowledge-driven processes in category

learning.
It is the purpose of the present paper to present a test of the central

thesis of the model, namely that prior knowledge operating at diŒerent

representational levels aŒects similarity judgements and that the perceived

similarities, in their turn, aŒect the process of category learning. A ® rst

experiment tests whether the availability of prior knowledge aŒects
similarity judgements. In the second experiment, the eŒects shown in the

® rst experiment will be used to predict the speed of learning and the

errors committed during category learning.

EXPERIMENT 1

In the ® rst experiment the participants rated the similarity of all possible

pairs of a set of stimuli. In the prior knowledge conditions, they did this

after going through a knowledge acquisition phase, in which they

memorised a series of facts. It was expected that the perceived similarities
would be systematically diŒerent as a function of the kind and of the

amount of knowledge acquired in the knowledge acquisition phase. More

speci® cally, the relative importance of the stimulus dimensions was

expected to change due to the availability of prior knowledge.

This method constitutes a natural extension of the usage of multidi-
mensional scaling in studies of concept learning. Homa et al. (1979) for

example, compared the multidimensional psychological space before and

after an extensive categorisation training, with the aim of clarifying the

conceptual changes induced by the learning process. In a similar way,

tests of the Generalised Context Model (GCM; e.g., Nosofsky, 1992a) are
based on predictions of changes in the multidimensional psychological

space due to attentional shifts evoked by the learning process. In all these

studies, it is assumed that the similarity scaling yields data that are

independent of the categorisation and typicality data used to index the

learning process. The present study follows the same methodology and

extends it by collecting similarity data to study the in¯ uences of (prior)
knowledge on the psychological object space.
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Method

Participants. Ninety ® rst-year students in psychology and educational

sciences at the University of Ghent (Belgium) participated for course
requirements and credit. They volunteered to participate in this particular

experiment. They were randomly and equally assigned to the 10 cells of

the design (see Materials and Design section).

Materials and design. As the purpose was to test the eŒects of the avail-

ability of particular sources of knowledge, it was necessary to develop an
arti® cial mini-world for the test. A stimulus set, a categorisation system,

and two diŒerent cover stories were developed for this purpose.

The stimuli were so-called robots that varied in three ® ve-valued dimen-

sions: the number of pairs of arms, the size of the hat, and the orienta-

tion of the antennae. Figure 2 displays two examples of these stimuli.
Only 15 of the 125 possible combinations of the three dimensions were

implemented as stimuli. Two `̀ categories’ ’ were developed around two

prototypes. With the values along the dimensions scaled from 0 to 4, one

prototype had the values 1,3,2 (one pair of arms, hat size 3, and

horizontal antennae), whereas the other had the values 3,1,2 (three pairs
of arms, hat size 1, and horizontal antennae). Starting from these proto-

types, transformations were generated by increasing or decreasing the

number of arms and the hat size. Increments in the hat size and decre-

ments in the number of arms were correlated with a more upward

Figure 2. Two examples of stimuli used in the present study. The stimuli vary in three attri-

butes: arms, hat, and antennae. The remainder of the stimulus layout was held constant. As

used in the experiments, the stimuli were in colour (red, pink, yellow, white, and black).
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position of the antennae. Conversely, decrements in hat size and incre-

ments in the number of arms resulted in a more downward position of

the antennae. All stimuli used were obtained by the application of one or

two such transformations .
Table 1 displays the 15 stimuli and the two categories developed

around the two prototypes. As can be seen in the table, in addition to the

prototype, each category contained six instances, and one category (O)

also contained an exception. This exception did not follow the rules of

generation. The rationale for the inclusion of the exception was to enable

an analysis of category learning in ill-de® ned categories. Except for the
mere fact that an exception is present, this aspect is not an issue of the

present study.

From the two cover stories a number of statements were generated at

the categorical and the conceptual levels of knowledge as de® ned in the

introduction. Because the same stimuli were categorised in the same way
under both cover stories, the categorical knowledge statements were the

same for both stories, and only the conceptual statements diŒered. The

Appendix displays all the statements generated from the two cover stories

(translated from Dutch).

As categorical knowledge concerns features that are relevant to the
categorisation, statements that specify the relevant or the typical features

in a category provide categorical knowledge. This includes statements

such as `̀ Kwarks mostly have many arms’ ’ , `̀ Orkels mostly have few

arms’ ’ , etc. `̀ Very often Kwarks have a small hat’ ’ , `̀ The exact number of

arms varies both in Kwarks and in Orkels’ ’ . Also statements about the

correlation between characteristics are situated at this level, such as `̀ The

TABLE 1
Description of the Stimulus Patterns and the Categorisation System Used in the Present

Study

Number of Pairs of Arms

Hat Size 0 1 2 3 4

0 K2 ± K3 ± ±

1 K6+ + K5+ K1 O15+ +

2 K7+ + K4+

O11± O14 ± ±

3 O8 O12± O13 ± ±

4 O10+ + O9+

Stimulus patterns are indicated in the appropriate cells. The category is indicated by the

letters K and O. The numbers refer to a stimulus identi® cation, and the + and ± signs refer

to the position of the antennae.
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fewer the number of arms, the larger the size of the hat’ ’ , and `̀ The more

arms, the more downward the orientation of the antennae tends to be’ ’ .

The complete list of categorical statements used is presented in the

Appendix.
Knowledge at the conceptual level, relates the category to other known

categories. Hence, statements such `̀ All Kwarks are workers’ ’ (cover 1)

and `̀ Orkels bore the mine galleries’ ’ (cover 2) are examples of conceptual

knowledge. The same is true for statements specifying the function of the

category or of certain features: `̀ The bigger the hat, the bigger the brain

for thinking’ ’ (cover 1) and `̀ The arms are used to transport the ore’ ’
(cover 2). Explanation of why there is a correlation between certain

features also exempli® es conceptual knowledge: `̀ The happier they are,

the more the antennae are oriented upwards’ ’ (cover 1) and `̀ The deeper

the robot can go into the mine, the more upward the antenna orienta-

tion’ ’ (cover 2).
The materials were varied in four respects: Participants can be

presented categorical information or not; they can be given conceptual

information or not; conceptual information can be based on two diŒerent

cover stories; and the conceptual information does or does not include

information about the exception. A complete factorial design based on
these four variables is not possible, because the latter two variations are

conditional on the presence of conceptual information. Table 2 shows the

design used in the present experiment.

Procedure. Participants were tested individually at an IBM-compatible

PC with a 14-inch colour monitor. First the experiment was explained
and a few examples of the stimulus materials were shown. All participants

TABLE 2
Incomplete Factorial Design Used in Experiments 1 and 2

CO CO

Cover 1 Cover 2

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

E E E E

CA 1 3 5 7 9

CA 2 4 6 8 10

The values in the cells of the table refer to a number scheme of the cells used in the data

analysis.

The abbreviations CA, CO, and E refer to the presence, respectively of categorical infor-

mation, conceptual information, and information about the exception. The same symbols

overlined indicate the absence of such information.
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were told that the stimuli they would see belonged in a natural way to

two categories. Next, if applicable, the participants went through the

knowledge acquisition phase, in which the texts speci® ed in the Appendix

were presented. The participants were instructed to memorise the infor-
mation. After a study period, they were presented a quiz containing 8± 20

questions, depending on the number of statements presented in the condi-

tion. If more than 15% of the answers were incorrect, the text was pre-

sented again, followed by a similar quiz. If still too many errors were

committed, the text was presented for a third and last time.

After this knowledge acquisition phase, the similarity rating part of the
experiment was introduced. Participants in all the conditions of the

experiment were explained the procedure. It was stressed that they were

to use all the values of the scale. On each trial two stimuli were displayed,

one in the left and the other in the right half of the screen. Below the two

stimuli a row of 2 ´ 2 cm response keys was displayed numbered 1
through 9. One of these keys could be selected by positioning the cursor

over the key and then clicking the left mouse button. In this phase, all

possible pairs of stimuli were presented once. Not only the sequence of

the pairs but also the intra-pair order was randomised. First there was a

short practice session (20 pairs) based on a random selection of pairs to
give the participant the opportunity to adapt to the situation and to the

response scale. The entire session, knowledge training included, lasted for

about 45 minutes, and was completely presented on the computer.

Results

Knowledge training. Of the 80 participants who were in the knowledge

conditions, 60 passed the test after one single presentation; 2 required three

presentations of the information. The number of participants that suc-

ceeded the test was spread about equally over all conditions (eight or nine

participants per condition succeeded). It seems safe to assume, therefore,
that knowledge acquisition was similarly successful in all the conditions.

Similarity ratings. Because the similarity ratings collected in the 10

conditions are expected to diŒer due to the instructions, it does not make

sense to pool these data for an overall multidimensional scaling. To show
that the stimulus set was by and large perceived as intended, the data of

the control condition were subjected to a multidimensional scaling. To

that end, trimmed means (3 standard deviations) of the similarities of

each pair of stimuli were calculated and formed the input of a multidi-

mensional scaling. As there were three physical stimulus dimensions, a

solution in three dimensions was obtained in a city-block metric by
means of the KYST program (Kruskal, Young, & Seery, 1977). The solu-
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tion had a stress of 0.059. The three dimensions in this solution corre-

sponded quite well with the physical dimensions in order of importance,

arms (r= ± .97), hat (r= ± .18), and antennae (r= ± .65).

The experiment addressed the question whether the availability of prior
knowledge about the stimuli and their categorisation would have an eŒect

on the perceived similarity of the stimulus space. One possible way for

such an eŒect to materialise is that the importance or the weight of parti-

cular stimulus dimensions used in the similarity judgement is changed. In

order to test whether this was the case, the similarity ratings for each

participant were subjected to a multiple regression analysis with the
physical intra-pair distance on each dimension as the predictors.

Averaged over the 90 regression analyses, the regression coe� cients for

the arms, hat, and antennae dimensions amounted to 12.38, 5.10, and

2.63 respectively, and the standard deviations on these coe� cients were

4.31, 2.40, and 2.24 respectively. It appeared that in 89 of the 90 analyses
the regression coe� cient for the arms dimension was signi® cant at the .05

level. For the hat dimension the coe� cient was signi® cant in the data of

78 participants, whereas the antennae dimension attained signi® cance in

53 data-sets. So it seems that the order of importance of the three dimen-

sions was similar for all participants.
To facilitate comparisons of the importance of each of the three

stimulus dimensions across participants and conditions, an estimate of the

relative weight of each dimension is needed for each participant. Such

relative weights were obtained for each participant by taking the ratio of

the regression coe� cient over the sum of all three regression coe� cients

in the analysis.2 The rationale of this method is that each regression
coe� cient represents a unique part of the covariance between the

predictor and the criterion. The three regression coe� cients taken

together explain all the variance due to the stimulus dimensions, so that

the ratio expresses the relative importance of the stimulus dimension

(predictor) in the similarity rating (criterion).
On the basis of the analysis it is predicted that the importance of the

stimulus dimensions may diŒer as a function of the knowledge conditions.

In order to test this prediction, the relative weights were subjected to a

multivariate analysis with the 10 knowledge conditions as dummy coded

independent variables, and the 3 dimensional weights as the dependent
variables. Hypotheses were tested by means of contrasts in the indepen-

dent and the dependent variables. This procedure follows a suggestion of

McCall and Appelbaum (1973) for a correct analysis of repeated

measures designs. The signi® cance level was set at .05.

2
Note that this is not the same as the calculation of normalised coe� cients.
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As could be expected on the basis of the regression analyses, the

three weights were reliably diŒerent [F(2, 79)= 151.28, p< .001]. The

average weights were respectively 0.60, 0.26, and 0.14. The average on the

arms dimension was larger than the sum of the other two [F(1, 80)=
256.91, p< .001], and the average on the hat dimension was still reliably

larger than the average on the antennae dimension [F(1, 80)= 49.48,

p< .001].

Table 3 presents the average weight on the arms and the hat dimen-

sions in the 10 conditions of the design. An analysis of the eŒects of

the knowledge conditions on the weight of the arms dimension revealed
an eŒect of the presentation of categorical information [F(1, 80)= 4.78,

p< .05], such that the mean weight was smaller when no categorical

knowledge was available (M= 0.60), than when categorical information

had been presented (M= 0.67). The presence of conceptual information

also aŒected the importance of the arms dimension (MCO = 0.68 and
MCO = 0.59) [F(l, 80)= 5.66, p< .05], but the interaction of categorical and

conceptual information presence was not signi® cant (F< 1). Similar

analyses on the hat dimension and on the antennae dimension did not

reveal any reliable eŒects. This is probably because the complementary

eŒects were spread over the two dimensions: It is clear in Table 3 that
increases in the arms-weights correspond to decreases in the hat-weights,

but the diŒerences in the hat-weights were smaller.

It could be the case that the eŒects shown are an artifact of the

averaging of the regression coe� cients. Therefore, the same analyses were

performed on the regression coe� cients as they were obtained in the

TABLE 3
Average Relative Weight of the Arms and the Hat Dimensions in Experiment 1 as a

Function of the Information Presentation Conditions

CO CO

Cover 1 Cover 2

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

E E E E

CA

Arms 0.65 0.57 0.56 0.58 0.47

Hat 0.23 0.32 0.23 0.27 0.32

CA

Arms 0.71 0.70 0.55 0.62 0.54

Hat 0.21 0.23 0.22 0.24 0.29

The abbreviations CA, CO, and E refer to the presence, respectively, of categorical infor-

mation, conceptual information, and information about the exception. The same symbols

overlined indicate the absence of such information.
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individual analyses. In general, the eŒects tended to be larger, but the

eŒects found signi® cant were the same. In addition, the eŒect of the

presence of exception information on the regression coe� cient of the

antenna dimension also attained signi® cance (ME = 2.23 and ME = 3.44)
[F(1, 80)= 5.56, p< .05].

Discussion

The results show that the availability of prior knowledge aŒects the

importance assigned to the stimulus dimensions in judging the similarity
of pairs of stimuli. Although the arms dimension, which is a salient attri-

bute of the stimulus set, is the most important one in all conditions, it is

clear that when categorical knowledge is available its importance is even

larger. However, when conceptual knowledge was available the impor-

tance of this dimension was smaller than when no such knowledge was
available. Both these eŒects appeared to be additive.

These ® ndings are consistent with the model presented in the introduc-

tion. The model assumes that the knowledge acquired in the ® rst phase of

the experiment is stored in memory and is activated during the stimulus

comparison task of the second phase. As categorical knowledge speci® es
the stimulus features that are characteristic of the category, it is expected

that the perceptual stimulus features will result in activation of that

knowledge. Salient stimulus features are more likely to attract attention

and are therefore thought to be more e� cient in evoking the related

categorical knowledge. In the present context this means that activation

of categorical knowledge about the arms dimension is more likely and
this is expected to result in a larger impact of that dimension in the

similarity judgements.

In contrast, conceptual knowledge represents the relations between the

categories and their function. Because this knowledge is not directly tied

to perceptual features, it is not dependent on saliency for its activation.
Once activated on the basis of relevant cues, this knowledge provides

information about several features and their relation to the categories so

that the perceptual importance of the features is overruled to some

extent by the retrieved conceptual information. More speci® cally, in the

present context, it is expected that the evocation of conceptual knowl-
edge will result in a decreased weighting of the arms dimension.

The model does not specify an interaction between the categorical and

the conceptual knowledge levels. This means that the increased weighting

of the arms dimension due to categorical knowledge and the decreased

weighting of that dimension due to conceptual knowledge are obtained

independently from each other. Consequently, no statistical interaction of
the two eŒects is expected.
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All the ® ndings seem to be covered by the relations speci® ed in the

model, but it may be objected that the eŒects were signi® cant only with

respect to the arms dimension and not with respect to the other dimen-

sions. Inspection of Table 3 shows that the diŒerences for the hat dimen-
sion are in the predicted direction. On average, the weight for the hat

dimension tended to be lower with than without categorical knowledge

(Ms respectively, 0.24 and 0.28) and it tended to be higher with than

without conceptual knowledge (Ms respectively, 0.27 and 0.22). These

diŒerences were too small, however, to attain signi® cance.

An alternative explanation would be that the participants assumed that
the knowledge presented in the ® rst phase of the experiment was relevant

to the task in the second phase. This would have led them to use this

information to guide their stimulus comparisons. However, as only the

categorical information is directly related to the stimulus features, it may

be expected that only this information is used and there is no reason to
expect that conceptual information is used and if it is used, unless the

model speci® ed in the introduction is correct, there is no reason to expect

that the eŒects of conceptual information would be opposite to those of

the categorical information.

Taken all together, Experiment 1 provides evidence in favour of the
view that the manipulations of prior knowledge result in changes of the

psychological stimulus space. This interpretation could gain in strength if

the average relative weights per information condition could be used to

predict learning performance of another group of participants in a similar

experiment with category learning instead of similarity rating. Further-

more, such a study could support the hypothesis that eŒects of knowledge
on category learning are mediated by perceived similarity, namely by

changes in the psychological stimulus space. Such a test was realised in

the second experiment.

EXPERIMENT 2

The purpose of Experiment 2 was to test whether measures of category
learning speed and learning e� ciency could be predicted on the basis of

the average dimension weights per condition as observed in Experiment 1.

The same design was used with category learning instead of similarity

judgement as the critical phase.

Method

Participants and design. One hundred ® rst-year students at the faculty

of psychology and educational sciences of the University of Ghent partici-
pated for course requirements and credit. They all volunteered for this

50 VANDIERENDONCK AND ROSSEEL

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 1

9:
21

 0
5 

Ja
nu

ar
y 

20
15

 



particular experiment, and none of them had participated in Experiment

1. They were randomly and equally assigned to the 10 conditions of the

design displayed in Table 2.

Materials and procedure. The materials were the same as in Experi-

ment 1, and the procedure was diŒerent only for the last phase of the

study. Instead of rating the pair-wise similarity, the participants learned

to categorise the individual stimuli. In this part of the experiment, only

stimulus patterns K1, K2, K6, O8, O9, O13, and O15 (see Table 1) were

presented. The block of seven stimuli was presented several times, each
time in a diŒerent random order. Learning continued until no more

errors were committed during the presentation of two consecutive blocks,

or until 70 trials had passed, whichever came ® rst.3

Results

Knowledge training. Of the 90 participants who were in the knowledge

conditions, 72 passed the test after a single presentation; 10 required

three presentations of the information. The numbers of successful partici-

pants were spread equally across all conditions (between 7 and 10 partici-
pants per condition succeeded).

Methodology. Before presenting the results, an explanation of the

methodology used is called for. The ® rst part of the method is concerned

with model testing; the result of this part yields a rather general assess-

ment of the usefulness of the knowledge-based predictions. The second
part uses the parameters obtained in the ® rst part to generate a number

of predictions concerning some aspects of the training performance and

to estimate the importance of the knowledge eŒects.

A ® rst question to be considered concerns the way relative dimensional

weights can be used to predict learning performance. A possible solution
is suggested by applications of the Generalised Context Model (e.g.,

Nosofsky, 1984, 1986, 1992b). This model predicts category learning

performance on the basis of three sets of parameters: (1) the relative

importance assigned to the stimulus dimensions (the `̀ attentional ’ ’

weights), (2) the steepness of the similarity gradient (c), and (3) the
category biases. Given stimulus objects grouped in two categories, C1 and

3
The learning phase was followed by a transfer phase in which the participants were

requested to categorise swiftly all 15 stimulus patterns several times in a random order.

Finally, there was a typicality phase in which participants rated the typicality of each stimu-

lus with respect to the K-category. The latter two phases are of no concern for the present

study, however.
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C2, this model de® nes the probability that an instance Si is assigned to

category R1 as

S jŒC 1
Njb1sij

P(R1|Si) = Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð (1)
S jŒC1

Njb1sij + S kŒC 2
Nk(1± b1)sik

where Nj represents the relative frequency with which instance j was

presented during training, where b1 (0 < b1 < 1) is a free parameter repre-

senting the bias towards category 1, and where si j refers to the similarity

between exemplars i and j. This similarity is de® ned as exponentially
related to distance.

sij = e ± cdij (2)

where c (c> 0) is a free parameter representing the steepness of the

similarity gradient, and di j is the distance between stimuli i and j

according to a Euclidean or a city-block metric in which the dimensions

of variation are assigned diŒerent weights. In general, the distance for a

n-dimensional stimulus set is given as

n

dij = ( S wk|xki ± xkj|
r)

1
r

(3)
k= 1

where wk (0 < wk < 1 and S kwk = 1) are free parameters, xki is the kth

coordinate of the ith stimulus, and r is taken to be 1 (city-block metric)
or 2 (Euclidean metric). For the present application, a city-block metric is

used.

Basically, two diŒerent processes operate in the GCM. One process is

attentional selectivity which is re¯ ected in the relative weights (wk)

assigned to the stimulus dimensions by the end of training. The second
process is one of generalisation: The smaller the value of the parameter c,

the more two stimuli tend to be considered similar; in other words, the

more the behaviour associated to one stimulus tends to be generalised to

the other one.

The prediction of the present study is related to the aspect of atten-

tional selectivity, and so it seems that the GCM-framework can be used
to verify the prediction. Application of GCM to the present data requires

four free parameters, namely c, b1, w1 (arms dimension), and w2 (hat

dimension; the weight for the antennae dimension w3 is simply 1± w1 ± w2).

The predictions obtained in this way are the best predictions that can be

achieved within the framework. Taking into account the characteristics of
the GCM, this means that three sources of information contribute to the

prediction in the most optimal way: attentional selectivity, category bias
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(a decision aspect), and stimulus generalisation. By means of a maximum

likelihood procedure, optimal values for the four free parameters can be

estimated. The details of this procedure have been extensively described

by Nosofsky (1992a).
The knowledge framework used in the present study involves only the

prediction of attentional selectivity, however. Applied to the GCM, this

means that the parameters w1 and w2 are ® xed: The values obtained in

Experiment 1 are thought to predict performance in categorisation

learning. This results in a restricted version of the GCM with only two

free parameters (c and b1), which can be estimated by the same proce-
dure. It is now possible to test whether this restricted model deviates

signi® cantly from the complete four-parameter model (see e.g., Nosofsky,

1992a). To that end, a statistic (G2) is calculated

G2 = ± 2(ln Lr ± ln Lc) (4)

where lnLr is the natural logarithm of the (maximum) likelihood of the

restricted model and lnLc represents the natural logarithm of the likeli-

hood of the complete model. Asymptotically, G2 follows a c 2 distribution
with the diŒerence in the number of free parameters between the two

models as the degrees of freedom.

Suppose the restricted model yields a good ® t. This may happen for a

number of reasons. Our prediction is that the attentional weights

obtained in the 10 conditions of Experiment 1 are especially suitable to
explain learning performance. It may, however, also occur that the two

free parameters (c and b1) explain most of the variance. To control for

the latter case, a second restricted model can be used in which

w1= w2= 0.333. If this restricted model performs well, it would mean that

the exact value of attentional weights is indeed not important.
Further control can be achieved by invoking a third restricted model,

in which the attentional weights can vary freely, but in which the c and

b1 parameters are ® xed. Because especially the c parameter is a very

powerful one, it could be the case that de® ciencies in the attentional

weights can to a large extent be compensated for by an appropriate value

of c. Therefore, c and b1 were estimated over the complete data set and
the same values were used in each of the 10 conditions. This way a

restricted model is realised in which the c and b1 parameters are still

optimal to the data set at hand, but such that variations speci® cally

linked to the conditions in the experiment cannot be re¯ ected in the

diŒerences of these parameters over the conditions.
On the basis of the parameter estimations obtained, each model can be

used to predict training performance. This performance can be measured

in a number of ways. In the present study we shall use the proportion of
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errors per stimulus during training (the variable which is used to ® t the

models) and the trial number with the last error. Whereas the ® rst measure

is especially sensitive to di� culties related to particular stimuli, the latter

measure gives an indication about the total duration of learning.

Model ® tting. For each stimulus presented during acquisition, the

average frequency with which the stimulus was assigned to each of the

two categories was calculated per condition. These values were used to

obtain a ® t of each of the four models discussed in the previous section.

The complete four-paramete r version of the GCM yielded ® ts that were
quite good in most of the conditions, with log-Likelihoods varying from
± 20.12 to ± 78.16 and Root Mean Squared Deviations (RMSDs) varying

from 0.040 to 0.160.

The four-parameter version of the GCM was also used to obtain

estimates of the c and b1 parameters that would be valid in all 10 condi-
tions of the experiment. The RMSD of this application amounted to

0.131, which is not excellent but quite good.

The three restricted (two-parameter) versions of the model yielded

poorer ® ts overall than the complete model: The log-Likelihoods ranged

from ± 28.34 to ± 146.26 in the knowledge-based version, from ± 21.45 to
± 24.18 in the equal weights version, and from ± 22.56 to ± 103.57 in the

® xed generalisation version. The RMSDs varied between 0.105 and 0.271

in the knowledge-based version; between 0.122 and 0.292 in the equal

weights version and between 0.056 and 0.217 in the ® xed generalisation

version.

Application of the G2-statistic (equation 4) revealed that the ® t of the
knowledge-based version was signi® cantly poorer than the complete

model in each of the 10 conditions: c 2(2) ranged from 13.98 to 166.82 (all

p< .001). Except for the no-knowledge control condition, c 2(2)= 0.20, the

same was true for the equal weights restricted model; in the other condi-

tions c 2(2) varied from 11.34 to 122.65 (all p< .01). In the ® xed generali-
sation application, the statistic was signi® cant in 8 of the 10 conditions

with c 2(2) ranging from 2.43 to 81.44.

All these ® ndings show that the complete four-parameter version of the

GCM yields a better ® t than each of the three restricted two-parameter

versions. This does not mean, however, that the more restricted versions
fail to predict some important aspect of learning performance. In order

to assess the value of the restricted versions, and the knowledge-based

version in particular, a second series of tests was performed in which the

predictive values of all four versions were compared over all conditions.

Two separate tests were performed, one on the proportion of errors per

stimulus (the same variable used to obtain the ® ts) and the other on the
trial number on which the last error was committed.
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Errors per stimulus. All four versions were used to generate predic-

tions on the expected average number of errors per stimulus in each of

the 10 conditions of the experiment. With seven stimuli and 10 condi-

tions, each application yields 70 values that were used in a multiple
regression analysis to predict the observed proportion of errors. As model

® tting has shown that the complete model yields better ® ts than each of

the restricted models, it is evident that the complete model is expected to

yield the better predictions. Because the knowledge-based version of the

model is based on information that is not included in the complete

model, it is expected that this model contributes signi® cantly to the pre-
diction.

Table 4 displays the inter-correlations between the predictors and the

observed average proportion of errors per stimulus over the 10 condi-

tions. The correlations in this table are moderate to high, but it is inter-

esting to note that the knowledge-based predictions do not correlate very
well with the predictions of the complete GCM and of the ® xed GCM.

The multiple regression coe� cient amounted to 0.93 (coe� cient of deter-

mination 0.87) [F(4, 65)= 106.01, p< .001]. Table 5 displays the details of

the analysis. It is clear from this table, that the regression coe� cients of

the complete GCM, the knowledge-based version, and the equal weights
version were all signi® cant. However, the predictions of the equal weights

version, though signi® cant, were in the opposite direction to those

observed, so that only the complete GCM and the knowledge-based

version appear to be useful predictors.

Trial of last error. Prior knowledge may also have an eŒect on the
overall rate of learning, so that in the end fewer trials are needed to

master the categorisation. The trial number on which the last error is

committed was used to index this aspect of learning rate. On average,

64.0 trials were needed to attain the learning criterion or the end of the

learning phase; the averages per condition varied between 56.7 and 68.7.
An exact prediction of the trial number is not possible with the predic-

TABLE 4
Correlations Between the Four Predictors and the Average Proportion of Errors

Complete GCM Knowledge-based Equal-weights Fixed

Generalisation

Knowledge-based 0.42

Equal-weights 0.87 0.69

Fixed generalisation 0.96 0.37 0.81

Errors 0.89 0.57 0.79 0.84
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tors used. However, relative predictions were obtained by taking in each

condition the largest proportion of errors predicted, and entering this as

the prediction for that condition, so that for each knowledge condition a
relative prediction is made of the duration of learning. The rationale

behind this choice is that the larger the proportion of errors to a

stimulus, the more trials will be needed to achieve complete learning for

that particular stimulus.

Table 6 displays the correlation matrix of the four predictors and the

dependent variable, the trial of last error. In contrast to the proportion of

errors per stimulus where the test concerned 70 data points, with the trial
of last error, there are only 10 data points, 1 per condition. Nevertheless,

the multiple regression yielded interesting results. The multiple correlation

was 0.95 (coe� cient of determination 0.90) [F(4,5)= 11.57, p< .01]. Only

the regression coe� cient of the knowledge-based prediction attained
signi® cance, as can be seen in Table 7.

Discussion

Four realisations of the GCM were de® ned and optimal values of their

parameters were estimated. On average, the ® ts of all four variations
varied over the conditions from reasonably good to very good. Occasion-

TABLE 5
Results of the Multiple Regression Analysis in Experiment 2 for the Number of Categorisa-

tion Errors Per Stimulus

Regression t(65) p-level

Complete GCM 1.92 6.42 .001

Knowledge-based 1.41 5.97 .001

Equal-weights ± 2.03 ± 3.81 .001

Fixed generalisation ± 0.27 ± 1.07 ±

TABLE 6
Correlations Between the Four Predictors and the Average Proportion of Errors

Complete Knowledge- Equal- Fixed

GCM based weights Generalisation

Knowledge-based 0.26

Equal-weights 0.41 0.77

Fixed generalisation 0.59 ± 0.22 ± 0.34

Last error 0.67 0.46 0.16 0.70
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ally, the ® t was excellent. As could be expected, the four-parameter

version of the GCM outperformed each of the three two-parameter

versions. This was shown in the large number of signi® cant G2 tests.
Our main concern in this experiment, however, was not to test the

validity of the GCM. The usefulness of this model has been shown in

numerous studies, and there were no a priori reasons to believe that the

model would fail in the present data. On the contrary, the learning

materials used in the present study correspond to ill-de® ned categories
and previous research has shown that the context model (e.g., Medin &

SchaŒer, 1978; Medin & Smith, 1981) and its extension, the generalized

context model (e.g., Nosofsky, 1984, 1986, 1988; Nosofsky, Clark, &

Shin, 1989), give a very powerful description of such categorisation

phenomena. On the basis of this extensive literature it was expected that
the GCM would provide a good to excellent ® t of the data, and this

expectation was con® rmed.

The four sets of predictions have in common that they are derived

from the GCM. If the mechanisms described by GCM are su� cient to

explain the learning data, then a multiple regression analysis is expected

to reveal that one of the predictors is su� cient to explain the variance in
the dependent variable. Because the complete GCM version is the most

powerful one, this predictor would be the only one contributing signi® -

cantly to the multiple correlation. If, on the contrary, the restricted

versions contain information that is not accounted for by the common-

ality of the models, then these predictors would also explain some of the
variance in the dependent variable.

The multiple regression analysis showed that indeed the complete

GCM contributes signi® cantly to the number of errors per stimulus

during category learning, but it appeared that the regressions of the

knowledge-based version and the equal weights version were also signi® -
cant. However, only the regressions of the complete and the knowledge-

based versions were positive, indicating that these models capture the

di� culty of the individual stimuli during category learning. It is inter-

esting to note that this result is obtained in a situation where the correla-

TABLE 7
Results of the Multiple Regression Analysis in Experiment 2 for the Trial of the Last Error

Regression t(5) p-level

Complete GCM 17.69 0.86 ±

Knowledge-based 41.53 3.45 .05

Equal-weights ± 29.47 ± 1.04 ±

Fixed generalisation 42.53 2.12 .09
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tion of the knowledge-based predictor and the dependent variable is

lower than the correlations of the other predictors with the dependent

variable. This supports the conclusion that the variance shared by the

knowledge-based prediction and the dependent variable is unique.
The same predictors were used to predict the trial of last error. In this

multiple regression analysis, one predictor appeared to be su� cient to

explain the variance in the dependent variable, namely the knowledge-

based prediction. It was the only predictor whose regression coe� cient

was signi® cant. Again the correlations of the knowledge-based prediction

with the other predictors and with the dependent variable tended to be
small.

These ® ndings taken together constitute clear evidence that both the

average number of errors per stimulus and the trial of last error were

dependent on the dimensional weights of the psychological space induced

by the knowledge manipulations. It must be stressed that this is not a
circular prediction. The dimensional weights were obtained in Experiment

1 from an independent sample of participants who went through the

knowledge training and then judged the pair-wise similarity of instances.

They had not seen these instances before and they had not learned how

to categorise the individual instances. The sample of participants in
Experiment 2 was obtained independently and received the same knowl-

edge instructions before the category learning took place. The prior

exposure to categorical and conceptual knowledge notwithstanding,

category learning was still needed. As the average trial of last error

occurred around trial 64 and the average number of correct category

assignments of the individual stimuli varied largely, the presentation and
memorisation of the knowledge did not reduce the category learning part

to a trivial exercise.

GENERAL DISCUSSION

The ® rst experiment showed that prior knowledge in¯ uences similarity

judgements by changing the experienced saliency of the stimulus dimen-

sions involved. Experiment 2 demonstrated that these changes in dimen-

sional saliency predicted the speed of learning and the distribution of
errors over the stimuli in category learning. It was concluded that eŒects

of prior knowledge on category learning are mediated by changes of the

attentional weights in the psychological space.

The risk of building a circular argument was avoided in this study.

First, the knowledge eŒects were observed both in similarity ratings and

in indices of category learning. Second, manipulation of the knowledge
presented was done in a controlled way. There was an internal replication
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by having two diŒerent cover stories, and the information presented was

selected on the basis of a model that allowed a distinction between

diŒerent levels of knowledge. Finally, the knowledge given did not

constrain interpretation of stimulus information in such a way or to such
an extent that category learning became super¯ uous. This is supported by

the ® nding that the average trial of the last error was rather large in all

conditions.

Even though the present data clearly show that eŒects of prior knowl-

edge on category learning are mediated by eŒects on similarity perception,

some limitations of these experiments should be kept in mind. Only one
type of category structure was used in the present study and it was imple-

mented on a set of arti ® cial stimuli. All too often in research on categori-

sation results based on one type of stimuli or on a single categorical

structure are generalised to the entire domain. Therefore, future studies

should assess the generality of the present ® nding.
Nevertheless, the results obtained in the research reported here

have some important implications for our views on categorisation

and its relationship to knowledge. For one thing, the present paper

shows that even if categorisation is considered to be a data-driven

process, knowledge acquired prior to the category learning experiment is
bound to aŒect the learning process. In other words, learning a new

categorisation is at the same time data-driven and knowledge-driven, and

the present study shows that the knowledge input in the process is

mediated by the perceived similarity. Whether this is the only route by

which knowledge in¯ uences category learning is a task for future research

to ® nd out.
In any case, the present results suggest that knowledge and similarity

are closely interrelated, and this raises the question concerning the

relative impact of conceptual and perceptual processes on similarity

judgement, and the question of whether the process of perception itself is

aŒected by prior knowledge. It is also clear from the present study that
even if knowledge may aŒect the perceived similarities between exemplars,

there remains room for learning the categorisation. Goldstone (1994,

1995) has demonstrated that category learning itself changes the similarity

judgements (see also Homa et al., 1979). The question may be raised how

category learning aŒects similarity perception. In terms of the present
model, it may be suggested that category learning results in a categorical

representation that may be activated by the context of the experiment, so

that the activated categorical representation or knowledge may aŒect the

perception and the inference of stimulus similarities. The present results

are encouraging for research that intends to specify more precisely how

stimulus perception is aŒected by prior knowledge, and whether the
knowledge eŒects occur at a perceptual level indeed. At least some other
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studies suggest ways in which such an eŒect may occur. Schyns and

Rodet (1997), for example, have collected evidence showing that the

features of the stimuli are not ® xed characteristics but may be constructed

during category learning, such that the perception of the category would
change as a consequence of this process of feature learning (see also

Thibaut & Schyns, 1995).

Manuscript received July 1998

Revised manuscript received January 1999
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APPENDIX

This Appendix contains the paragraphs used in the knowledge acquisition phase

of the two experiments. The sentences are shown in the order they were presented

to the participants. Before each sentence an indication is given concerning the

cover story on which it is based (C1 or C2) or whether it is a categorical state-

ment (CA) or conceptual information (CO), and the other numbers refer to the

cells of the design in which the sentence was used.

General information

C1: 3,4,5,6. All Kwarks are workers; their arms are for working. All Orkels

are thinkers; the bigger their hat, the bigger their brain for thinking.

C2: 7,8,9,10. Kwarks transport the ore in the mine; they use their arms to

transport the ore. Orkels bore the mine galleries; the bigger the hat, the deeper

they can drill.

CA: 2,4,6,8,10. Kwarks mostly (but not always) have many arms and a small

hat. Orkels mostly have few arms and a big hat.

C1: 3,4,5,6. Kwarks and Orkels are not all equally happy, but, in general, the

bigger the hat and the fewer the number of arms, the happier the robot is.

Robots with a smaller hat and with more arms are less happy.

C2: 7,8,9,10. Kwarks and Orkels are not able to work at the same levels in

the mine, but in general it can be said that the bigger the hat and the smaller the

number of arms the better the robot is equipped for working at deep levels. It can

also be said that robots with smaller hats and more arms are not equipped for

working at deep levels.
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CA: 2,4,6,8,10. The exact number of arms and the size of the hat varies as

well in Kwarks as in Orkels. In general it can be said that the more arms a robot

has, the smaller the hat, and the more downward the orientation of the antennae

will be. It is also true that the fewer the number of arms on a robot, the larger

the hat and the more upward the antennae orientation is.

C1, 3,4,5,6. The happier the robots are, the more their antennae are oriented

upwards; the more unhappy they are, the more the antennae are oriented down-

wards.

C2: 7,8,9,10. The deeper the robots can go in the mine, the more upwards the

orientation of their antennae; the less deep the robots can go, the more the orien-

tation of the antennae is downwards.

Information about the exception

C1: 5,6. The previous text contained a description of characteristic features of

Kwarks and Orkels. These characteristic features are not always present: Kwarks

are trained by a special Orkel, which is able to explain and to demonstrate the

simple tasks the Kwarks have to perform. As a consequence, this Orkel with a

small hat and many arms is happy.

C2: 9,10. Via the mine shaft all robots are provisioned by an Orkel that trans-

ports all supplies. Because this Orkel is not required to drill, it has a small hat,

and it still can reach the deeper mine galleries.

CA, CO: 5,6,9,10. So there is an Orkel with many arms and a small hat.

SIMILARITY AND KNOWLEDGE 63

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 1

9:
21

 0
5 

Ja
nu

ar
y 

20
15

 


