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New click chemistry is demonstrated. Click polymerization
proceeded via 1,3-dipolar polycycloaddition of homo-ditopic
nitrile oxides to bifunctional terminal olefinic and acetylenic
monomers as dipolarophiles. Molecular sieves (MS 4A) served
as an efficient promoter for the polymerization to afford poly-
isoxazolines and polyisoxazoles in high yields.

Recent sophisticated supramolecular and macromolecular
architectures strongly require viable means of powerful, highly
reliable, and selective reactions. For this purpose, click chemis-
try,1 exploiting the Huisgen dipolar cycloaddition of azides and
alkynes, has generated particular interest.2 Click reactions have
been actually utilized in a variety of synthetic processes for su-
pramolecules and macromolecules. However, problems of safety
with the azide moiety concerning toxicity and explosiveness lead
to several limitations to the use.3 Recognizing these issues, we
became intrigued by the potential usefulness of nitrile N-oxide
as a 1,3-dipole, which allows efficient [2 + 3]cycloaddition re-
action with not only alkenes but also alkynes to selectively give
isoxazoline and isoxazole.4,5 These hetero-rings are versatile
scaffolds for various derivatives, because they enable simple
conversion to useful functional groups; aldol, diketone, �-ami-
noalcohol, and so on. Nitrile N-oxides, however, have not been
employed to click chemistry yet.

Herein, we wish to describe affirmative answers for the
utility and productivity of new click chemistry exploiting nitrile
N-oxide, as demonstrated by the polycycloaddition reaction of
homo-ditopic aromatic nitrile N-oxide to various bifunctional
terminal olefins and acetylenes as dipolarophiles, according to
a MS 4A promoted protocol.

Scheme 1 shows the fundamental reaction scheme of the
‘‘click chemistry’’ utilizing aromatic hydroxamoyl chloride as
the precursor of reactive aromatic nitrile N-oxide. Prior to the
polymerization, a click reaction using benzene-1,3-dicarbohy-
droximoyl dichloride (1) and butyl acrylate (2) was carried out
as shown in Scheme 2. The addition product 1,3-bis(3-isoxazo-
linyl)benzene 3 was obtained in a high yield as a single diaster-
eomer, certainly suggesting the possibility of efficient polymer-
ization.

Table 1 summarizes the results of ‘‘click polymerization’’
via polycycloaddition of 1 to a bifunctional acrylate 4 mainly

to find the effect of base. While base-free condition6–8 (Entry 1)
proved inferior to base-promoted conditions, we found that a va-
riety of bases effectively promoted the desired polymerization in
moderate yields (Entries 2–5). In hopes of efficiently accelerat-
ing the polymerization, we sought to identify a more active base
working without any side reaction. After considerable efforts,
this goal was achieved by the addition of MS 4A as a suitable
base as well as a dehydrating agent (Entries 6–9).9–11 Polyisox-
azoline poly-5 was obtained in 99% yield by polymerization at
80 �C for 1 d in the presence of 344mg of MS 4A (vs. 0.22mmol
of 4), giving preferentially one regioisomer (Entry 7, Mn 9100,
Mw 14900, and Mw=Mn 1.6 by GPC).12 In the present MS 4A-
containing system, higher temperature and prolonged reaction
time resulted in the decrease of yield and the lowering in molec-
ular weight, probably due to retrocycloaddition (Entries 8 and 9).

The regiochemistry of the isoxazoline moiety of poly-5 was
determined as that illustrated in Table 1 by the NOESY correla-
tion observed between the isoxazoline methylene protons and
the aromatic protons.

As for the versatility of monomers of this click polymeriza-
tion, terephthalohydroximoyl dichloride instead of 1 and a vari-
ety of bifunctional terminal olefinic and acetylenic monomers
could be employed, as shown in Tables 2 and 3.

Dimethacrylate 7, bisphthalimide 9, and 1,5-hexadiene (11)
with 1 underwent clean polycycloadditions (Entries 2–4).13 The
polyaddition to alkynes such as bispropiolate 13, p-diethynyl-
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Scheme 1. Click reaction exploiting nitrile N-oxide and olefin
or acetylene.
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Scheme 2. Reaction of bifunctional nitrile N-oxide 1 and butyl
acrylate (2).
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Entry Base Solvent Temp/�C Time/d Mn
a Mw

a Mw=Mn
a Yield/%

1 — Toluene 120 1 3700 5500 1.5 24

2b NaOH CH2Cl2/H2O rt 1 3400 4600 1.3 99

3 Et3N DMF rt 1 4200 5700 1.4 60

4 KF DMF rt 1 4600 6500 1.4 60

5 KF DMF rt 5 5300 7800 1.5 67

6 MS 4A DMF rt 7 6000 8600 1.4 90

7 MS 4A DMF 80 1 9100 14900 1.6 99

8 MS 4A DMF 80 8 6000 8600 1.4 86

9 MS 4A DMF 100 1 6700 10100 1.5 89

aEstimated by GPC based on polystyrene standards. bPolymerization reaction was
carried out with NaOH (2.5 equiv) in the presence of TBAB (5mol%).
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benzene (15), and 1,7-octadiyne (17) also proceeded well to
afford polyisoxazoles,12 although the molecular weight was
low, due to the low solubility of the polyisoxazoles which were
precipitated during the polymerization.14

In conclusion, this paper has demonstrated new click chem-
istry utilizing nitrile N-oxide as a 1,3-dipolar molecule coupled
with olefinic and acetylenic compounds, especially from view-
point of macromolecular synthesis. The use of MS 4A to pro-
mote the polycycloaddition is notable for both the mild reaction
conditions and simple procedure and work-up. This protocol of
new click chemistry can be characterized by (i) nonexplosive
materials, (ii) versatility in both 1,3-dipolar molecule and dipo-
larophile, (iii) C–C bond formation, (iv) easy work-up, (v) ab-
sence of catalyst, and (vi) easy transformation of the isoxazoline
and isoxazole moieties, all of which enable access to high-

performance materials. Further broad applications of this
click chemistry are currently in progress.
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Table 2. Syntheses of polyisoxazoles and polyisoxazolines by
MS 4A-promoted polycycloaddition
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aTerephthalohydroxamoly chloride was used as a precursor of bifunctional nitrile
oxide.

Table 3. Molecular weight and thermal properties of poly-
isoxazolines and polyisoxazoles

Entry Products Mn
a Mw

a Mw=Mn
a Tg/

�C Td5/
�C Td10/

�C

1 poly-5 9100 14900 1.6 73.6 253 260

2 poly-6 3300 4900 1.5 75.9 266 279

3 poly-8 4200 5400 1.3 57.8 268 278

4 poly-10 4700b —c —c —c 296 306

5 poly-12 4400 7000 1.6 145.3 241 269

6 poly-14 1500 1900 1.3 64.3 283 303

7 poly-16 1200 2400 2.0 —c —c —c

8 poly-18 2200 2800 1.3 58.8 289 336

aEstimated by GPC based on polystyrene standards. bDetermined from the
integral ratio of terminal protons in 1HNMR spectrum. cNot estimated.
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