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Abstract: Like the importance of benzyne, witnessed in
modern arene chemistry for decades, 1,2-dehydro-o-carborane
(o-carboryne), a three-dimensional relative of benzyne, has
been used as a synthon for generating a wide range of cage,
carbon-functionalized carboranes over the past 20 years.
However, the selective B functionalization of the cage still
represents a challenging task. Disclosed herein is the first
example of 1,3-dehydro-o-carborane featuring a cage C�B
bond having multiple bonding characters, and is successfully
generated by treatment of 3-diazonium-o-carborane
tetrafluoroborate with non-nucleophilic bases. This presents
a new methodology for simultaneous functionalization of both
cage carbon and boron vertices.

Icosahedral carborane has superaromatic character exhibit-
ing extraordinary thermal stability and unusual chemical
reactivity such as aromatic substitution, similar to that of
benzene.[1] 1,2-Dehydro-o-carborane (o-carboryne) is a very
reactive intermediate, which can be regarded as a three-
dimensional relative of 1,2-dehydrobenzene (benzyne)
(Figure 1).[2] They share some common features, however, o-

carboryne has its own unique properties resulting mainly from
steric/electronic featueres.[3] It can undergo [4+2] and [2+2]
cycloadditions,[2a,4] ene reactions,[5] and C�H bond-insertion
reactions[6] with a variety of organic molecules to afford
a large class of o-carborane derivatives. Thus, o-carboryne is
a very useful synthon for generating a wide range of cage,
carbon-functionalized carboranes which may have potential
applications in medicine,[7] materials science,[8] and organo-
metallic/coordination chemistry.[9] With this in mind, we
speculated that 1,3-dehydro-o-carborane (Figure 1), featuring

a cage compound having C�B bonds with multiple bonding
characters, would be a reactive intermediate for simultaneous
functionalization of both cage carbon and boron vertices.
Such a species might be generated in a similar manner to that
of o-carboryne, which can be produced from 1-X-2-Li-o-
C2B10H10 by LiX salt elimination (X = Br,[2a] I[2c] ; Scheme 1).

Our initial attempts to obtain 1,3-dehydro-o-carborane
from 1-Li-3-X-o-C2B10H10 (X = Br, I) by LiX elimination
failed since 1-Li-3-X-o-C2B10H10 was thermally stable, even
under forced reaction conditions, owing to a very strong B�X
bond.[10] In view of the properties of diazonium salts of
carboranes,[11] we thought that 3-(N2

+BF4
�)-o-C2B10H11 (1)

may serve as a good precursor for 1,3-dehydro-o-carborane as
dinitrogen is an excellent leaving group after deprotonation
of the cage C�H (Scheme 1). Indeed, this is an efficient
method to generate previously unknown 1,3-dehydro-o-
carborane. Its generation and chemical properties are
reported herein.

3-Diazonium-o-carborane tetrafluoroborate (1) was pre-
pared in 70 % yield upon isolation, by treatment of 3-amino-
o-carborane[12] with 1.2 equivalents of in situ generated nitro-
syl fluoride in the presence of boron trifluoride.[13] It was
noted that the stability of 1 is dependent upon the counterion
used and BF4

� offers the highest thermal stability of the salt
among the anions, such as PF6

� and Cl� , examined.
To test our hypothesis, a benzene suspension of 1 was

treated with 1 equivalent of nBuLi at room temperature for
10 minutes to give the expected [4+2] cycloaddition product
3a in 38% yield upon isolation (entry 1, Table 1). The low
yield resulted from the formation of 3-nBu-o-C2B10H11, which
was generated from the nucleophilic attack of nBuLi.[14]

When the non-nucleophilic base lithium diisopropylamide
(LDA) was used, 3a was obtained in 72% yield (entry 2).
Other less-nucleophilic bases gave relatively lower yields
(entries 3–5). Increasing the amount of base did not improve
the yield (entry 6). The reaction also proceeded well in the

Figure 1. Benzyne, o-carboryne, and 1,3-dehydro-o-carborane.

Scheme 1. Generation of o-carboryne and 1,3-dehydro-o-carborane.
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dark (entry 7). These results suggest that 1 is a good precursor
of 1,3-dehydro-o-carborane and its reaction with benzene is
more efficient than that of o-carboryne.[4g]

Under the optimal reaction conditions (entry 2, Table 1),
various arenes with different substituents, such as trimethyl-
silyl, halo, and alkyl groups, were examined. The results are
compiled in Table 2. In general, the reaction efficiency of 1,3-
dehydro-o-carborane with arenes was much higher than that
of o-carboryne. For the methyl-substituted arenes 2 i–m, the
corresponding aromatic ene reaction products,[15] 3-aryl-o-
carborane (4), were also isolated and became the major
product in cases of 2k and 2m (entries 11 and 13). Repre-
sentative molecular structures of the [4+2] cycloadduct and
the aromatic ene reaction product are shown in Figure 2.

Since carbon and boron atoms are different in nature and
the cage C�B bonds are polarized, the reactive intermediate,
1,3-dehydro-o-carborane, is best described as a resonance
hybrid of both bonding and zwitterionic forms (Scheme 2a).
Thus, the regioselectivity of the [4+2] cycloaddition of 1,3-
dehydro-o-carborane with substituted arenes is governed by
electronic factors, though steric factors may also play a role,
and is similar to that of hetero-Diels–Alder reactions[16] or the
reactions of distorted arynes.[17] Scheme 2b shows both the
electronically favored and disfavored [4+2] cycloadditions of
1,3-dehydro-o-carborane with substituted arenes.

For arenes having more-evenly distributed electron den-
sity, two or more [4+2] cycloaddition modes were observed
(see the Supporting Information). However in the case of 2 f,
only one [4+2] cycloaddition mode was observed, probably
owing to the strong inductive effect imparted by the CF3

group. As 1,3-dehydro-o-carborane is an unsymmetrical
species, it is expected that its reaction with substituted
arenes affords structural isomers of the products. For instance,
two structural isomers were isolated in the reaction of 2 f
(Scheme 2c).

Table 1: Screening of reaction conditions.

Entry Base (equiv) Yield [%][a]

1 nBuLi (1.0) 38
2 LDA (1.0) 72
3 NaH (1.0) 55
4 NaNH2 (1.0) 61
5 LiHMDS (1.0) 66
6 LDA (2.0) 72
7[b] LDA (1.0) 72

[a] Yield of isolated product. [b] The reaction was performed in the dark.
LDA = lithium diisopropylamide, LiHMDS= lithium bis(trimethylsilyl)-
amide.

Table 2: Reaction of arenes with 1,3-dehydro-o-carborane.[a]

Entry R1/R2 (2) Yield [%][b]

3 (regioselectivity)[c] 4

1 H/H (2a) 72 (�) –
2[d] F/2,3,4,5,6-F5 (2b) 25 (�) –
3 F/H (2c) 64 (91:9) –
4 Cl/H (2d) 67 (68:32) –
5 Cl/2-Cl (2e) 55 (�) –
6 CF3/H (2 f) 53 (100:0) –
7 TMS/H (2g) 52 (71:29) –
8 tBu/H (2h) 67 (62:38) –
9 Me/H (2 i) 55 (73:27) 27
10 Me/2-Me (2 j) 47 (�) 39
11 Me/3-Me (2k) 26 (79:21) 53
12 Me/4-Me (2 l) 39 (�) 41
13 Me/3,5-Me2 (2m) 24 (89:11) 69

[a] Reaction conditions: LDA (1.0 equiv), arenes 2 (40.0 equiv), room
temperature, 10 min. [b] Yield of isolated products. [c] Determined by
1H NMR spectra. Regioselectivity refers to the ratios of favoured addition
fashion over disfavoured one. [d] The low yield resulted from the high
volatility of 3b. TMS= trimethylsilyl.

Figure 2. Molecular structures of 3m (left) and 4m (right).[19] Thermal
ellipsoids shown at 35% probability.

Scheme 2. a) Two resonance forms of 1,3-dehydro-o-carborane. b) The
[4+2] cycloaddition modes. c) Two structural isomers generated from
2 f.
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Remarkably different from that of o-carboryne, the
reactions with toluene and its derivatives, 2 i–m, also gave
the aromatic ene reaction products[15] 4 in 27–69% yields in
addition to the [4+2] cycloadducts. The ratio of ene product
to [4+2] cycloadducts increased with the number of the
benzylic C�H bonds (entries 9–13, Table 2). In case of the
reaction of 2m, an intermediate of the aromatic ene reaction
was observed in the 1H NMR spectrum of the crude reaction
mixture (see the Supporting Information) and it rearomatized
to 4m within 30 minutes. It is noteworthy that such an
aromatic ene reaction proceeded with excellent regioselec-
tivity, thus giving only the cage B3-substituted products 3-
aryl-o-C2B10H11 (4). This selectivity can be ascribed to the
zwitterionic nature of 1,3-dehydro-o-carborane as illustrated
in Scheme 3.

It is documented that the [4+2] cycloadducts of o-
carboryne with arenes can undergo thermal retro-Diels–
Alder reaction to produce the homo-Diels–Alder products in
almost quantitative yield.[4c] To explore the possibility of
cycloadducts as a new source of 1,3-dehydro-o-carborane
through retro-Diels–Alder reaction, pyrolysis of the Diels–
Alder adducts of 1,3-dehydro-o-carborane was conducted.
Heating of a solid of the [4+2] cycloadduct 3a at 250 8C for
6 hours in a sealed tube gave a 2:1 mixture of 4a and the 1,3-
cyclooctatetraenocarborane 5a in 80% yield (Scheme 4),

a reaction which is unprecedented. The molecular structure of
5a was confirmed by single-crystal X-ray analyses (Figure 3).
The compound 5 a was completely converted into 4 a with
heating at 250 8C for 6 hours, thus indicating that 4a is
a thermodynamically more stable product. In contrast,
heating of a mesitylene (2 m) solution of 3a at 250 8C for
6 hours in a sealed tube afforded 4a in quantitative yield
(Scheme 4). Neither the [4+2] cycloadduct 3m nor the
aromatic ene reaction product 4m were observed. These
results indicate that the cage B�C bond does not break in such
reactions and the transformations are intramolecular.

To understand these processes, DFT calculations were
performed (see the Supporting Information). The results
show that breaking of the cage C�C(sp3) bond is energetically
favored over that of the cage B�C(sp3), and 4a is thermody-
namically more stable than 5a by 42.1 kcalmol�1. Accord-
ingly, a reaction mechanism is proposed in Scheme 5.
Heterolytic cleavage of the cage C�C(sp3) bond in 3 a
generates the intermediate A. Migration of a proton in A
gives the thermodynamic product 4a. Alternatively, the
formation of a cage C�C(sp3) bond affords another inter-
mediate, B (formally [2+2] cycloadduct), which undergoes
sigmatropic rearrangement to yield the kinetic product 5a.

In conclusion, we report, for the first time, the generation
of 1,3-dehydro-o-carborane bearing cage C�B bonds having
multiple bonding characters. It undergoes Diels–Alder reac-
tions with arenes to give [4+2] cycloadducts, in which
electronic factors govern the regioselectivity. Meanwhile, for
arenes bearing benzylic C�H bonds, a highly regioselective
aromatic ene reaction was also observed and the product ratio
of [4+2] cycloaddtion adduct to the ene reaction adduct
depends on the number of benzylic protons. These results
suggest that 1,3-dehydro-o-carborane is best described as
a resonance hybrid of a bonding form and a zwitterionic form
as shown in Scheme 2a. Thus, it shares some chemical
properties with those of o-carboryne. In contrast, it also has

Scheme 3. Aromatic ene reaction of 1,3-dehydro-o-carborane.

Scheme 4. Pyrolysis of the cycloadduct 3a.

Figure 3. Molecular structure of 5a.[19] Thermal ellipsoids shown at
35% probability.

Scheme 5. Proposed mechanism for thermal rearrangement.
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its own unique properties which result from the polarized
cage C�B bond. The present work demonstrates that 1,3-
dehydro-o-carborane is a useful synthon for simultaneous
C,B functionalization of o-carboranes.[18]

Experimental Section
Typical procedure: Benzene (2a ; 1 mL) was added to a mixture of
1 (51.6 mg, 0.2 mmol) and LDA (0.2 mmol) under an atmosphere of
dry argon. The resulting mixture was stirred at room temperature for
10 min and quenched by wet n-hexane. After removal of solvents in
vacuo, the residue was examined by 1H NMR spectroscopy and then
subjected to flash column chromatography on silica gel (230–
400 mesh) using n-hexane as the eluent to give 3a (32 mg, 72%) as
colorless crystals. 1H NMR (400 MHz, CDCl3): d = 6.83 (m, 2H), 6.37
(t, J = 6.4 Hz, 1H), 6.26 (t, J = 6.8 Hz, 1H) (olefinic CH), 4.07 (t, J =

6.0 Hz, 1H) (CH), 3.85 (br, 1H) (cage CH), 3.64 ppm (t, J = 6.0 Hz,
1H) (BCH). 13C{1H} NMR (100 MHz, CDCl3): d = 143.3, 142.7, 134.4,
132.6, 82.0 (cage C), 70.8 (cage C), 45.2, 34.8 ppm. 11B{1H} NMR
(128 MHz, CDCl3): d =�3.5 (1B), �4.9 (1B), �6.4 (1B), �7.6 (1 B),
�10.3 (2B), �12.3 (1B), �14.6 (2B), �16.2 ppm (1 B). HRMS (EI)
calcd for C8H16

11B8
10B2

+ 220.2254, found 220.2250.
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