CHEMICAL CONSTITUENTS OF Apocynum lancifolium FLOWERS

N. B. Begmatov,^{1,2} A. Yili,¹ K. A. Eshbakova,^{1,3} and H. A. Aisa^{1*}

The perennial plant *Apocynum lancifolium* (Apocynaceae) is broadly distributed in Central Asia, western and eastern Siberia, Mongolia, Iran, and China [1]. It flowers in June-July and fruits in August-September. It grows among bushes along valleys and banks of rivers and lakes and occasionally in alkaline meadows.

Flowers of *A. lancifolium* are known in China as Luobuma and are used in Chinese folk and contemporary medicine as a medicinal tea and effective treatment for hypertension and neurasthenia and possess hypolipidemic, hepatotropic, antioxidant, antiviral, and nephritic activity. The flowers are popular in Japan as a health drink and are sold as rejuvenating food additives in the battle with hypercholesterolemia and as antihypertensive sedative agents [2–5].

Ground air-dried flowers of *A. lancifolium* that were collected in Xinjiang A. R., PRC, were extracted with EtOH (70%) at room temperature. The combined extract was evaporated *in vacuo*, diluted with $H_2O(1:1)$, and extracted successively with hexane, CHCl₃, EtOAc, and *n*-BuOH. The EtOAc extract was chromatographed over a column of silica gel using a CHCl₃–MeOH gradient. Elution by CHCl₃–MeOH (50:1–1:1) isolated sterol and phenolic compounds 1–15. The structures of the isolated compounds were elucidated using spectral data (PMR, ¹³C NMR, DEPT, HSQC, HMBC, COSY, and mass spectrometry) and comparisons with the literature and authentic samples.

Ergost-5-en-3-ol (1), C₂₈H₄₈O, [M]⁺ 400.680. Identified by GC-MS: 39 (8), 41 (56), 43 (100), 55 (75), 57 (69), 69 (48), 77 (12), 79 (36), 81 (57), 95 (50), 97 (28), 99 (6), 107 (47), 119 (28), 133 (26), 145 (37), 159 (31), 173 (13), 187 (9), 199 (11), 213 (27), 231(14), 240 (7), 247 (5), 255 (18), 273 (15), 281 (6), 289 (29), 301 (5), 315 (25), 340 (6), 367 (21), 382 (25), 385 (18), 400 (43).

Lupeol (2), C₃₀H₅₀O, [M]⁺ 426. Identified by GC-MS: 41 (70), 43 (100), 55 (90), 57 (48), 68 (96), 77 (22), 81 (75), 83 (22), 95 (75), 109 (70), 212 (58), 135 (50), 147 (38), 161 (30), 175 (25), 189 (52), 203 (25), 207 (55), 218 (46), 234 (20), 247 (12), 257 (16), 272 (10), 283 (8), 297 (6), 315 (7), 339 (6), 357 (5), 365 (4), 383 (4), 393 (4), 411 (10), 426 (25).

 β -Sitosterol (3), C₂₉H₅₀O, mp 131–132°C. Identified by comparison with an authentic sample.

p-Hydroxybenzoic acid (4), C₇H₆O₃, mp 159.5°C [6].

3,4-Dihydroxybenzoic acid methyl ester (5), C₈H₈O₄, mp 137–138°C [6].

Caffeic acid (6), $C_9H_8O_4$. ¹H NMR spectrum (400 MHz, CD_3OD , δ , ppm, J/Hz): 7.53 (1H, d, J = 16.9, H-8), 7.03 (1H, d, J = 1.8, H-2), 6.93 (1H, dd, J = 1.8, 8.0, H-6), 6.77 (1H, d, J = 8.0, H-5), 6.21 (1H, d, J = 16.9, H-7). ¹³C NMR spectrum (100 MHz, CD_3OD , δ , ppm): 127.79 (C-1), 115.07 (C-2), 146.79 (C-3), 149.44 (C-4), 116.47 (C-5), 122.84 (C-6), 115.51 (C-7), 147.02 (C-8), 171.09 (C-9).

Esculetin (7), $C_9H_6O_4$, mp 268–270°C. ¹H NMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 7.87 (1H, d, J = 9.2, H-4), 6.97 (1H, s, H-5), 6.73 (1H, s, H-8), 6.15 (1H, d, J = 9.2, H-3), 3.41 (1H, br.s, 6-OH), 9.80 (1H, br.s, 7-OH). ¹³C NMR spectrum (100 MHz, DMSO-d₆, δ , ppm): 160.76 (C-2), 111.46 (C-3), 144.42 (C-4), 112.27 (C-5), 142.85 (C-6), 150.40 (C-7), 102.61 (C-8), 148.48 (C-9), 110.71 (C-10) [7].

 β -Sitosterol-D-glucopyranoside (8), $C_{35}H_{60}O_6$, mp 275–277°C [6].

Kaempferol (9), C₁₅H₁₀O₆, yellow crystals, mp 276–277°C. PMR and ¹³C NMR spectra agreed with those published [6]. **Quercetin (10)**, C₁₅H₁₀O₇, light-yellow crystals, mp 305–307°C. Spectral data and a comparison with the literature identified **10** as quercetin [6, 8].

Quercetin was isolated earlier from A. lancifolium leaves [6, 9].

Astragalin (11), C₂₁H₂₀O₁₁, mp 209–211°C. Spectral data agreed with those published [9].

1) Xinjiang Technical Institute of Physics and Chemistry, Central Asian Drug Discovery and Development Center of CAS, 830011, Urumqi, P. R. China, e-mail: haji@ms.xjb.ac.cn; 2) Graduate University of the Chinese Academy of Sciences, 100049, Beijing, P. R. China; 3) S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, e-mail: e_komila@yahoo.com. Translated from *Khimiya Prirodnykh Soedinenii*, No. 3, May–June, 2014, pp. 467–468. Original article submitted February 4, 2014.

Isoquercitrin (12), C₂₁H₂₀O₁₂, mp 248–250°C [10]. Acid hydrolysis of 12 produced quercetin and D-glucose.

Hyperoside (13), C₂₁H₂₀O₁₂, mp 231–232°C [11]. Both quercetin and D-galactose were identified after acid hydrolysis.

Nicotiflorin (14), light-yellow crystals, $C_{27}H_{30}O_{15}$, mp 182–186°C. ¹H NMR spectrum (400 MHz, DMSO-d₆, δ , ppm, J/Hz): 8.23 (2H, dd, J = 8.4, 2.0, H-2', 6'), 6.86 (2H, dd, J = 8.4, 2.0, H-3', 5'), 6.29 (1H, d, J = 1.8, H-8), 6.10 (1H, d, J = 1.8, H-6), 5.27 (1H, d, J = 7.2, H-1''), 4.40 (1H, br.s, H-1'''), 3.16–3.43 carbohydrate protons, 1.06 (3H, d, J = 6.0, CH₃), 12.57 (1H, br.s, 5-OH) [12].

Acid hydrolysis of 14 produced kaempferol, D-glucose, and L-rhamnose [9].

Rutin (15), C₂₇H₃₀O₁₆, mp 193–195°C [9]. Acid hydrolysis of **15** produced quercetin, D-glucose, and L-rhamnose. Ergost-5-en-3-ol, caffeic acid, esculetin, and nicotiflorin were isolated for the first time from plants of the genus *Apocynum*.

ACKNOWLEDGMENT

The work was supported by the Program for International Collaboration and Exchange of the National Foundation for Natural Sciences of China (No. 31110103908) and the Foundation for International Scientific and Technical Collaboration of Xinjiang-Uygur A. R. (No. 20126023).

REFERENCES

- 1. Flora of the USSR [in Russian], Vol. 18, Izd. Akad. Nauk SSSR, Leningrad, 1952.
- 2. V. Butterweck, K. Simbrey, S. Seo, T. Sasaki, and S. Nishibe, *Pharmacol. Biochem. Behav.*, 75, 557 (2003).
- 3. Chinese Pharmacopeia, Vol. 1, Chemical and Technical Press, 2000, p. 170.
- 4. Grou, Complication of Luobuma Utilization, Total Utilization of Luobuma, Science Press, Beijing, 1978, pp. 57–92.
- 5. V. Butterweck, S. Nishibe, T. Sasaki, and M. Uchida, Biol. Pharm. Bull., 24, 848 (2001).
- 6. K. A. Eshbakova, Bahang, and H. A. Aisa, Chem. Nat. Compd., 46, 829 (2010).
- 7. A. Z. Abyshev and V. P. Zmeikov, Chem. Nat. Compd., 18, 270 (1982).
- 8. U. M. Murzagaliev, T. K. Chumbalov, G. M. Nurgalieva, and E. T. Tegisbaev, Chem. Nat. Compd., 9, 404 (1973).
- 9. A. Sultan, Bahang, H. A. Aisa, and K. A. Eshbakova, Chem. Nat. Compd., 44, 366 (2008).
- 10. M. Moohammadnor, X. Tursun, M. Q. Ling, A. Sultan, and K. A. Eshbakova, Chem. Nat. Compd., 46, 799 (2010).
- 11. K. A. Eshbakova, Med. Plants, 3 (2), 161 (2011).
- 12. B. A. Kurkin, D. G. Bulankin, E. D. Daeva, and V. I. Kadentsev, Khim. Rastit. Syr'ya, No. 2, 85 (2012).