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Efficient syntheses of folate conjugates of tubulysins and their hydrazides 1a–d are described. These
water soluble folate receptor (FR) targeted conjugates are derivatives of folic acid and the potent cyto-
toxic agents: tubulysin A, B, or their respective hydrazides, connected in regioselective manner via a
hydrophilic peptide spacer and a reducible disulfide linker.

� 2008 Elsevier Ltd. All rights reserved.
The tubulysins are members of a new class of natural products FA-Spacer unit 2 to tubulysins A and B (3a–b) or their hydrazides
� 1 6
isolated from a myxobacterial species.1 As cytoskeleton interacting
agents, the tubulysins inhibit tubulin polymerization, leading to
cell cycle arrest and apoptosis.2 Tubulysins are exceptionally
potent cytotoxic molecules, exceeding the cell growth inhibition
observed with epothilones, paclitaxel, and vinblastine by 20- to
1000-fold. Furthermore, they are potent against multidrug
resistant cell lines.3 Nevertheless, in vivo studies suggest that the
natural tubulysins alone are unsuitable for clinical development
because of an extremely tight therapeutic window.4

On the other hand, receptor-targeted chemotherapy has
emerged as one of the major approaches in modern drug discovery
as it can potentially satisfy the selective delivery criteria for toxic
agents to pathologic cells. In a previous publication,5 we reported
the design and synthesis of a folate-targeted desacetylvinblastine
conjugate, EC145, which is currently in phase 2 clinical trials. In
EC145, the anti-cancer drug vinblastine was modified and attached
to folic acid (FA) via a water soluble peptide spacer and a reducible
disulfide linker. Once administered, the conjugate targets folate
receptor (FR) over-expressing cancer cells and releases the base
drug after internalization. This receptor-targeted delivery allows
reduced collateral toxicity and hence improves efficacy.

In this paper we report the design and regioselective synthesis
of FA–tubulysin conjugates 1a–d (Scheme 1). As indicated in
the retrosynthetic scheme, 1 can be assembled by tethering a
All rights reserved.

v).
via a self-immolative linker containing a reducible disulfide bond,
which is important for drug delivery applications. A recent study
involving real-time imaging using a fluorescence resonance energy
transfer technique has demonstrated that reduction-mediated
release of the drug cargo from a disulfide linked FA-conjugate
efficiently occurs within the endosomes of cancer cells.6

The peptide-based spacer 2 was designed to be bifunctional
containing both acidic (Asp) and basic (Arg) amino acids to provide
the best potential for water solubility of the final drug conjugate
under physiological conditions. This unit was assembled using
standard fluorenylmethyloxycarbonyl-based solid phase peptide
synthesis (Fmoc SPPS).5 The structure of 2 was confirmed by 1H
NMR� and LC/MS [ESI (M+H)+: 931.2] analysis.

Our initial attempt at the regioselective conjugation of tubuly-
sin involved the use of the phenolic oxygen as a nucleophile and
reacting it with the activated carbonate 5 (Scheme 2). However,
the activated tubulysin carbonate 6 proved to be sensitive to water,
indicating that its folate conjugate counterpart might have limited
stability under physiological conditions, and hence an alternate ap-
proach was pursued. Alternatively, the carboxylic group of the
tubulysin was selected to connect to the folate-spacer unit 2 via
a self-immolative disulfanylethyl ester. A scalable and simple to
Selected H NMR data for 2 (DMSO-d with D2O exchange, 300 MHz): d 8.64 (s,
H), 7.63 (d, J = 8.7 Hz, 2H), 6.65 (d, J = 9.0 Hz, 2H), 4.54–4.48 (m, 4H), 4.25 (m, 2H),
.03 (t, J = 4.2, 1H), 3.03 (br, 2H), 2.93–2.46 (m, 6H), 2.20 (br, 2H), 1.98–1.80 (m, 3H),
.61 (m, 1H), 1.50 (m, 2H).
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perform one-pot protocol was designed, in which tubulysin 3a or
3b was activated by N-(3-dimethylaminopropyl)-N0-ethylcarbodi-
imide (EDC) with in situ addition of 7,5 followed by treatment with
N,N-diisopropylethylamine (DIPEA) and solution of 2 in DMSO.
Subsequent preparative HPLC purification provided the product
(1 a–b) in ca. 30% overall yield.

Next, another class of folate–tubulysin conjugates 1c–d was
designed. Based on our biological data4,7 and previous success with
a hydrazide-based cytotoxic drug,5 the endosomal release of a
tubulysin hydrazide (9a–b)� was envisioned (Scheme 3). This
approach might provide potentially different interactions between
the base drug and microtubules, and hence lead to a potentially lar-
ger therapeutic window for the hydrazide-based drug in contrast to
� Selected 1H NMR data for 7b (CD2Cl2, 300 MHz): d 8.52 (br, 1H), 7.94 (s, 1H), 7.10
(d, J = 8.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 4H), 6.77 (d, J = 7.8 Hz, 2H), 5.95 (d, J = 12.0 Hz
1H), 5.65 (m, 1H), 5.34 (t, J = 12.0 Hz, 1H), 4.51 (t, J = 9.3 Hz, 1H), 4.14 (m, 1H), 3.83
(br, 2H), 3.36 (q, J = 5.7 Hz, 1H), 2.80–2.67 (m, 3H), 2.34–2.04 (m, 13H), 1.91–1.79 (m
4H), 1.55–1.18 (m, 11H), 1.06 (t, J = 6.9 Hz, 3H), 0.96–0.75 (m, 15H).
,

,

an amino acid form of the natural tubulysin drug. The base drugs 9a–
b were prepared directly from the corresponding natural tubulysins
for use in biological control experiments.8 The synthetic yields were
low due to (a) sensitivity of the acyl groups in tubulysin skeleton to
hydrazine and (b) the further reaction of 9 with the activated inter-
mediate 4. To minimize undesired side reactions for the synthesis of
the target conjugates, a heterobifunctional crosslinker 10 was em-
ployed.9a This molecule contains an oxycarbonylhydrazine moiety
with mono-nucleophilic nitrogen atoms and a 2-mercaptopyridyl
leaving group as a specific conjugation site. Compound 10 was pre-
pared in 70–80% yield from 5 or 7 following simple to perform syn-
thetic routes.9 Following our one-pot protocol, the final folate
conjugates 1c–d were synthesized in excellent yields (55–60%) from
tubulysins 3a–b.10 The synthesis involved activation of the tubulysin
with isobutyl chloroformate and in situ treatment of the intermedi-
ate at low temperature with 10. The crude reaction mixture was con-
centrated to remove the solvent and re-dissolved in a water miscible
organic solvent, THF, followed by mixing with an aqueous solution of
folate-peptide spacer 2 at neutral pH. HPLC purification gave pure
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Scheme 4. Conjugate 1d in PBS buffer treated with DTT. Left: t = 0 min; right: t = 2 h.
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conjugate 1c–d. LC/MS [ESI (M+H)+: 1878 and 1892, respectively]
and 1H NMR data§ were in agreement with the expected structure.
§ Selected 1H NMR data for 1d (D2O, 300 MHz): d 8.45 (s, 1H), 7.90 (s, 1H), 7.44
(d,J = 8.7 Hz, 2H), 6.74 (d, J = 8.1 Hz, 2H), 6.45 (m, 2H), 5.93 (d, J = 12.0 Hz, 1H), 5.58 (d,
J = 11.4 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.53 (m, 2H), 4.39 (m, 2H), 4.29 (br, 2H), 4.14
(m, 5H), 3.89 (br, 1H), 3.64 (d, J = 9.9 Hz, 1H), 3.38 (d, J = 12.0 Hz, 1H), 3.06–2.74 (m,
6H), 2.62–2.22 (m, 14H), 1.99 (s, 3H), 1.95–1.28 (m, 20H), 1.14 (q, J = 7.5 Hz, 2H),
1.01–0.86 (m, 4H), 0.79 (d, J = 6.3 Hz, 3H), 0.71–0.63 (m, 6H), 0.51–0.44 (m, 6H).
In brief, the 1H NMR spectrum (300 MHz, D2O) contained ten
aromatic signals in the range from 6.5 to 8.7 ppm (five from the fo-
late moiety and five from the tubulysin moiety). The signals for the
two protons of the intact N,O-acetal appeared at 6.1 ppm and
5.2 ppm.

When 1d was incubated as a 1 mM solution with 10 equivalents
of DTT in PBS buffer at 37 �C, LC/MS studies indicated a full release
of 9b within 2 h (Scheme 4).
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Conjugates 1a–d are being tested against a variety of FR positive
cell lines as well as in animal models. The results will be reported
in an appropriate scientific journal.7
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