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Abstract: The enolate of (S)-N,N’-bis-(p-methoxybenzyl)-3-iso-
propylpiperazine-2,5-dione exhibits high levels of enantiodiscrimi-
nation towards racemic 2-bromo-propionate esters to afford adducts
containing two new stereogenic centres which may be deprotected
to afford (2R,3R)-3-methyl-aspartates or epimerised and then
deprotected to afford (2R,3S)-3-methyl-aspartates as single diaste-
reoisomers in high e.e.
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3-alkylaspartates, asymmetric synthesis

(2R,3S)-3-Methyl-aspartic acid is an a-amino acid which
occurs as a component of certain members of the highly
toxic microcystin and nodularin families of natural prod-
ucts, cyclic peptides which are known to be potent inhib-
itors of many serine and threonine phosphatases.1 Indeed,
the pharmacological activity of related b-alkyl-aspartate
fragments has been recognised by medicinal chemists for
the preparation of potential drug candidates directed to-
wards a wide range of therapeutic areas.2 As a conse-
quence, much attention has been directed towards the
development  of  new methodology for the synthesis of
homochiral b-alkyl-aspartates.3 We now wish to report
herein a novel chiral recognition strategy towards this
class of a-amino acid which relies on the capacity of the
enolate 2 of glycine equivalent 1 to discriminate between
the enantiomers of racemic 2-bromopropionate esters to
afford masked 3-methyl-aspartate derivatives containing
two new stereocentres in high d.e. 

We have recently reported that the bis-N,N’-protected
diketopiperazine (S)-1 may be employed as a chiral gly-
cine enolate equivalent for the asymmetric synthesis of
homochiral (R)-a-amino acids.4 Given the high facial se-
lectivity observed in the alkylation of the enolate derived
from 1 with a wide range of haloalkyl electrophiles, we
wished to investigate whether enolate 2 had the capacity
to resolve racemic electrophiles such as a-bromo-propi-
onate esters 3a-c.5 Thus, treatment of enolate 2 with ten
equivalents of racemic ethyl 2-bromopropionate 3a in
THF at -78 °C afforded a 94.5: 5.5 mixture of diastereoi-
somers 4a and 5a,6 which after chromatographic purifica-
tion (1:1 ether:hexane) gave ethyl (3R,6S,2’R)-2’-[N,N’-
bis-p-methoxybenzyl-6-iso-propylpiperazine-2-5-dion-3-
yl]propionoate 4a {[a]23

D = -13.1, (c 1.0 in CHCl3)}, and
ethyl (3R,6S,2'S)-2’-[N,N’-bis-p-methoxybenzyl-6-iso-
propylpiperazine-2-5-dion-3-yl]propionoate 5a
{[a]23

D = +62.4, (c 1.0 in CHCl3)}, in 93% and 3% isolat-
ed yields respectively (Scheme 1). 

Scheme 1 Reagents and conditions: (i) LHMDS, THF, -78 °C.

The stereochemistry of the major diastereoisomer 4a was
assigned as (3R,6S,2’R) according to the following argu-
ments. The configuration of the newly formed stereogenic
centre at C3 of 4a was assigned as R according to exten-
sive literature precedent since it is known that alkylation
of enolate 2 with electrophiles affords trans-alkylated
products in high d.e.4 Furthermore, comparison of the sign
and value of the specific rotation of the unreacted electro-
phile recovered from the reaction of enolate 2 and 1.5
equivalents of ethyl 2-bromopropionate 3a {recovered
yield 16%, [a]23

D = -11.1, (c 1.1 in CHCl3)}, with the spe-
cific rotation previously described for homochiral ethyl
(R)-(+)-2-bromo-propionate 3a {[a]23

D +32.4, (c 3.9 in
CHCl3)},7 revealed that it was enantiomerically enriched
in the S-enantiomer. While the 34% e.e. obtained for the
recovered electrophile ethyl (S)-(–)-2-bromopropionate
3a is lower than the value which would have been expect-
ed from consideration of the previously obtained 94.5: 5.5
ratio of (3R,6S,2’R)-4a : (3R,6S,2’S)-5a, this discrepancy
may be explained by the known propensity of bromide an-
ions to catalyse racemisation of homochiral ethyl 2-bro-
mo-propionate 3a via a SN2 process.5a,8 Thus, it follows
that since the recovered sample of ethyl 2-bromopropi-
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onate 3a (34% e.e.) was enriched in the S-enantiomer,
enolate 2 must have reacted preferentially with the R-
enantiomer of a-bromoester 3a via a SN2 type process to
afford the major diastereoisomer 4a with a (2’R) stereo-
centre. Changing the ester functionality of the racemic
2-bromopropionate electrophile did not affect the enantio-
discriminating ability of enolate 2 towards this class of
electrophile since alkylation with (rac)-methyl 2-bro-
mopropionate 3b gave (3R,6S,2’R)-4b in 92% d.e., which
after chromatographic purification gave diastereomerical-
ly pure (3R,6S,2’R)-4b {[a]23

D = -10.4, (c 1.0 in CHCl3)},
in 87% yield. Similarly, alkylation of enolate 2 with tert-
butyl 2-bromopropionate 3c gave (3R,6S,2’R)-4c
{[a]23

D = -10.3, (c 1.0 in CHCl3)}, in 92% d.e, which after
chromatographic purification gave diastereomerically
pure (3R,6S,2’R)-4c in 83% yield. 

The capacity of enolate 2 to discriminate between the
enantiomers of racemic 2-bromopropionate esters 3a-c to
afford (3R,6S,2’R)-4a-c as major diastereomers in high
d.e. may be explained by invoking a chelated transition
state in which the carbonyl group of the R-enantiomer of
the a-bromo ester is coordinated to the lithium counterion
of the oxygen atom of the enolate fragment, with its small
C2-H substituent directed towards the enolate fragment on
the Re- face of the enolate (Figure 1). This transition state
is more favoured than the alternative reaction manifold in
which enolate 2 reacts with the S-enantiomer of 2-bro-
mopropionate esters 3a-c because a similar chelated tran-
sition state would result in severe steric interactions
between the C2-methyl group of the incipient electrophile
and the ring of enolate 2 (Figure 2). 

Figure 1 Reaction of enolate 2 with (R)-a-bromopropionate esters
3a-c. 

Treatment of the crude reaction product containing
(3R,6S,2’R)-4a and (3R,6S,2’S)-5a in a 94.5: 5.5 ratio
with lithium ethoxide in ethanol, in the presence of methyl
iodide as a scavenger, resulted in selective side chain
epimerisation to afford a 20: 80 mixture of (3R,6S,2’R)-4a
and (3R,6S,2’S)-5a. Highly crystalline (3R,6S,2’S)-5a
was easily isolated as a single diastereoisomer in 66%
yield via simple fractional recrystallisation (Scheme 2). 

Scheme 2 Reagents and conditions: (i) Lithium ethoxide, methyl
iodide, ethanol, rt.

N,N’-Deprotection of (3R,6S,2’R)-4a was achieved via
treatment with refluxing trifluoroacetic acid to afford eth-
yl (3R,6S,2’R)-2’-[6-iso-propylpiperazine-2-5-dion-3-
yl]propionoate 6 in 60% yield. Methylation of
(3R,6S,2’R)-6 with Me3OBF4 under novel reaction condi-
tions using the ionic liquid N-butyl-N’-methyl-imidazoli-
um tetrafluoroborate (bmim. BF4)

9 as solvent, afforded
the (3R,6S,2’R)-bis-lactim ether 7 cleanly in 95% yield.10

Hydrolysis of bis-lactim ether 7 was achieved via treat-
ment with 0.5 M TFA at room temperature to afford a
mixture of 4-ethyl, 1-methyl (2R,3R)-3-methyl aspartate 8
and      L-valine methyl ester as their trifluoroacetate salts,
which were converted to their free amines and separated
by fractional distillation11 to afford (2R,3R)-3-methyl-as-
partate-bis-ester 8 {[a]23

D = -8.6, (c 0.7 in CHCl3)} in
>95% d.e., and in >98% e.e. as determined from 19F NMR
spectroscopic analysis of its Mosher's amide derivative
(Scheme 3).12 A similar strategy was employed for depro-
tection of (3R,6S,2’S)-5a which afforded (2R,3S)-3-meth-
yl-aspartate-bis-ester 9 ([a]23

D = -6.8, c 1.1 in CHCl3) in
>95% d.e., and in >98% e.e. as determined by 19F NMR
spectroscopic analysis of its Mosher's amide derivative.
Thus, both of the diastereoisomers 8 and 9 are available
from alkylation of the enolate derived from 1 with the R-
enantiomer of ethyl 2-bromopropionate 3a. 
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Scheme 3 Reagents and conditions: (i) TFA, D; (ii) 4 eq. Me3OBF4,
bmim.BF4; (iii) 0.5M aqueous TFA. 

In conclusion, the enolate derived from 1 exhibits a high
degree of enantiodiscrimination towards a range of race-
mic a-bromo-esters 3a-c to afford trans-alkylated prod-
ucts (3R,6S,2’R)-4a-c in high d.e. It has been shown that
(3R,6S,2’R)-4a may be deprotected to afford either diaste-
reoisomer  (2R,3R)-8 or (2R,3S)-9 of 3-methyl-aspartic
acid, 4-ethyl, 1-methyl diester in homochiral form. Since
the R-enantiomer of 1 is also readily available from          D-
valine, this methodology constitutes a versatile approach
towards the asymmetric synthesis of all four possible ste-
reoisomers of homochiral 3-methyl-aspartates in high d.e.
and e.e. 
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provided (3R,6S,2’S)-N,N’-di(p-methoxybenzyl)-3-
isopropyl-6-ethylpropanoate-piperazine-2,5-dione 5a (15 
mg, 3%). mp 136 °C (ethyl acetate / hexane); (Found: C, 67.7; 
H, 7.3; N, 5.6. C28H36N2O6 requires C, 67.7; H, 7.3; N, 5.6%); 
[a]23

D = +62.4 (c 1.0 in CHCl3); nmax(KBr)/cm-1 2984, 2933, 
1739 (ester), 1640 (amide); dH(400 MHz, CDCl3) 0.83 (d, 3H, 
J 6.9 Hz), 0.98 (d, 3H, J 6.9 Hz), 1.10 (d, 3H, J 7.0 Hz), 1.26 
(t, 3H, J 7.1), 2.30 (m, 1H), 3.10 (dq, 1H, J 3.0, 6.9, 6.9, 6.9 
Hz), 3.778 (d, 1H, J 3.1 Hz) 3.782 (d, 1H, J 14.6 Hz), 3.81 (s, 
6H), 3.99 (d, 1H, J 14.9 Hz), 4.14-4.38 (m, 2H), 4.70 (d, 1H, 
J 3.2 Hz), 5.27 (d, 1H, J 14.9 Hz), 5.43 (d, 1H, J 14.7 Hz), 
6.86-6.88 (m, 4H), 7.14-7.27 (m, 4H); dC (100 MHz, CDCl3) 
8.64, 11.8, 14.1, 31.7, 40.0, 46.1 46.2, 55.23, 55.26, 60.0, 
60.8, 62.2, 114.0, 114.2, 126.9, 127.3, 130.0, 130.2, 159.3, 
159.4, 164.4, 165.8, 172.0; m/z (APCI) 497 (MH+, 10%), 121 
(100).
Deprotection of ethyl ester 4a; Ethyl ester 4a (400 mg, 0.81 
mmol) was stirred in TFA at reflux for 48 h. The mixture was 
cooled and excess TFA removed in vacuo. Column 
chromatography (Al2O3; ether:hexane, 1:1, followed by ethyl 
acetate:ethanol, 3:1) afforded diketopiperazinedione 6 as a 
white solid (124 mg, 60%), mp 204 °C; [a]23

D = (+88.5 c 0.99 
in CHCl3); nmax(KBr)/cm-1 1741 (ester), 1673(amide); dH(400 
MHz, d4-MeOH) 0.98 (d, 3H, J 6.9 Hz), 1.07 (d, 3H, J 7.1 Hz), 
1.23 (d, 3H, J 7.2 Hz), 1.30 (t, 3H, J 7.1), 2.32 (m, 1H), 3.23 
(dq, 1H, J 7.3, 7.3, 7.3, 2.8 Hz), 3.87 (dd, 1H, J 3.3, 0.8 Hz), 
4.21(m, 2H), 4.50 (dd, 1H, J 2.6, 0.8 Hz), 7.18-7.56 (2H, br); 
dC (100 MHz, d4-MeOH) 11.9, 14.8, 17.4, 19.2, 34.7, 43.7, 
57.2, 61.8, 169.5, 170.1, 175.4; m/z (APCI) 257 (MH+, 40%), 
211 (100); (Found: MH+ 257.1501, C12H21N2O4 requires 
257.1506).
Diketopiperazinedione 6 (100 mg, 0.39 mmol) and 
trimethyloxonium tetrafluoroborate (230 mg, 1.56 mmol) 
were stirred in 1-butyl-3-1H-methylimidazolium 
tetrafluoroborate9 (4 mL) under vacuum (2 mm of Hg) at room 

temperature for 4 days. The mixture was then poured into 
saturated NaHCO3 (100 ml) and extracted with ether, the 
organic phase dried (MgSO4) and the solvent removed under 
vacuum to provide bis-lactim ether 7 as a clear oil (105 mg, 
95%); [a]23

D = +27.3 (c 0.7 in CHCl3); nmax(KBr)/cm-1 1738 
(ester), 1696 (lactim ether); dH(400 MHz, CDCl3) 0.70 (d, 3H, 
J 6.8 Hz), 0.90 (d, 3H, J 6.9 Hz), 1.04 (d, 3H, J 6.9 Hz), 1.28 
(t, 3H, J 7.3), 2.25 (m, 1H), 3.05 (dq, 1H, J 6.9, 6.9, 6.9, 4.0 
Hz), 3.63 (3H, s), 3.71 (3H, s), 3.97 (t, 1H, J 3.4, 3.7 Hz), 4.20 
(2H, q, J 7.4 Hz), 4.57 (t, 1H, J 4.0, 3.7 Hz); dC (100 MHz, 
CDCl3) 9.9, 14.2, 16.6, 19.0, 19.6, 30.3, 31.8, 42.2, 52.41, 
52.46, 57.3, 60.4, 60.8, 161.9, 164.1, 173.9; m/z (APCI) 285 
(MH+, 100%); (Found: MH+ 285.1822. C14H25N2O4 requires 
285.1814).
Bis-lactim ether 7 (200 mg, 0.70 mmol) was stirred in 0.5 M 
aqueous TFA (5 mL) and THF (10 mL) at room temperature 
for 24 hours then the solvent removed and the resultant oil was 
loaded onto a short column of silica. Elution (ether : 
dimethlyethylamine, 20:1) gave a mixture of (2R,3R)-8 and        
L-valine methyl ester which were separated by fractional 
distillation (0.5 mm, room temperature) to provide (2R,3R)-
3-methyl-aspartic acid, 4-ethyl, 1-methyl diester 8 as an oil 
(104 mg, 76%). [a]23

D = -8.6 (c 0.7 in CHCl3); nmax(thin film)/
cm-1 3391, 2980, 1732 (ester); dH(400 MHz, CDCl3) 1.17 (d, 
3H, J 7.1 Hz), 1.26 (t, 3H, J 7.1), 2.96 (1H, m), 3.75 (3H, s), 
3.97 (1H, br), 4.17 (2H, q, J 7.1 Hz); dC (100 MHz, CDCl3) 
11.3, 14.1, 42.7, 52.2, 55.8, 60.9, 174.2; m/z (APCI) 190 
(MH+, 100%) 116 (89); (Found: MH+ 190.1082. C8H16NO4 
requires190.1079). The diastereoisomeric excess (>95%) and 
enantiomeric excess (>98%) were determined from the 19F 
NMR spectrum of the Mosher’s amide derivative of 8.

Article Identifier:
1437-2096,E;2001,0,06,0781,0784,ftx,en;D07801ST.pdf
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