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Furan Synthesis via a 4 + 1 Ring-Building Strategy - An Approach to 1,3-Diacylfurans
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Abstract: The reaction of 2-acyl cycloalkenones with enolates affords
1,3-diacyl furans in good yields.

Many biologically active natural products containing the furan subunit
have been discovered.! Although the majority of these compounds
contain mono- and di-substituted furans, an increasing number of
biologically active natural products, including hibiscone C (1),> and
halenaquinone (2), contain trisubstituted furans. As part of a program
to better develop the synthetic utility of furans,* we needed a direct

synthetic route to the highly functionalized furan units present in 1 and
2.

The key ring-forming reaction is illustrated below. It begins with a
Michael addition reaction to an acyl cycloalkenone5 under anhydrous
conditions, in analogy with the pioneering work of Holton and

coworkers.®
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The resulting enolate displaces the chloride to afford an intermediate
chloro ether which dehydrohalogenates to the furan. Datta and
coworkers have reported a furan synthesis that is based on the reaction

of bis-(methylthio)methylene cyclohexanone with the enolate of ethyl

bromoacetate.” Harris has also reported a related furan synthesis based
7

on the reaction of sulfonium ylides with unsaturated ketones.

The scope and limitations of the reaction are depicted in Table 1. This
reaction is applicable to enones contained in five-, six- and seven-
membered rings. Michael donors can be dichloroesters or
8 Michael acceptors can be keto aldehydes or
diketones. Dehydrohalogenation in entries 5 and 6 required
diazabicycloundecene (DBU). In these cases, the -chloroether
intermediates could be isolated. The unusual stability of these two
chloroethers is surprising, and may reflect a conformational effect
related to the alkyl group on the cyclohexanone ring. The failure of the
reaction in entry 7 may be attributable to steric hindrance.

dichloroketones.
9

Acyclic keto esters also react well as illustrated below. In these cases no
intermediate chloroethers were isolated. The yields in this one-step
reaction compare well with those of comparable multistep routes to
these systems.lo

Table 1. Synthesis of Furans from Enediones
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Entry n R, Rz Rs X % yield
1 1 H H H O 70
2 1 H H Me OEt 86
3 0 H H H Og 50
4 2 H H H O 52
5 1 Pr H H O 63
6 1 H Me H OEt 30°
7 1 H tBu H O 0
8 1 H H Me Me 70
9 2 H H H Me 55

a: The yield includes treatment of the chloroether with DBU in
toluene
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X=CH3 R=Me 62% X=OEt R=Me 68%
R=Ph 57% R=Ph 75%

In order to better understand the course of this reaction, we reacted one
equivalent of the lithium enolate of ethyl dichloroacetate with
phenylmethylene ethyl acetoacetate at -78 °C and quenched the reaction
at -78 °C with acetic acid. The product was dihydrofuran 3. This
compound could be converted into the furan using DBU.
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The ready availability of the starting materials and the mild reaction
conditions employed in the 4+1 cyclization reaction make this furan
synthesis a useful complement to existing methodology. The product
from entry 1 may be a useful intermediate for the synthesis of 1.
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Dichloroacetophenone did not participate in this reaction.

To a solution of 10 mmol of LDA in THF at -78 °C was added
dropwise a 1 M THE solution of ethyl dichloroacetate (10 mmol).
The solution was stirred at -78 °C for 1 h. The Michael acceptor
(5 mmol in 10 mL THF) was then added and the solution was
stirred at -78 °C for 3 h and allowed to warm to rt. Ammonium
chloride was added and the solution was partitioned between ether
and water. The ether layer was dried and purified by sgc using
hexanes: ethyl acetate.

Diethyl 5-Methyl-3-phenylfuran 2,4-dicarboxylate. =~ NMR
(CDCl3) 8 1.02 (t, J=7.5 Hz, 3H), 1.11 (t, J=7.5 Hz, 3H), 2.70 (s,
3H), 4.08 (q, J=7.5 Hz, 2H), 4.17 (q, J=7.5 Hz, 2H), 7.30 (m, 5H).
CMR (CDCl3) 8 13,7, 13.9, 14.6, 60.3, 60.8, 127.4, 127.8, 127.9,
129.5, 131.8, 134.6, 138.9, 158.7, 162.0, 163.2. MS m/z 302.
mp 87-88 °C (cyclohexane), 1ie0 mp 86-87 °C (cyclohexane).
Taylor, M. D.; Anderson, K. R.; Badger, E. W. J. Heterocycl.
Chem., 1989, 26, 353.
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