Total synthesis of (+)-furanomycin

Sung Ho Kang*† and Sung Bae Lee

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

A highly enantioselective total synthesis of (+)-furanomycin 24 has been achieved *via* the mercury cation-mediated cyclizations of γ -hydroxy alkene 4 and homoallylic trichloroacetimidate 11 to install the *trans*-2,5-disubstituted tetrahydrofuran and the (αS)-amino acid side chain, respectively.

In 1967 Katagiri et al. discovered a novel antibiotic (+)-furanomycin from a culture filtrate of Streptomyces threomyceticus (ATCC 15795),1 which binds to E. coli isoleucyl-tRNA synthetase, to be charged to E. coli isoleucine tRNA and subsequently incorporated into protein.² Biosynthetically it is believed to be derived from two acetetes and one propionate.³ The antibiotic also functions as a competitive antagonist of isoleucine and suppresses the growth of T-even coliphage more effectively than T-odd.¹ Originally its molecular structure was (+)-(2R)-2-amino-2-[(2R,5R)-2,5-dihydroassigned 5-methyl-2-furyl]acetic acid by spectroscopic data and chemdegradation experiments, but later revised (+)-(2S)-2-amino-2- $[(2\hat{R},5S)$ -2,5-dihydro-5-methyl-2-furyl]acetic acid by X-ray crystallography⁴ and a stereodefined synthesis.⁵ Although (+)-furanomycin **24** has a seemingly simple structure, its highly enantiospecific synthesis has not been established, in part due to the difficulties in assembling the trans-2,5-dihyrofuran and (S)-amino carboxylic acid units. Here we describe a highly enantiocontrolled total synthesis of (+)-furanomycin 24 employing mercury cation-promoted cyclizations of γ-hydroxy alkene 4 and homoallylic trichloroacetimidate 11 to construct the aforementioned functionalities.

The known silyl ether 1, prepared from dimethyl L-tartrate in 83% overall yield,6 was desilylated using TBAF, and the resulting alcohol 2, $[\alpha]_D^{23}$ –3.1 (c 1.01, CHCl₃), was treated with I₂, PPh₃ and imidazole in THF⁷ to yield the corresponding iodide 3, $[\alpha]_D^{22}$ -10.1 (c 1.01, CHCl₃), quantitatively from 1 (Scheme 1). The substitution reaction of $\hat{\mathbf{3}}$ was conducted with vinylmagnesium bromide, which should be generated freshly, in the presence of CuBr·SMe₂ and HMPA in THF at -50 °C.8 The somewhat volatile diene acetonide, without purification, was hydrolyzed with methanolic HCl to give diene diol **4**, $[\alpha]_D^{23}$ -11.6 (c 1.01, CHCl₃), in 75% overall yield. For the stereoselective formation of *trans*-2,5-disubstituted tetrahydrofuran, the cyclization⁹ of 4 was attempted using I₂, IBr or N-iodosuccinimide (NIS) under various reaction conditions to provide a 1-3:1 mixture of trans- and cis-isomers. However, when Hg(OCOCF₃)₂ was employed as an electrophile, the stereoselectivity was improved significantly. Accordingly, 4 was treated with Hg(OCOCF₃)₂ in the presence of K₂CO₃ in THF at -78 °C to afford a mixture of trans- and cis-2,5-disubstituted tetrahydrofurans 5 and 6, which was found to revert to the starting material 4 during work-up with brine or aq. KBr and chromatographic purification. In order to elude the reversion, the in situ demercuration of the crude organomercurials 5 and 6 was attempted with various reducing reagents¹⁰ in the absence or presence of phase transfer catalyst, NaOAc, NaOH or AcOH to furnish the expected trans- and cistetrahydrofurans 7 and 8, accompanied by variable amounts of the starting diol 4 and alcohols 9 and 10. After intensive experimentation, reproducible demercuration conditions were

established, involving treating the cyclization reaction mixture *in situ* with BEt₃ and LiBH₄ at -78 °C to produce an inseparable 8.5–9:1 mixture of **7**, $[\alpha]_D^{22}$ +57.0 (*c* 1.00, CHCl₃), and **8** in 83% overall yield from **4** without appreciable formation of side products.

The mixture of 7 and 8 was converted into the readily separable trichloroacetimidates 11 and 12, which provided after chromatographic purification the requisite imidate 11, $[\alpha]_D^{22}$ +47.0 (c 1.00, CHCl₃), in 83% yield. While the proposed cyclization¹¹ of **11** hardly proceeded with I₂ or NIS, the use of IBr resulted in poor stereoselectivity, 12 yielding a 2.5:1 mixture of iodides 13 and 14, of which the relative stereochemistries were determined by NOE difference experiments, i.e. irradiation at H-C(6) showed enhancements at H-C(4) for the former and at H_2 –C(10) for the latter (Scheme 2). On the other hand, when the intramolecular amination of 11 was performed with $Hg(OCOCF_3)_2$ in the presence of K_2CO_3 in THF at 0 °C, only the desired organomercury bromide 15 could be isolated in higher than 95% yield after work-up with aq. KBr. Its stereochemistry was corroborated by converting it into iodide 13 with I₂ in THF. For the oxidation of 15 to alcohol 16, oxygen was bubbled vigorously through a solution of 15 and NaBH₄ in DMF,¹³ but only the reductive demercuration product 17 was generated. Alternatively exposure of 15 to TEMPO and LiBH₄ in the presence of BEt₃ in THF provided the oxidized product **18**, mp 134.5–135.5 °C, $[\alpha]_D^{23}$ –32.0 (*c* 0.99, CHCl₃), in 76% yield. It is noted that without BEt3 the chemical yield decreased to 50-55%. The dihydro-1,3-oxazine heterocycle of 18 was hydrolyzed with HCl and then the unmasked amino alcohol was

Scheme 1 Reagents and conditions: i, Bu₄NF, H₂O, THF, 20 °C; ii, I₂, PPh₃, imidazole, THF, 20 °C; iii, CH₂=CHMgBr, CuBr·SMe₂, HMPA, THF, -50 °C; iv, 6 M HCl, MeOH, 20 °C; v, Hg(OCOCF₃)₂, K₂CO₃, THF, -78 °C, then Et₃B, LiBH₄, -78 °C; vi, Cl₃CCN, DBU, MeCN, -30 °C

Scheme 2 Reagents and conditions: i, Hg(OCOCF₃)₂, K₂CO₃, THF, 0 °C, then aq. KBr; ii, TEMPO, Et₃B, LiBH₄, THF, 20 °C; iii, 6 M HCl, MeOH, THF, reflux; iv, BnOCOCl, K₂CO₃, MeOH, 20 °C; v, I₂, PPh₃, DMAP, PhH, CH₂Cl₂, 0 °C, then 60 °C; vi, DBU, DMF, 80 °C; vii, Zn, NH₄Cl, H₂O, MeOH, 80 °C; viii, (COCl)₂, DMSO; ix, NaClO₂, NaH₂PO₄, 2-methylbut-2-ene, Bu^tOH, H₂O, 20 °C; x, PhSMe, TFA, 50 °C

protected with benzyl chloroformate to afford carbamate 19, $[\alpha]_{D}^{25} - 12.0$ (c 1.00, CHCl₃), in 95% overall yield.

The dihydrofuryl ring could not be formed by the basic or pyrolytic elimination reaction of the mesylate, triflate or xanthate derivatives of **19**. In addition their substitution reaction with iodide or phenylselenide anion did not yield the expected product. Various experimental attempts revealed that iodide **20**, $[\alpha]_{25}^{15}$ –65.2 (c 0.99, CHCl₃) could be prepared in 76% yield by treating **19** with I₂ and PPh₃ in the presence of DMAP in a mixture of benzene and CH₂Cl₂, while the reaction using imidazole⁷ instead of DMAP resulted in a poor chemical yield of 35%. The ensuing elimination reaction was effected by

heating **20** with DBU in DMF to provide dihydrofuran **21**, $[\alpha]_{27}^{27}$ +105.3 (c 1.02, CHCl₃), regioselectively in 89% yield. The TEMP group of **21** was reductively removed with zinc dust in methanolic NH₄Cl to afford the primary alcohol **22**, $[\alpha]_{28}^{28}$ +195.8 (c 0.99, CHCl₃), in 92% yield. Since Jones oxidation of **22** proceeded inefficiently, it was oxidized using Swern conditions¹⁴ followed by sodium chlorite¹⁵ to give carboxylic acid **23**, $[\alpha]_{27}^{27}$ +175.4 (c 0.57, MeOH), in 89% yield. Finally removal of the BnOCO group of **23** with thioanisole in TFA produced (+)-furanomycin **24**, mp 222–224 °C, $[\alpha]_{26}^{26}$ +136.0 (c 0.4, H₂O), in 97% yield, the physical and spectroscopic data of which were identical with those previously reported.

Financial support from the Korea Science and Engineering Foundation (971-0302-010-2) is gratefully acknowledged.

Notes and References

† E-mail: shkang@kaist.ac.kr

- 1 K. Katagiri, K. Tori, Y. Kimura, T. Yoshida, T. Nagasaki and H. Minato, *J. Med. Chem.*, 1967, **10**, 1149.
- 2 T. Kohno, D. Kohda, M. Haruk, S. Yokoyama and T. Miyazawa, J. Biol. Chem., 1990. 265, 6931.
- R. J. Parry and H. P. Buu, J. Am. Chem. Soc., 1983, 105, 7446;
 R. J. Parry, R. Turakhia and H. P. Buu, J. Am. Chem. Soc., 1988, 110, 4035.
- 4 M. Shiro, H. Nakai, K. Tori, J. Nishikawa, Y. Yoshimura and K. Katagiri, J. Chem. Soc., Chem. Commun., 1980, 375.
- M. M. Joullie, P. C. Wang and J. E. Semple, *J. Am. Chem. Soc.*, 1980,
 102, 887; J. E. Semple, P. C. Wang, Z. Lysenko and M. M. Joullie,
 J. Am. Chem. Soc., 1980, 102, 7505.
- I. Savage and E. J. Thomas, J. Chem. Soc., Chem. Commun., 1989, 717;
 S. H. Kang and H.-W. Choi, Chem. Commun., 1996, 1521.
- 7 P. J. Garegg and B. Samuelsson, J. Chem. Soc., Chem. Commun., 1979, 978; P. J. Garegg and B. Samuelsson, J. Chem. Soc., Perkin Trans. 1, 1980, 2866; P. J. Garegg, R. Johansson, C. Ortega and B. Samuelsson, J. Chem. Soc., Perkin Trans. 1, 1982, 682.
- 8 H. O. House, C.-Y. Chu, J. M. Wilkins and M. J. Umen, J. Org. Chem., 1975, 40, 1460; E. Erdik, Tetrahedron, 1984, 40, 641.
- 9 T. L. B. Boivin, *Tetrahedron*, 1987, **43**, 3309; J.-C. Harmange and B. Figadere, *Tetrahedron: Asymmetry*, 1993, **4**, 1711.
- R. P. Quirk and R. E. Lea, J. Am. Chem. Soc., 1976, 98, 5973;
 M. C. Benhamou, G. Etemad-Moghadam, V. Speziale and A. Lattes, Synthesis, 1979, 891;
 K. E. Harding, R. Stephens and D. R. Hollingsworth, Tetrahedron Lett., 1984, 25, 4631.
- 11 G. Cardillo and M. Orena, Tetrahedron, 1990, 46, 3321.
- 12 A. R. Chamberlin, R. M. Mulholland, Jr., S. D. Kahn and W. J. Hehre, J. Am. Chem. Soc., 1987, 109, 672.
- 13 C. L. Hill and G. M. Whitesides, J. Am. Chem. Soc., 1974, 96, 870.
- 14 A. J. Mancuso and D. Swern, Synthesis, 1981, 165.
- 15 B. S. Bal, W. E. Childers and H. W. Pinnik, *Tetrahedron*, 1981, 37, 2091.

Received in Cambridge, UK, 27th January 1998; 8/00727F