
Gold-Catalyzed 1,4-Carbooxygenation of 3-En-1-ynamides with
Allylic and Propargylic Alcohols via Non-Claisen Pathways

Sovan Sundar Giri,a Li-Hsuan Lin,a Prakash Daulat Jadhav,a and Rai-Shung Liua,*
a Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan, ROC

Fax: (+886)-3-571-1082; e-mail: rsliu@mx.nthu.edu.tw

Received: October 5, 2016; Revised: November 16, 2016; Published online: && &&, 0000

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201601092.

Abstract: Gold-catalyzed 1,4-carbooxygenations of
3-en-1-ynamides with allylic alcohols and propargyl-
ic alcohols yield a,b-unsaturated amides through
non-Claisen pathways; the mechanisms involve ion-
ization of the initial gold enol ethers to form C-
bound gold dienolates that capture allylic or propar-
gylic cations to yield the observed products. Our
18O-labeling experiments exclude a direct gold-cata-
lyzed allylation or propargylation on these 3-en-1-
ynamides.

Keywords: allylic and propargylic alcohols; 1,4-car-
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The advent of gold catalysis has inspired new func-
tionalizations of alkynes with a broad range of nucle-
ophiles to afford valuable molecules.[1] Gold-catalyzed
reactions of alkynes with allylic or propargylic alco-
hols are powerful tools to access 1,5-enones I and 1,5-
allenyl ketones II,[2,3] which serve as versatile building
blocks in organic synthesis.[4,5] Such one-pot reactions
have been thoroughly examined by Aponick,[2a]

Nolan,[2b] Hsung,[2c,3a,b] and others[2,3] using gold or
acid catalysts; the mechanisms typically involve initial
hydroalkoxylations,[6] followed by Claisen rearrange-
ments[7] (Scheme 1). In the reaction mechanism, there
is no support for the participation of vinylgold ethers
A or A’ in the [3,3]-sigmatropic rearrangement before
protodeaurations, although this gold-containing rear-
rangement is calculated to possess only a small bar-
rier.[2b] Here, we report gold-catalyzed 1,4-carbooxy-
genations of 3-en-1-ynamides with allylic and propar-
gylic alcohols, yielding a,b-unsaturated amides 4 and
5 efficiently. These atypical products imply an ioniza-
tion of the initial vinylgold intermediates B and B’ to
form C-bound gold dienolates C that capture allylic
or propagylic cations to yield 1,4-carbooxygenation

products 4 and 5 through non-Claisen pathways. Our
18O-labeling experiments exclude a direct allylation or
propargylation of 3-en-1-ynamides catalyzed by gold
complexes.[8]

Ynamides are common substrates for gold-cata-
lyzed reactions because of their high electrophilici-
ty.[9,10] Ynamides were selected as target substrates be-
cause their Lewis acid-catalyzed reactions with prop-
argylic alcohols can proceed at room temperature,[3c,d]

yielding Claisen-type products 6.[3a,b,11] We examined
the chemoselectivity of the reaction between 3-en-1-

Scheme 1. A summary of the catalytic reactions.
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ynamides 1a with propargylic alcohols using Lewis
acid catalysts. Table 1 shows the effects of aryl sub-
stituents of propargylic alcohol 2a–c on the chemose-
lectivitiy. Our initial tests on propargylic alcohols 2a
and 2b (1.1 equiv.) with Ph3PAuCl/AgOTf (10 mol%)
in dry toluene at 25 8C yielded 1,2-oxoallenylation
products 6a and 6b in 77% and 40% yields, respec-
tively, corresponding to Claisen-type products (en-
tries 1 and 2). Allenyl compounds 6a and 6b were
formed with high diastereoselectivity (dr>20:1); the
molecular structure of species 6a was inferred from
that of its tosylamide analogue 6a’.[12] The reactions of
alcohols 2b with IPrAuOTf (10 mol%)[13a] afforded
additional non-Claisen compound 4b in 25% yield
(entry 3). With a switch to electron-rich propargylic
alcohol 2c, Ph3PAuOTf afforded a distinct 1,4-oxopro-
pargylation product 4c in 91% (entry 4), whereas

IPrAuOTf yielded the desired 4c and hydration prod-
uct 1a-H in 26% and 62% yields, respectively
(entry 5). Zn(OTf)2 gave two carbooxygenation com-
pounds 4c and 6c, in 33% and 42% yields, respective-
ly (entry 6) whereas highly acidic Sc(OTf)3 yielded
compound 4c in 45% yield because of a competitive
hydration reaction (entry 7). Less acidic AgOTf gave
non-Claisen product 4c in a satisfactory yield (71%,
entry 8). Notably, HOTf was an ineffective catalyst to
yield 1,4-addition product 4c in 25% yield because
this acid gave HNMs(n-Bu) in 61% yield (entry 9).
MeCN and DCM were also efficient solvents with
Ph3PAuCl/AgOTf to afford compound 4c in 77% and
76% yields respectively (entries 10 and 11). To ensure
the catalytic role of Ph3PAu+, silver-free
Ph3PAuOTf[13b] was tested in this reaction and yielded
compound 4c in 91% (entry 12). The non-Claisen re-

Table 1. Non-Claisen versus Claisen products.

[a] [1a]=0.15 M.
[b] Product yields are reported after separation on a silica column.
[c] dr>20:1 for species 6a–6c.
[d] HNMs(n-Bu) was isolated in 61% due to a hydration of amides 1a-H or 1a-H’.
[e] This complex is free of silver salts.
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actions occur preferably with electron-rich propargyl-
ic alcohol 2c using less acidic catalysts AgOTf or
LAuOTf (L =Ph3P or IPr), but AgOTf and IPrAuOTf
were also troubled with hydration products 1a-H/1a-
H’ (entries 5 and 8).

We assessed the scope of 1,4-oxopropargylations
with various 3-en-1-ynamides 1 and electron-rich
propargylic alcohols 2. The reactions were performed
with Ph3PAuCl/AgOTf in toluene; the resulting 1,4-
oxopropargylation products 4d–4n were present
mainly in E-configurations (E/Z> 20:1, Table 2, en-
tries 1–11). For species 1b and 1c bearing alterable
sulfonamides [NR4EWG=NTsMe, NTs(n-Bu)], their
corresponding 1,4-oxopropargylation products 4d and
4e were produced with good yields (74–76%) and
high E-selectivity (E/Z>20:1) over 4 h. In a brief

period (0.8 h), 3-en-1-ynamide 4d gave two isomers
with E/Z= 2.7:1. These different E/Z ratios at two
time periods indicate that Ph3PAuOTf catalyzed the
Z!E isomerization of species 4d (entries 1 and 2).
For propargylic alcohols 2d and 2e bearing varied al-
kynyl substituents (R6 =n-butyl and isopropyl), their
propargyl derivatives 4f and 4g were obtained in 58–
61% yields (entries 3 and 4). 2-Thienyl-containing
propargylic alcohols 2f–2h (R5 =2-thienyl, R6 =Ph,
isopropyl and n-butyl) were also applicable substrates
to yield propargyl species 4h–4j in moderate yields
(47–61%, entries 5–7). For ynamide 1d bearing
a trans-styryl group (R4 =Ph, R1 =R3 =H), the reac-
tions with two propargylic alcohols 2c and 2f (R5 = 4-
MeOC6H4 and 2-thienyl) afforded similar products 4k
and 4l in satisfactory yields (65–68%), albeit in two
diastereomers (dr=4.1:1 and 2.2:1, entries 8 and 9).
For 3-en-1-ynamide 1e bearing a gem-dimethylvinyl
substituent (R1 =H, R4 =R3 =Me), its reactions with
two alcohol substrates 2c and 2f afforded compounds
4m and 4n in 72% and 78% yields respectively (en-
tries 10 and 11).

Our next aim was to realize novel 1,4-oxoallylations
of 3-en-1-ynamide 1a with electron-rich allylic alco-
hols 3 ; the results are summarized in Table 3. All re-
sulting 1,4-oxoallylation products 5 were present as E-
isomers (E/Z>20:1) except 5f with E/Z =5:1. Besides
1,4- and 1,2-oxoallylation products 5 and 7, hydration
compounds 1a-H and 1a-H’ were present but are not
reported here. Gold-catalyzed reactions of 3-en-1-yn-ACHTUNGTRENNUNGamide 1a with 1-phenylprop-2-en-1-ol 3a or 1,1-dime-
thylprop-2-en-1-ol 3b followed the Claisen reaction,
yielding 1,2-oxoallylation products 7a and 7b in 89%
and 63% yields, respectively (entries 1 and 2). The
use of easily ionizable 1,3-diphenylprop-2-en-1-ol 3c
enabled the desired 1,4-oxoallylation product 5c with
a yield of up to 95 % (entry 3). Notably, such gold-cat-
alyzed reactions of 3-en-1-ynamide 1a with two allylic
alcohols 3d and 3e afforded the same compound 5d in
satisfactory yields (63–67%, entries 4 and 5). A 1,4-
oxoallylation of 3-en-1-ynamide 1a with tertiary allylic
alcohol 3f occurred at the less hindered allylic
carbon, yielding compound 5f in 35% yield with two
isomers (E/Z =5:1, entry 6). The reactions of this
enyn ACHTUNGTRENNUNGamide with 1,1-dimethyl-3-phenylpropr-2-en-1-ol
3g and 3,3-dimethyl-1-phenylpropr-2-en-1-ol 3h gave
compounds 5g and 5g’ in comparable proportions. In
the course of these reactions, Ph3PAuCl/AgOTf cata-
lyzed the isomerizations between the allylic alcohols
3g and 3h.

We also tested other 3-en-1-ynamides 1 to expand
the reaction scope; the results are summarized in
Table 4. For initial species 1b and 1c bearing alterable
sulfonamides [NR’EWG=NTsMe, NTs(n-Bu)], their
resulting 1,4-oxoallylation products 5h and 5i were
obtained with high E-selectivity (E/Z>20:1) over
a 2 h period. The reaction worked well with other 3-

Table 2. Scope for Non-Claisen reactions.[a–c]

[a] [1a]=0.15 M.
[b] E/Z>20:1 for entries 2–11.
[c] Product yields are reported after separation from a silica

column.
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substituted 3-en-1-ynamides 1h and 1i (R1 =Ph and n-
Bu, R2 = R3 =H), yielding the desired products 5j and
5k in 70% and 92% yields, respectively; but for 4,4-
dimethylvinyl derivative 1e, we obtained only its
Claisen-reaction product 8c in 70% yield with dr=
10:1 (entry 5).

Common ynamides 1f and 1g were also applicable
to these non-Claisen reactions to expand the reaction
scope; we employed highly ionizable propargylic alco-
hols 2c and 2f to confirm this pathway (Scheme 2).
The reactions of these two ynamides with alcohols af-
forded 1,2-progarylation products 4o, 4p and 4q in
reasonable yields. Herein, we isolated no 1,2-
oxoallen ACHTUNGTRENNUNGation product from the Claisen reactions. Un-
activated alkynes such as phenylacetylene failed to
react with propargylic alcohol under similar catalytic
conditions.

To gain mechanistic insights, we prepared 18O-con-
taining allylic alcohol 18O-3c with the content,
16O/18O=1.00:1.03. At 50% conversion in wet tolu-
ene, the resulting 1,4-oxoallylation product 18O-5c
bore the ratio 16O/18O=1.00:0.76, indicating a small
loss of 18O content (Scheme 3). At the end of reac-
tion, the 18O–H group of unreacted alcohol 18O-3c
bore the ratio, 16O/18O= 1.00:0.56, due to a slow ex-
change with H2O. These results indicate that the hy-

droxy oxygen of the initial allylic alcohol 3c is the
main source of the amide oxygen of compound 18O-
5c. Accordingly, we exclude a mechanism involving
an initial formation of allylic cation D, followed by an
attack of 3-en-1-ynmide 1a because this route is ex-
pected to yield 16O-5c as the major species. Similarly,
an SN2’ reaction between species 1a and 18O-3c is also
excluded. Hydration products 1a-H and 1a-H’ were
inactive toward allylic alcohol 3c in the presence of

Table 3. Effects of allylic alcohols on 1,2- or 1,4-addition reactions.[a–c]

[a] [1a]=0.15 M.
[b] Product yields are reported after separation on a silica column.
[c] E/Z>20:1 for products 5c, 5d, 5g and 5g’.

Scheme 2. The reaction with common ynamides.
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Ph3PAuCl/AgOTf under similar conditions. According
to a recent report,[14] a mixture of trimethoxymethane
and AgOTf catalyst enabled the conversion of unacti-

vated ketones to enol ethers that undergo subsequent
a-alkylations with propargylic alcohols to give propy-
lation products.[14] That no reaction occurred for these
reactants is not surprising.

Scheme 4 shows a postulated mechanism to ration-
alize the 1,4-carbooxygenations of initial 3-en-1-yn-ACHTUNGTRENNUNGamide 1a. According to the 18O experiments, the addi-
tion of allylic alcohols and propargylic alcohols to p-
alkynes A is the initial step to yield species B or B’
respectively. With electron-rich allylic or propargylic
alcohols, species B or B’ undergoes self-ionization to
form gold enols C together with allylic or propargylic
cations. Intramolecular reactions of these pairs are ex-
pected to yield 1,4-carbooxygenation products 5c and
4c, respectively.

This model rationalizes well the side products of
some catalysts in Table 1; enolate C bearing electron-
rich IPrAu tends to undergo protonation to form hy-
dration products 1a-H or 1a-H’ (entry 5). For
Zn(OTf)2, its vinyl propargyl ether B is expected to
release HOTf to form a dual acid species D,[15b] thus
giving additional Clasien product 6c (entry 6).

Table 4. 1,4-Oxoallylations for various 3-en-1-ynamides.[a–c]

[a] [1]=0.15 M.
[b] E/Z>20:1 for entries 1–3.
[c] Product yields are reported after separation from a silica

column.

Scheme 3. Experiments to elucidate the mechanism.

Scheme 4. A postulated mechanism.
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Previously, gold-catalyzed reactions of alkynes with
allylic and propargylic alcohols exclusively afforded
1,5-enones and 1,5-allenyl ketones though initial hy-
droalkoxylations, followed by the Claisen rearrange-
ments.[15] Here, we report gold-catalyzed 1,4-carbo-ACHTUNGTRENNUNGoxy ACHTUNGTRENNUNGgenations of 3-en-1-ynamides[16] with allylic alco-
hols and propargylic alcohols, yielding a,b-unsaturat-
ed amides through non-Claisen pathways. The mecha-
nism involves self-ionizations of initial gold enol
ethers to form C-bound gold dienolates C that cap-
ture allylic or propargylic cations to yield the ob-
served products. These reactions work with a wide
scope of 3-en-1-ynamides and electron-rich propargyl-
ic or allylic alcohols; common ynamides are also ap-
plicable substrates. The new finding of this work in-
creases the utility of gold-catalyzed hydroalkoxyla-
tions of alkynes.

Experimental Section

Synthesis of (E)-N-Butyl-5-(4-methoxyphenyl)-3-
ethyl-N-(methylsulfonyl)-7-phenylhept-2-en-6-yn-
amide (4c)

To a dry toluene solution (2 mL) of Ph3PAuCl (0.023 g,
0.046 mmol) and AgOTf (0.012 g, 0.046 mmol) was added
a toluene (1 mL) solution of N-butyl-N-(3-methylbut-3-en-1-
yn-1-yl)methanesulfonamide 1a (0.10 g, 0.46 mmol) and 1-
(4-methoxyphenyl)-3-phenylprop-2-yn-1-ol 2c (0.11 g,
0.46 mmol) at room temperature; the resulting mixture was
stirred for 1.5 h. The resulting solution was filtered over
a short celite bed and evaporated under reduced pressure.
The residues were purified on a silica gel column using ethyl
acetate/hexane (1:9) as eluent to give compound 4c as
a yellow oil; yield: 0.191 g (0.42 mmol, 91%).

Typical Procedure for the Synthesis of (2E,6E)-N-
Butyl-3-methyl-N-(methylsulfonyl)-5,7-diphenylhepta-
2,6-dienamide (5c)

To a dry toluene solution (2 mL) of Ph3PAuCl (0.021 g,
0.042 mmol) and AgOTf (0.011 g, 0.042 mmol) was added
a toluene (1 mL) solution of N-butyl-N-(3-methylbut-3-en-1-
yn-1-yl)methanesulfonamide 1a (0.09 g, 0.42 mmol) and (E)-
1,3-diphenylprop-2-en-1-ol, 3c (0.088 g, 0.42 mmol) at room
temperature; the resulting mixture was stirred for 2.5 h. The
resulting solution was filtered over a short celite bed, and
evaporated under reduced pressure. The residues were puri-
fied on a silica gel column using ethyl acetate/hexane (1:9)
as eluent to give compound 5c as a yellow oil; yield: 0.168 g
(0.39 mmol, 95%).
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