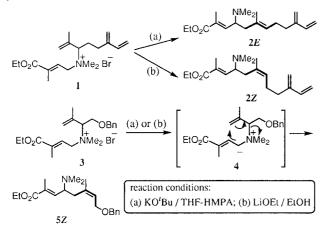
Stereoselective Synthesis of Oxygenated Trisubstituted Olefins Using N-Ylides [2,3]Rearrangement

Kiyoshi Honda,* Daisuke Igarashi, Masatoshi Asami, Seiichi Inoue*

Department of Synthetic Chemistry, Faculty of Engineering, Yokohama National University, Tokiwadai, Hodogayaku, Yokohama 240, Japan

Fax +81-45-339-3970; E-mail: inoue@syn.synchem.bsk.ynu.ac.jp

Received 12 March 1998

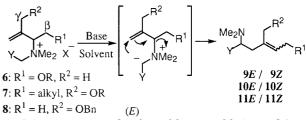

Abstract: [2,3]Sigmatropic rearrangement of *N*-(ethoxycarbonyl)methyl- β -methallylammonium ylide with an oxygen functionality at the β -position or γ -position forms trisubstituted *trans*-olefins with high stereoselectivity. On the other hand, the rearrangement of salts having a tiglyl ester moiety instead of a carbethoxy group affords *cis*-olefins. The present method was applied to the synthesis of plaunotol.

We have reported stereoselective or stereocontrolled synthesis of trisubstituted olefins using an *N*-ylide [2,3]sigmatropic rearrangement of β -methallylammonium salts.¹

Recently, stereocontrolled elongation of a functionalized isoprene unit on the *E* or *Z* terminal methyl of terpenoids was achieved by the *N*-ylide rearrangement of the common *N*-tiglyl- β -methallyldimethylammonium salts under the selected reaction conditions.²

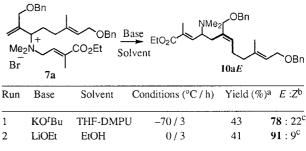
Treatment of **1** with potassium *tert*-butoxide in a mixture of THF-HMPA resulted in a 71 : 29 mixture of **2E** and **2Z** in a 69% combined yield. On the contrary, the stereoselectivity of the [2,3]sigmatropic rearrangement was reversed under the following reaction conditions: treatment of **1** with lithium ethoxide in ethanol resulted in a 13 : 87 mixture of **2E** and **2Z** in a 65% combined yield. Notably, isolation of each rearrangement product was easily achieved by column chromatography on silica gel.

Interestingly, treatment of **3** either with potassium *tert*-butoxide in THF-HMPA or with alkali metal ethoxide in ethanol resulted in the formation of an *N*-ylide **4**, which underwent [2,3]sigmatropic rearrangement to give exclusively diene **5Z** which was composed of a newly formed *Z* and tiglyl-origin *E* olefinic moiety.³ It should be noted that the high *Z*selective character of this system is in sharp contrast to our previous system² as shown in Scheme 1.



Therefore, we suggested that this dramatical inversion of stereoselectivity came from presence or absence of an oxygen functionality in the β -position.

This observation prompted us to investigate the reactions of some oxygenated ammonium salts with bases.


Reported herein is highly Z- and E-stereoselective [2,3]sigmatropic rearrangement which provides trisubstituted allylic alcohol derivatives 9, 10 and 11 from ammonium salts 6, 7 and 8 oxygenated at the β - or γ -position.

X = halogen; $Y = (a): -CH=C(Me)CO_2Et, (b): CO_2Et, (c): CN$

First, we examined the rearrangement of salt **7a** oxygenated at the γ position as shown in Table 1. Treatment of **7a** with potassium *tert*butoxide in a mixture of THF-DMPU resulted in a 78 : 22 mixture of **10aE** and the corresponding (Z)-isomer in a 43% combined yield and
treatment with lithium ethoxide in ethanol gave **10aE** predominantly
(91% E) in a 41% combined yield. Determination of Z/E was
established by NMR and NOE analysis. This strong E-selective
character (*cis* relationship between long carbon chains around the
carbon-carbon double bond) is similar to that of the rearrangement of
salt **3** which shows highly *cis*-selectivity.

Table 1. Reaction of γ -Oxygenated *N*-Tiglyldimethylammonium Salts **7a**

^aCombined yield. ^bNMR analysis. ^cEach sterochemistry of the isolated stereosisomers was analyzed by ¹H and ¹³C NMR (CDCl₃) spectroscopy

We next examined the rearrangement of **6b** as shown in Table 2. All reactions were highly *E*-selective (run 1~4) as well as the rearrangement of the corresponding salts having no oxygen functionality at the β -position.^{2b} And higher basicity increased the *E*-selectivity of the rearrangement (run 3).

Next, we examined the rearrangement of the corresponding salts with carbonitrile as an electron-withdrawing group. Interestingly, no stereoselectivity was obtained except for the case of R = H which is strongly *E*-selective (run 4~6) as shown in Table 3.

Finally, we examined the rearrangement of salt **8b** oxygenated at the γ -position. The stereoselectivity of this rearrangement was the same as that of salt **6b**, which leads to a highly *trans* relationship between long

Table 2. Reaction of β -Oxygenated *N*-(Ethoxycarbonyl)methyldimethylammonium Salts **6b**

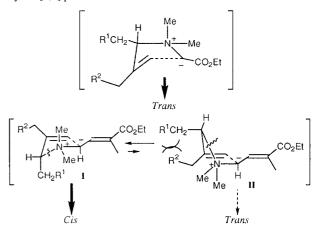
$EtO_{2}C \longrightarrow NMe_{2} Br = TBS, THP, Bn \qquad Me_{2}N \\ EtO_{2}C \longrightarrow NMe_{2} Br = Solvent \qquad Me_{2}N \\ EtO_{2}C \longrightarrow OR \\ 9bE / 9bZ \qquad OR $							
Run	R	Base	Solvent	Conditions	Yielda	<i>E</i> : <i>Z</i> ^b	
				(°C/h)	(%)		
1	TBS	KO ^t Bu	DMF	-40/24	73	96 :4 ^c	
2	TBS	NaOEt	EtOH	0/3.5	71	93 :7 ^c	
3	THP	LDA	THF	-70/1	67	$100:0^{c,d}$	
4	Bn	LHMDS	DMF	-50 / 10	68	95 : 5 ^c	

a Isolated yield. ^b GC analysis. ^c Each stereochemistry of the isolated stereoisomers was analyzed by ¹H and ¹³C NMR (CDCl₃) spectroscopy as follows: **9b***E* (R = TBS): δ 1.60(3H, s); 16.5, **9b***Z* (R = TBS): δ 1.68(3H, s); 23.8, **9b***E* (R = THP): δ 1.71(3H, s); 16.2, **9b***E* (R = Bn): δ 1.67(3H, s); 16.3, **9b***Z* (R = Bn): δ 1.78(3H, s); 23.4. ^d This stereoisomer was confirmed by NOE analysis

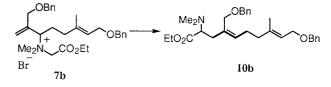
Table 3. Reaction of β -Oxygenated *N*-Cyanomethyldimethylammonium Salts **6**c

$H_{NC} = H_{R} = H_{NC} = H_$						
Run	R	Base	Solvent	Conditions (°C/h)	Yield ^a (%)	E :Zb
1	Bn	KO ^t Bu	THF	-70/3	67	34 : 66 ^c
2	Bn	LDA	THF	-70 / 0.5	58	34 : 66 ^c
3	Bn	LiOEt	EtOH	0/5	67	60 :40 ^c
4	Н	KO ^t Bu	DMF	-50 / 0.5	29	95: 5 ^c
5	Н	LDA	THF	-70/3	13	95 : 5 ^c
6	Η	NaOMe	MeOH	-70/2	65	90 : 10 ^c

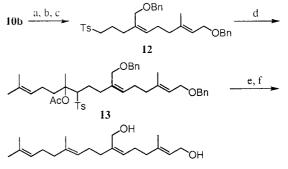
a Isolated yield. b GC analysis. ^c Each stereochemistry of the isolated stereoisomers was analyzed by ¹H and ¹³C NMR (CDCl₃) spectroscopy as follows: 9cE (R = Bn): δ 1.62(3H, s); 16.2, 9cZ (R = Bn): δ 1.83(3H, s); 23.4, 9cE (R = H): δ 1.73(3H, s); 15.9, 9cZ (R = H): δ 1.83(3H, s); 23.8


Table 4. Reaction of γ -Oxygenated Ammonium Salts 8b

	EtO ₂ C	OBn NMe ₂ Br	Base Me ₂ N Solv. EtO ₂ C	OBn	
	8	b		11bZ	
Run	Base	Solvent	Conditions(°C / h)	Yield(%)	E:Z
1	KO ^t Bu	THF	-70/2	88	0:100
2	NaOEt	EtOH	0/2	88	0:100


a Isolated yield

carbon chains around the carbon-carbon double bond under two basic rearrangement conditions as shown in Table 4.


[2,3]Sigmatropic rearrangement of salts **6b**, **8b** and **6c** (R = H) having an electron-withdrawing group directly on the ylide carbon may have the usual concerted transition state of a doubly suprafacial mode⁴ exerting no vicinal repulsion between R^1CH_2 and the vinyl R^2CH_2 group, which leads to a *trans* olefin as shown in Scheme 2. On the other hand, the [2,3]sigmatropic rearrangement of salts **3** and **7a** seems to have an earlier (*i.e.*, reactant-like) transition state than that of the abovementioned stable ylides. Thus another envelope conformation can be postulated as a plausible transition state leading to the *cis* olefin. The conformational preference of **I** over **II** may result from vicinal repulsion between R^1CH_2 and the vinyl R^2CH_2 group, which has been used for the ylide [2,3] processes.⁵

Scheme 2

The present method was applied with the synthesis of $plaunotol^6$ as shown in Scheme 3.

Plaunotol

a, Mel (98%); b, (i) 5% Na/Hg (ii) LiAlH₄ (99%, 2 steps); c, (i) TsCl, (ii) Nal, (iii), TsNa (83%, 3 steps); d, (i) nBuLi, methylheptenone, (ii) Ac₂O (88%); e, 5% Na/Hg (68%); f, Na/NH₃ (95%)

Scheme 3

Treatment of **7b** with potassium *tert*-butoxide in THF at -70 °C afforded (*Z*)-ester **10b** exclusively in 96% yield.

A reductive removal of the dimethylamino group was achieved by quaternization of **10b**, followed by treatment of sodium amalgam in a buffer solution. The subsequent reduction of ester was carried out with lithium aluminum hydride to give the corresponding alcohol. *p*-Tolylsulfone **12** was then obtained in 83% yield by the conventional method from alcohol via the corresponding tosylate and iodide. Tolylsulfone **12** was converted with n-BuLi into carbanion, which reacted with methylheptenone and quenched with acetic anhydride to give C_{20} product **13**, which was subjected to Na/Hg and Na/NH₃ reduction succesively to furnish the desired plaunotol.

In summary, [2,3]sigmatropic rearrangement of β - or γ -oxygenated *N*-(ethoxycarbonyl)methyl- β -methallylammonium ylides form trisubstituted *trans*-olefins with high stereoselectivity. On the other hand, the rearrangement of salts having a tiglyl ester moiety instead of a carbethoxy group affords *cis*-olefins. These reactions will find application to the synthesis of functionalized terpenoid and other natural products having defined olefin stereochemistry.

References and Notes

- a) Honda, K.; Inoue, S.; Sato, K. J. Am. Chem. Soc., 1990, 112, 1999; b) Honda, K.; Inoue, S.; Sato, K. J. Org. Chem., 1992, 57, 428; c) Honda, K.; Inoue, S. Synlett, 1994, 739.
- (2) Honda, K.; Tabuchi, M.; Inoue, S. Chem. Lett., 1996, 385.

- (3) Honda, K.; Yoshii, I.; Inoue, S. Chem. Lett., 1996, 671.
- (4) Yamamoto, Y.; Oda, J.; Inouye, Y. J. Org. Chem., 1976, 41, 303; Inoue, S.; Iwase, N.; Miyamoto, O.; Sato, K. Chem. Lett., 1986, 2035.

SYNLETT

- (5) Trost, B. M.; Mervin, L. S. Jr., *Sulfer Ylides*; Blomquist, A. T.; Wasserman, H. H., Eds.; Academic Press: New York, **1979**, 108– 127
- (6) For synthesis of plaunotol, see: Ogiso, A.; Kitazawa, E.; Kurabayashi, M.; Sato, A.; Takahashi, S.; Noguchi, H.; Kuwano, H.; Kobayashi, S.; Mishima, H. *Chem. Pharm. Bull.*, **1978**, *26*, 3117; Sato, K.; Inoue, S.; Iwase, N.; Honda, K. *Bull. Chem. Soc. Jpn.*, **1990**, *63*, 1328; Inoue, S.; Honda, K.; Iwase, N.; Sato, K. *Bull. Chem. Soc. Jpn.*, **1990**, *63*, 1629.