

Amphiphilic Molecular Design as a Rational Strategy for Tailoring **Bicontinuous Electron Donor and Acceptor Arrays: Photoconductive Liquid** Crystalline Oligothiophene-C₆₀ Dyads

Wei-Shi Li,*,[†] Yohei Yamamoto,[†] Takanori Fukushima,^{*,†,‡} Akinori Saeki,[§] Shu Seki,[§] Seiichi Tagawa,[§] Hiroyasu Masunaga,[#] Sono Sasaki,[#] Masaki Takata,^{#,II} and Takuzo Aida^{*,†,‡}

ERATO-SORST Nanospace Project, Japan Science and Technology Agency (JST), National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan, Department of Chemistry and Biotechnology, School of Engineering and Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan

Received April 15, 2008; E-mail: li@nanospace.miraikan.jst.go.jp; fukushima@nanospace.miraikan.jst.go.jp;

aida@macro.t.u-tokyo.ac.jp

Tailoring bicontinuous electron donor (D) and acceptor (A) arrays in solution-processable materials is an essential step for the realization of thin-film organic optoelectronics.1 Casting of a D/A mixture may give rise to photoconductive bulk materials.² However, without proper choice of the components, many defects are usually formed, leading to trapping and rapid annihilation of charge carriers. In view of photovoltaics, the presence of bicontinuous D and A arrays is essential, but cast films from D/A mixtures likely contain their charge-transfer complexes. So far, nanofibers and tubes with bicontinuous D and A arrays have been obtained by self-assembly of covalently linked D-A dyads.3,4 Nevertheless, solution-processable bulk materials with a D/A heterojunction⁵ might be more realistic for device applications. Here we report a photoconductive liquid crystal (LC) with bicontinuous arrays of densely packed D and A components, tailored from amphiphilic oligothiophene-C₆₀ dyad 1_{Amphi} (Chart 1).⁶ Together with contrasting results for a nonamphiphilic reference (1_{Lipo}) , we highlight a crucial role of the amphiphilic design both in structuring and in photoconductivity.

The molecular structures of 1_{Amphi} and 1_{Lipo} are identical to each other except for the terminal wedges. 1_{Amphi} bears a hydrophilic wedge with triethylene glycol chains and, on the other side, a hydrophobic wedge with paraffinic chains. In contrast, 1_{Lipo} possesses only the paraffinic wedges. We also prepared compounds 2 and 3, which are equivalent to the donor and acceptor components of 1_{Amphi} , respectively. They are all soluble in CH_2Cl_2 , where the absorption spectral profiles (Figure S3) and redox properties (Figure S4) of $\mathbf{1}_{Amphi}$ and $\mathbf{1}_{Lipo}$ were essentially identical to one another.⁶

Dyad 1_{Amphi} formed a LC smectic A mesophase over a wide temperature range from 136.1 to 18.3 °C (Figure S5).6 Polarized optical microscopy (POM) of LC-1_{Amphi} displayed a typical focalconic texture (Figure 1a). Synchrotron radiation small-angle X-ray scattering (SAXS) analysis showed sharp peaks with d spacings of 10.6, 5.3, 3.5, and 2.6 nm (Figure 1c), which can be indexed as (100), (200), (300), and (400) reflections of a lamellar structure with a layer width of 10.6 nm. On the basis of a CPK model of $\mathbf{1}_{Amphi}$, the observed layer width is almost twice as large as the distance from the paraffinic end to the fullerene unit (\sim 5.5 nm;

 $n_{1}: R^{1} = Ar(OC_{12})_{3}, R^{2} = Ar(OTEG)_{3}$: R¹ = R² = Ar(OC₁₂) 3: R² = Ar(OTEG) 2: $R^1 = Ar(OC_{12})$ Lipophilic and Hydrophilic Side Wedges Ar(OC12)3 Ar(OTEG)₃ -0

Figure 2, I). Thus, each repeating layer consists of laterally coupled tail-to-tail pairs of $\mathbf{1}_{Amphi},$ and such layers are connected at the fullerene-appended hydrophilic head part of $\mathbf{1}_{Amphi}$ to form a 2D lamellar structure. In this configuration, the hydrophilic and paraffinic wedges are separated by 5.3 nm.

Similar to 1_{Amphi} , nonamphiphilic 1_{Lipo} formed a smectic A LC mesophase in a temperature range from 111.4 to 12.5 °C, as

Figure 1. POMs at 33 °C and SAXS patterns at 30 °C (inset: magnified at $q = 1.5 - 2.5 \text{ nm}^{-1}$) of (a,c) LC-1_{Amphi} and (b,d) LC-1_{Lipo}.

Chart 1. Structures of 1_{Amphi}, 1_{Lipo}, and References 2 and 3

ERATO-SORST Nanospace Project, JST.

The University of Tokyo.

Osaka University IASRI

RIKEN.

Figure 2. Schematic representations of molecular orientations in LC- 1_{Amphi} (I) and LC- 1_{Lipo} (II) with a smectic A mesophase.

Figure 3. (a) Absorption spectra at 25 °C of $\mathbf{1}_{Amphi}$ (blue) and $\mathbf{1}_{Lipo}$ (red) in the LC state (solid curves) and in CH₂Cl₂ (broken curves), normalized at 450 nm. Photoconducting properties at 25 °C of LC- $\mathbf{1}_{Amphi}$ (blue), LC- $\mathbf{1}_{Lipo}$ (red), and a 1:1 mixture of **2** and **3** (black); (b) *I*–*V* profiles without (broken curves) and with photoirradiation (solid curves) and (c) changes in photogenerated electric current under an applied voltage of +1 V. (d) FP-TRMC profiles ($\lambda_{ex} = 355$ nm) of LC- $\mathbf{1}_{Amphi}$ (blue) and LC- $\mathbf{1}_{Lipo}$ (red).

observed by DSC and POM profiles (Figures 1b and S5).⁶ SAXS pattern (Figure 1d) displayed intense and weak diffractions with *d* spacings of 5.7 and 2.9 nm, respectively, which were indexed as (100) and (200) reflections of a lamellar structure with a layer width of 5.7 nm (Figure 2, II). The observed width is close to the molecular length of 1_{Lipo} . Considering that both ends of 1_{Lipo} are paraffinic, the head/tail orientation of 1_{Lipo} in the lamellar structure is most likely nonuniform (Figure 2, II). In relation to these structural aspects, the absorption spectrum of LC- 1_{Lipo} was different from that of LC- 1_{Amphi} , while both were obviously broader than those in CH₂Cl₂ (Figure 3a). In particular, a broad band observed for LC- 1_{Lipo} at 600–800 nm suggests a charge-transfer interaction between the oligothiophene and fullerene units, which can occur unless 1_{Lipo} adopts a uniform head/tail orientation.

As shown in Figure 3b,c, LC- $\mathbf{1}_{Amphi}$ (blue) exhibited a distinct photoconductive character. At an applied voltage of, for example, +2 V, the current at 25 °C increased abruptly from 0.09 to 26 pA (on/off ratio = 290) upon irradiation and quickly retrieved the original value when the light was turned off. In contrast, a 1:1

COMMUNICATIONS

mixture of 2 and 3 formed neither regular structures nor photoconductivity (black). Noteworthy, LC- 1_{Lipo} (red) was much less conductive than LC- $\mathbf{1}_{Amphi}$, where the photocurrent was only 1/10 that of $\mathbf{1}_{Amphi}$ observed under identical conditions. This result is interesting since the electron transfer efficiencies in $LC-1_{Amphi}$ and $LC-1_{Lino}$, judging from their fluorescence quenching profiles (Figure S6),⁶ are considered equally high. Having these features in mind, we conducted flash photolysis time-resolved microwave conductivity (FR-TRMC) measurements, which are informative of the behaviors of mobile charge carriers in a short distance (~ 10 nm). With a 355 nm laser pulse at 25 °C (Figure 3d), the maximum conductivity ($\phi \Sigma \mu_{\text{max}}$ in cm²/V·s) of LC-1_{Amphi} (4.1 × 10⁻⁴) was markedly greater than that of the 2/3 mixture (1.2×10^{-4}) but almost comparable to that of LC- 1_{Lipo} (3.7 \times 10⁻⁴). However, the charge carrier, generated in LC- 1_{Lipo} , was shorter-lived than that in LC-1_{Amphi}, suggesting the presence of a larger number of trapping sites in LC-1_{Lipo}. This is in accord with the aforementioned low structural integrity of LC- 1_{Lipo} (Figure 2, II) and its poor photoconducting nature in a macroscopic scale (Figure 3b).

In summary, we have demonstrated that amphiphilic molecular design⁷ can be a rational strategy for the spontaneous formation of bicontinuous donor and acceptor arrays in liquid crystalline materials. Site-specific modification of donor—acceptor dyads with hydrophilic and paraffinic wedges not only prohibits donor—acceptor interactions leading to the trapping of charge carriers but also ensures a long-range conducting pathway in the materials. As liquid crystals are solution-processable and self-healable, our design strategy may contribute to the development of high-performance organic optoelectronics.

Acknowledgment. The synchrotron radiation experiments were carried out on the BL40B2 of SPring-8 under the Priority Nanotechnology Support Program administrated by JASRI (Proposal No. 2008A1650).

Supporting Information Available: Details of synthesis and characterization of 1_{Amphi} , 1_{Lipo} , 2, and 3, and supporting Figures S1–S6. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Segura, J. L.; Martín, N.; Guldi, D. M. Chem. Soc. Rev. 2005, 34, 31– 47. (b) Günes, S.; Neugebauer, H.; Saricifici, N. S. Chem. Rev. 2007, 107, 1324–1338. (c) Thompson, B. C.; Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58–77.
- (2) (a) Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudsonk, S. D.; Duank, H. *Nature* **2002**, *419*, 384–387. (b) Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. *Science* **2006**, *293*, 1119–1122. (c) Liscio, A.; De Luca, G.; Nolde, F.; Palermo, V.; Müllen, K.; Samorì, P. J. Am. Chem. Soc. **2008**, *130*, 780–781.
- (3) (a) Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T. *Science* 2006, *314*, 1761– 1764. (b) Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.; Tagawa, S.; Ishii, N.; Aida, T. *J. Am. Chem. Soc.* 2007, *129*, 9276–9277.
- (4) (a) Würthner, F.; Chen, Z.; Hoeben, F; J, M.; Osswald, P.; You, C.-C.; Jonkheijm, P.; Herrikhuyzen, J. v.; Schenning, A. P. H. J.; van der Schoot, P. P. A. M.; Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126, 10611–10618. (b) Röger, C.; Müller, M. G.; Lysetska, M.; Miloslavina, Y.; Holzwarth, A. R.; Würthner, F. J. Am. Chem. Soc. 2006, 128, 6542–6543.
- (5) (a) Samorì, P.; Yin, X.; Tchebotareva, N.; Wang, Z.; Pakula, T.; Jackel, F.; Watson, M. D.; Venturini, A.; Müllen, K.; Rabe, J. P. *J. Am. Chem. Soc.* 2004, *126*, 3567–3575. (b) Peeters, E.; van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E. W. *Chem.—Eur. J.* 2002, *8*, 4470–4474.
- (6) See Supporting Information.
- (7) For review, see: Tschierske, C. J. Mater. Chem. 2001, 11, 2647-2671.
- JA802757W