Synthetic Utility of an Isolable Nucleoside Phosphonium Salt

Suyeal Bae and Mahesh K. Lakshman*

Department of Chemistry, The City College and The City University of New York, 160 Convent Avenue, New York, New York 10031-9198

lakshman@sci.ccny.cuny.edu

Received March 16, 2008

ABSTRACT

The reaction of O^6 -benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine with 1*H*-benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP) yielded the nucleoside C-2 tris(dimethylamino)phosphonium hexafluorophosphate salt as a stable, isolable species. This is in contrast to reactions of inosine nucleosides with BOP, where the in situ formed phosphonium salts undergo subsequent reaction to yield O^6 -(benzotriazol-1-yl)inosine derivatives. The phosphonium salt obtained from the 2'-deoxyxanthosine derivative can be effectively used to synthesize N^2 -modified 2'-deoxyguanosine analogues. Using this salt, a new synthesis of an acrolein-2'-deoxyguanosine adduct has also been accomplished.

The ability to modify natural nucleosides translates to novel applications in biochemistry, biology, and medicine.¹ A classical method for nucleoside modification is via displacement chemistry. For modification at the C-2 position various protected or unproteced 2-halo-2'-deoxyinosines, namely fluoro,² bromo,³ and chloro⁴ derivatives, have been used. In addition, use of triflate⁵ and tosylate^{4a} derivatives have also been reported.

Phosphonium salts have been proposed as intermediates in the reactions of inosine nucleosides with $Ph_3PI_2^{6,7}$ or with 1H-benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP).^{8,9} These salts can be converted to adenine derivatives via reaction with various amines.^{6,8} In this context, we demonstrated that in reactions of hypoxanthine nucleosides with BOP, the inosine-derived phosphonium salts undergo reaction with BtO⁻ that is released. This results in the formation of O^6 -(benzotriazol-1-yl)inosine derivatives.⁹ More recently, we demonstrated that the inosine-derived phoshonium salt formed via reaction with Ph₃P·I₂ can also be converted to O^6 -(benzotriazol-1-yl)inosine derivatives in good yields.⁷ These new O^6 -(benzotriazol-1-yl)inosine derivatives possess excellent reactivity for a variety of transformations, leading to modification at the C-6 position of the purine (Scheme 1).^{7,9}

On the basis of our prior work on inosine nucleosides, we became interested in studying the reaction of O6-protected 2'-deoxyxanthosine with BOP. This paper describes our preliminary results on the reaction of O^6 -benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine with BOP. In the course of these studies we have identified the nucleoside C-2 phosphonium salt as an isolable compound that can be readily utilized for S_NAr displacement chemistry with a broad range of amines. Finally, the C-2 phosphonium

ORGANIC LETTERS 2008 Vol. 10, No. 11 2203-2206

 ⁽a) Nucleic Acids in Chemistry and Biology, 3rd ed.; Blackburn,
 G. M., Gait, M. J., Loakes, D., Williams, D. M., Eds.; RSC Publishing: Cambridge, UK, 2006. (b) Simons, C. Nucleoside Mimetics: Their Chemistry and Biological Properties; Gordon and Breach: Amsterdam, 2001. (c) Perspectives in Nucleoside and Nucleic Acid Chemistry; Kisakürek, M. V.,
 Rosemeyer, H., Eds.; Verlag Helvetica Chimica Acta: Zürich and Wiley-VCH: Weinheim, 2000. (d) Suhadolnik, R. J. Nucleosides as Biological Probes; Wiley: New York, 1979.

Scheme 1. Synthesis of O⁶-(Benzotriazol-1-yl) Derivatives of Inosine and 2'-Deoxyinosine via Reaction with BOP or Ph₃P/I₂/HOBt

salt has been utilized in a new synthesis of an acrolein adduct with 2'-deoxyguanosine.

 O^6 -Benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyguanosine (1) can be readily synthesized on the multigram scale via a Mitsunobu etherification of 3',5'-bis-O-(*tert*butyldimethylsilyl)-2'-deoxyguanosine.^{2b,3a,10} Diazotizationhydrolysis of 1 as described^{4a,11} yielded O^6 -benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine (2 in Scheme 2, 64% yield).

Under conditions similar to those we have described previously,⁹ (2 molar equiv of BOP/1.5–2.0 molar equiv $(i-Pr)_2NEt$, anhydrous CH₂Cl₂, room temperature), the reaction of **2** with BOP was evaluated (Scheme 3). A fairly rapid

(7) Bae, S.; Lakshman, M. K. J. Org. Chem. 2008, 73, 1311-1319.

(8) Wan, Z.-K.; Binnun, E.; Wilson, D. P.; Lee, J. Org. Lett. 2005, 7, 5877–5880.

(9) Bae, S.; Lakshman, M. K. J. Am. Chem. Soc. 2007, 129, 782–789.
(10) Himmelsbach, F.; Schulz, B S.; Trichtinger, T.; Charubala, R.; Pfleiderer, W. Tetrahedron 1984, 40, 59–72.

(11) (a) Jurczyk, S. C.; Horlacher, J.; Devined, K. G.; Benner, S. A.; Battersby, T. R. *Helv. Chim. Acta* **2000**, *83*, 1517–1524. (b) Kodra, J. T.; Benner, S. A. *Synlett* **1997**, 939–940.

Scheme 2. Synthesis of *O*⁶-Benzyl-3',5'-bis-*O*-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine

reaction was observed (4-5 h at room temperature) with the predominant formation of a new material that was isolated by chromatography on silica gel.

Analysis of this new product indicated that it was the phosphonium salt **3** and not the benzotriazol-1-yl compound **4**. From this reaction, two noteworthy points emerged: (a) the greater difficulty in S_NAr displacement of HMPA by BtO⁻ from the C-2 position, in contrast to reactions at the C-6 of purines⁹ and (b) the relative stability of phosphonium salt **3**, which could be readily obtained by chromatographic purification.

The ¹H NMR spectrum of **3** (CDCl₃) showed a characteristic doublet at δ 2.83 ppm for the NMe₂ resonance ($J_{P-H} = 10.7$ Hz). The ³¹P NMR of **3** (CDCl₃) showed a singlet at δ 34.11 ppm as well as a septet centered at δ -143.27 ppm ($J_{P-F} = 712.7$ Hz) for the PF₆ anion. The synthesis of phosphonium salt **3** is reproducible and scalable, usually returning product yields of 88–92%.¹²

Given the high isolated yield of phosphonium salt **3** and the relative simplicity of its synthesis, we were interested in evaluating its utility in displacement reactions with amines. Such reactions would involve HMPA as a neutral leaving group, and this would lead to a simple approach to *N*modified 2'-deoxyguanosine analogues. A variety of amines were selected for this purpose (Table 1).

The displacement reactions on **3** were conducted in 1,2dimethoxyethane (DME) at room temperature or at 85 $^{\circ}$ C

⁽²⁾ Some examples for the synthesis of 2-fluoro-2'-deoxyinosine derivatives: (a) Woo, J.; Sigurdsson, S. T.; Hopkins, P. B. J. Am. Chem. Soc. **1993**, *115*, 3407–3415. (b) Zajc, B.; Lakshman, M. K.; Sayer, J. M.; Jerina, D. M. Tetrahedron Lett. **1992**, *33*, 3409–3412. (c) Kim, S. J.; Stone, M. P.; Harris, C. M.; Harris, T. M. J. Am. Chem. Soc. **1992**, *114*, 5480–5481.

⁽³⁾ Some examples for the synthesis of *O*6-protected and unprotected 2-bromo-2'-deoxyinosine derivatives: (a) Harwood, E. A.; Sigurdsson, S. T.; Edfeldt, N. B. F.; Reid, B. R.; Hopkins, P. B. *J. Am. Chem. Soc.* **1999**, *121*, 5081–5082. (b) Jhingan, A. K.; Meehan, T. *Synth. Commun.* **1992**, *22*, 3129–3135.

⁽⁴⁾ Some examples for the synthesis of 2-chloro-2'-deoxyinosine derivatives: (a) Pottabathini, N.; Bae, S.; Pradhan, P.; Hahn, H.-G.; Mah, H.; Lakshman, M. K. J. Org. Chem. **2005**, 70, 7188–7195. (b) Ramasamy, K. S.; Zounes, M.; Gonzalez, C.; Freier, S. M.; Lesnik, E. A.; Cummins, L. L.; Griffey, R. H.; Monia, B. P.; Cook, P. D. *Tetrahedron Lett.* **1994**, *35*, 215– 218.

⁽⁵⁾ Some examples of an *O*6-protected C-2 triflate: (a) Edwards, C.; Boche, G.; Steinbrecher, T.; Scheer, S. *J. Chem. Soc., Perkin Trans. 1* **1997**, 1887–1893. (b) Steinbrecher, T.; Wameling, C.; Oesch, F.; Seidel, A. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 404–406.

⁽⁶⁾ Lin, X.; Robins, M. J. Org. Lett. 2000, 2, 3497-3499.

Table 1. Synthesis of N^2 -Modified 2'-Deoxyguanosine Analogues from **3**

^{*a*} Reaction using 5.7 molar equiv of amine, 2.0 molar equiv of Cs_2CO_3 , DME, room temperature. ^{*b*} Reaction using 4 molar equiv of amine, DME, room temperature and then 85 °C. ^{*d*} Reaction using 7.5 molar equiv of amine, DME, room temperature and then 85 °C. ^{*e*} Debenzylation was performed using H₂ (1 atm)/10% Pd-C, 1:1 THF-MeOH, room temperature. ^{*f*} Debenzylation was accompanied by nitro group reduction, no attempt was made at finding selective debenzylation conditions.

when reactions were slow or incomplete at room temperature. Subsequent to the displacement, the *O*6-benzyl group was removed by catalytic hydrogenolysis at room temperature. The fact that the *O*6-protected derivative **3** could be used in these reactions makes **3** a substrate for S_NAr displacement. This is different in comparison to the displacement reactions on 2-chloro-2'-deoxyinosine which were addition—elimination-type processes on a conjugated system.^{4a} Also, no degradation of **3** was observed with the primary amine (entry 7) and this contrasts to what has been reported in the reaction of *O*⁶-benzyl-3',5'-bis-*O*-(*tert*-butyldimethylsilyl)-2-bromo-2'-deoxyinosine.¹³ All of these features bode well for the utility of **3** in S_NAr displacement reactions.

With the simple displacement reactions completed, we then considered the use of 3 for the synthesis of a more complex, biologically relevant compound. Of several possibilites, we chose to evaluate the synthesis of the 2'-deoxyguanosine-acrolein adduct. This compound has been important in studies aimed at understanding the structure and biological implications of acrolein-induced DNA damage.

Typically compounds of this type have been synthesized by fluoride displacement from 2-fluoro-2'-deoxyinosine derivatives.^{14,15} However, this fluoro nucleoside requires a multistep synthesis and involves the use of HF-pyridine in the diazotization-fluorination step. In comparison, 3 offers significant advantages.

For our synthesis, we reasoned that ready access to the acrolein adduct with 2'-deoxyguanosine could be attained from commercially available 3-amino-1-propanol and **3**. Initial experiments were therefore directed toward displacement of HMPA from **3** by 3-amino-1-propanol (Scheme 4). However, the yield of **6** via this approach was low (ca. 30%).

By analysis of the byproducts formed in the synthesis of 6, protection of the hydroxyl group in 3-amino-1-propanol was deemed necessary to suppress the undesired side reactions.

(15) Cinnamaldehyde: Rezaei, M.; Harris, T. M.; Rizzo, C. M. Tetrahedron Lett. 2003, 44, 7513–7516.

⁽¹²⁾ Synthesis of O⁶-Benzyl-3',5'-bis-O-(tert-butyldimethylsilyl)-O²tris(dimethylamino)phosphonium-2'-deoxyxanthosine hexafluorophos**phate** (3). In a clean, dry flask equipped with stirring bar were placed O^6 benzyl-3',5'-bis-O-(tert-butyldimethylsilyl)-2'-deoxyxanthosine (2) (0.588 g, 1.00 mmol) and BOP (0.885 g, 2.00 mmol). CH₂Cl₂ (10.0 mL) and (i-Pr)2NEt (0.35 mL, 2.01 mmol) were added. The mixture was flushed with nitrogen gas and allowed to stir at room temperature. After 5 h, the reaction was complete and the mixture was concentrated. Chromatographic purification (SiO₂, eluted with 50% EtOAc in hexanes followed by 30% acetone in CH₂Cl₂) afforded 0.785 g (88% yield) of compound **3** as a beige foam. R_f (5% MeOH in CH₂Cl₂) = 0.40. ¹H NMR (500 MHz, CDCl₃): δ 8.36 (s, 1H, H-8), 7.46 (d, 2H, Ar-H, J = 6.8), 7.38–7.31 (m, 3H, Ar-H), 6.38 (t, 1H, H-1', J = 6.4), 5.67 (s, 2H, OCH₂), 4.58 (app q, 1H, H-3', J ~ 4.2), 4.02 (br q, 1H, H-4', J = 2.9), 3.85 (dd, 1H, H-5', J = 11.7, 3.2), 3.78 (dd, 1H, H-5', J = 11.7, 2.4), 2.83 (d, 18H, NCH₃, $J_{\text{H-P}} = 10.7$), 2.44 (t, 2H, H-2', J = 5.9), 0.91 (s, 18H, t-Bu), 0.10 (br s, 12H, SiCH₃). ¹³C NMR (125 MHz, CDCl₃): δ 161.9, 152.7, 152.6, 141.5, 135.3, 128.6, 128.5, 127.8, 120.2, 88.0, 84.0, 71.6, 69.7, 62.6, 41.9, 37.0 (d, $J_{C-P} = 4.5$), 26.0, 25.7, 18.4, 17.9, -4.7, -4.8, -5.4, -5.5. ${}^{31}P{}^{1}H}$ NMR (202 MHz, CDCl₃): δ 34.11 (s, $P[N(CH_3)_2]_3$), -143.27 (septet, PF_6 , $J_{P-F} = 712.7$). ESI HRMS: calcd for C₃₅H₆₃N₇O₅PSi₂⁺ 748.4161, found 748.4151.

⁽¹³⁾ Harwood, E. A.; Hopkins, P. B.; Sigurdsson, S. T. J. Org. Chem. 2000, 65, 2959–2964.

⁽¹⁴⁾ Acrolein: (a) Khullar, S.; Varaprasad, C. V.; Johnson, F. J. Med. Chem. **1999**, 42, 947–950. (b) Nechev, L. V.; Harris, C. M.; Harris, T. M. Chem. Res. Toxicol. **2000**, 13, 421–429.

Based upon a literature procedure,¹⁶ 3-amino-1-propanol was selectively converted to the *O*-benzyl ether. The reaction of **3** with this benzyl-protected 3-amino-1-propanol (Scheme 4) proceeded smoothly at 85 °C in DME to provide the bis-benzyl ether protected nucleoside **7** in 82% yield.

At this stage, removal of the two benzyl protecting groups in 7 followed by mild oxidation of the primary hydroxyl should result in the requisite cyclized acrolein-2'-deoxyguanine adduct as its bis-TBDMS ether. Along these lines, exposure of 7 to 1 atm H₂ and 10% Pd–C in 1:1 THF–MeOH resulted in the debenzylated product **8** (89% yield). Upon monitoring this reduction carefully, it was observed that the nucleoside benzyl ether underwent rapid deprotection (within 4 h), whereas the alkyl benzyl ether required prolonged exposure to the reductive conditions (23 h).

With **8** in hand, the final oxidative cyclization to **9** was explored. This proved to be nontrivial and both TPAP/NMO^{17,18} as well as PCC^{19,20} gave modest to low yields of **9** (Table 2). In the presence of silica gel, 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate has been shown to be an excellent mild oxidant.^{21,22} Application of this reagent resulted in successful synthesis of the desired **9** in 69% yield.

The in situ formation of phosphonium salts in the reactions of peptide coupling agents with amide and urea functionalities have been reported.²³ However, in this letter we have shown that the C-2 tris(dimethylamino)phosphonium hexafluorophosphate salt **3** is formed in a high-yield reaction of O^6 benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine (**2**) with BOP, and is a readily isolated species. This reactivity contrasts to that of inosine nucleosides with BOP, where the final products are the O^6 -(benzotriazol-1-yl) derivatives.⁹

Salt **3** is a good substrate for S_NAr displacement reactions with primary and secondary amines, providing a facile approach to N^2 -modified 2'-deoxyguanosine analogues. As demonstrated with the synthesis of the acrolein-2'-deoxyguanosine adduct **9**, it appears that **3** can be used for the synthesis of other biologically important compounds. Thus, these C-2 nucleoside phosphonium salts can be considered as a new

 Table 2. Conditions Tested for the Oxidative Cyclization of 8 as Well as the Yields of 9 in These Reactions

entry	conditions	result^a
1	TPAP (0.16 molar equiv), NMO (1.9 molar equiv), 4 Å molecular sieves, CH ₂ Cl ₂ , room temperature, 8 h	Incomplete reaction, 41% yield
2	PCC (3.0 molar equiv), 4 Å molecular sieves, CH ₂ Cl ₂ , room temperature, 16 h	23% yield
3 ^{<i>a</i>} Y	 4-acetylamino-2,2,6,6-tetramethylpiperidine- 1-oxoammonium tetrafluoroborate (1.2 molar equiv), silica gel, CH₂Cl₂, room temperature, 16 h ield of isolated, purified product. 	69% yield
	* *	

family of reactive nucleosides. Given the simplicity in synthesis, a variety of *O*6 protecting groups can be readily utilized in order to accommodate for a wide range of reactions. Other reactions of the C-2 tris(dimethyl)phosphonium hexafluorophosphate salt **3** and related compounds are currently under investigation in our laboratories.

Acknowledgment. Support of this work by NSF Grant No. CHE-0640417 and a PSC CUNY-38 award are gratefully acknowledged. Acquisition of a mass spectrometer was funded by NSF Grant No. CHE-0520963. Infrastructural support at CCNY was provided by NIH RCMI Grant No. G12 RR03060. We thank Prof. James. M. Bobbitt (University of Connecticut) for a generous sample of 4-acetylamino-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate.

Note Added after ASAP Publication. In the version published May 29, 2008 the compound named O^6 -Benzyl-2',3'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine was changed to O^6 -Benzyl-3',5'-bis-O-(*tert*-butyldimethylsilyl)-2'-deoxyxanthosine in three places.

Supporting Information Available: Experimental procedures, ¹H and ¹³C NMR spectra of **3**, **4a**–**g**, and **7–9**. ¹H NMR spectra of **5a–d,f,g** and ³¹P{¹H} NMR spectrum of **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL8006106

⁽¹⁶⁾ Hu, X. E.; Cassady, J. M. Synth. Commun. 1995, 25, 907-913.

⁽¹⁷⁾ Griffith, W. P.; Ley, S. V. Aldrichim. Acta **1990**, 23, 13–19.

⁽¹⁸⁾ Manaviazar, S.; Frigerio, M.; Bhatia, G. S.; Hummersone, M. G.; Aliev, A. E.; Hale, K. J. *Org. Lett.* **2006**, *8*, 4477–4480.

⁽¹⁹⁾ Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647-2650.

 ⁽²⁰⁾ Su, Q.; Panek, J. S. Angew. Chem., Int. Ed. 2005, 44, 1223–1225.
 (21) (a) Zakrzewski, J.; Grodner, J.; Bobbitt, J. M.; Karpińska, M.

⁽a) Zahzewski, J., Gloulet, J., Bobbitt, J. M., Kalpinska, M. Synthesis **2007**, 2491–2494. (b) Bobbitt, J. M.; Merbouh, N. *Org. Synth.* **2005**, 82, 80–86.

⁽²²⁾ For a mechanism, see: (a) Bailey, W. F.; Bobbitt, J. M.; Wiberg,
K. B. J. Org. Chem. 2007, 72, 4504–4509. (b) Bobbitt, J. M. J. Org. Chem.
1998, 63, 9367–9374.

⁽²³⁾ For examples, see: (a) Wan, Z.-K.; Wacharasindhu, S.; Levins, C. G.; Lin, M.; Tabei, K.; Mansour, T. S. J. Org. Chem. **2007**, 72, 10194–10210. (b) Kang, F.-A.; Kodah, J.; Guan, Q.; Li, X.; Murray, W. V. J. Org. Chem. **2005**, 70, 1957–1960.