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Abstract: A novel three-component assembly involving benzynes
has been developed for the synthesis of pyrido[2,1-a]isoindoles in
moderate yields. Reaction conditions have been optimized and the
scope of the reaction has been studied. A plausible mechanism has
been proposed to account for the three-component reaction.
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Pyrido[2,1-a]isoindoles are important core structures of
many pharmaceuticals1 and functional materials.2 In spite
of the wide applications, the synthetic methods of this
framework are quite scarce. The most frequently used
method to construct these motifs is the free radical cy-
clization strategies.3 However, these methods generally
require strict reaction conditions and involve multistep re-
actions.

Multicomponent reactions have attracted a lot of attention
in recent years 4 due to their rapid elaboration of complex
structure in a highly efficient and modular manner, and
the formation of several bonds in one single step is highly
compatible with the goals of ‘green chemistry’ and atom
economy. The application of this strategy in the syntheses
of heterocycles has become an attractive field in recent
years5–7 in light of the paramount role of these targets in
the natural products, pharmaceuticals and functional ma-
terials.

Arynes are one of the most important organic species and
have been frequently used as intermediates in a variety of
reactions.8 Recently, multicomponent reactions involving
arynes have attracted much attention.9 For example,
Yamamoto and his co-workers have reported the palladi-
um-catalyzed co-cyclizations of arynes, alkenes and
alkynes.10 Moreover, Wang and his co-workers have de-
veloped a three-component cascade reaction involving
arynes, aldehydes and amines.11 During our continuous
explorations on new reactions involving arynes,12 we
found that a kind of betaine structure like 1B
(Scheme 1) can be accessed in a single step via a three-
component reaction of benzynes, pyridines, and a-haloge-
nated ketones.

We initiated our experiments by using benzyne, which
was generated in situ from the elimination of o-trimethyl-
silyl phenyltriflate induced by CsF, reacting with 2-bro-
mo-1-phenylethanone and pyridine in MeCN at 80 °C for
24 hours. Several products were observed and the main
product was easily isolated by silica gel column chroma-
tography. After the characterization of the main product
by 1H NMR, 13C NMR and HRMS, the exact structure
was still ambiguous. We finally identified the exact struc-
ture by the X-ray diffraction analysis of the single crystal
of the product (Figure 1 and see the supplementary infor-
mation).13 It appears that the resonance structure 1B con-
tributed more to the NMR data of the product (Scheme 1),
which led to the chemical shifts of proton on carbon next
to nitrogen emerging in very low-field range.

Figure 1 Representation of the X-ray crystal structure of product 1

Scheme 1 The resonance of 1A and 1B

N

O

N

O–

1A 1B

+



3116 C. Xie et al. LETTER

Synlett 2008, No. 20, 3115–3120 © Thieme Stuttgart · New York

We next optimized the reaction conditions of this three-
component assembly and the results are summarized in
Table 1. Solvents frequently used in aryne chemistry such
as toluene, THF, DME and MeCN were employed as the
reaction media at their respective refluxing temperatures,
and the best result was obtained when MeCN was used
(Table 1, entries 1–4). Lowering the reaction temperature
from 80 °C to room temperature led to the decrease in the
yields (Table 1, entries 5–7). When the reaction was car-
ried out in refluxing MeCN for two hours, a comparable
yield was obtained to that for 24 hours (Table 1, entry 8).
Further shortening of the reaction time led to lower yields
(Table 1, entries 9 and 10). The best result was obtained
when the reaction was conducted in refluxing MeCN for
two hours, leading to a 56% yield of pyrido[2,1-a]isoin-
dole product.

With the optimized reaction conditions in hand, we turned
to investigate the scope of the three-component reaction
and some typical results are summarized in Table 2. Un-
der the standard reaction conditions, various substituted 2-
bromo-1-phenylethanones underwent the reaction
smoothly, while 2-bromo-1-phenylethanones bearing
electron-donating groups gave better yields than those
bearing electron-withdrawing groups (Table 2, entries 3,
5, 7 and 9). It had to be noted that benzyne with two sym-
metric methyl groups could also take part in the three-
component reaction efficiently and afforded products in
moderate yields (Table 2, entries 2, 4, 6, 8 and 10). More-
over, good results were also obtained when substituted
pyridine like 4-picoline underwent the reaction (Table 2,
entries 11 and 12). Other nitrogen-containing heterocycle
such as isoquinoline could also react with 2-bromo-1-
phenylethanone and benzynes to afford the corresponding
products efficiently (Table 2, entries 13 and 14).

Table 1 The Optimization Studiesa

Entry Solvent T (°C)b Time (h) Yield (%)c

1 Toluene 110 24 Trace

2 THF 67 24 8

3 DME 80 24 39

4 MeCN 80 24 57

5 MeCN 60 24 50

6 MeCN 40 24 40

7 MeCN 25 24 36

8 MeCN 80 2 56

9 MeCN 80 1 52

10 MeCN 80 0.5 38

a Reaction conditions: 2-bromo-1-phenylethanone (0.6 mmol), pyri-
dine (1.0 mmol), benzyne precursor (0.5 mmol), CsF (1.5 mmol), sol-
vents (5.0 mL).
b Bath temperature.
c Isolated yields.
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3 MeO H H 60

4 MeO Me H 47

5 Et H H 57

6 Et Me H 45

7 Cl H H 41

8 Cl Me H 35

Table 2 Scope of the Reactiona (continued)

Entry R R1 R2 Product Yield (%)b
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9 NO2 H H 36

10 NO2 Me H 31

11 H H 4-Me 56

12 H Me 4-Me 53

13 H H isoquinoline 51

14 H Me isoquinoline 45

a Reaction conditions: 2-bromo-1-phenylethanones (0.6 mmol), pyridines (1.0 mmol), benzyne precursors (0.5 mmol), CsF (1.5 mmol), MeCN 
(5.0 mL), 80 °C (bath temperature), 2 h.
b Isolated yields.

Table 2 Scope of the Reactiona (continued)

Entry R R1 R2 Product Yield (%)b
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Based on the above results, a plausible reaction mecha-
nism is proposed (Scheme 2). The initial step involved the
generation of a cationic species I from the reaction of 2-
bromo-1-phenylethanone with pyridine, which then elim-
inated one molecular HBr to form the 1,3-diplor interme-
diate II. The subsequent cycloaddition between the
intermediate II and benzyne species, which was generated
in situ from the fluoride induced 1,2-elimination of o-tri-
methylsilyl phenyltriflate, produced the annulation prod-
uct III. A dehydrogenated aromatization of III then
liberated the final pyrido[2,1-a]isoindole product.

In conclusion, a novel three-component assembly involv-
ing benzynes, which can be used for the syntheses of py-
rido[2,1-a]isoindole structure, has been developed in our
laboratory.14,15 The exact structure of the product has been
identified by the X-ray crystallographic analysis. The re-
action conditions have been optimized and the scope of
the reaction has been investigated. Further mechanism ex-
ploration and application studies of the products are cur-
rently ongoing in our laboratory.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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