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Abstract: Sugar-derived cyclic nitrones were synthesized from the
corresponding aldoses through an efficient and practical procedure
involving a seven-step reaction sequence in good to excellent over-
all yield (10–42%). This synthetic strategy, requiring only inexpen-
sive reagents, is easy to perform and hence suitable for large-scale
preparations.
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Iminosugars,1 the ‘nitrogen-in-the-ring’ analogues of pyr-
anoses and furanoses, have attracted considerable atten-
tion from synthetic organic chemists due to their
remarkable biological activities.2 A number of iminosug-
ars, both synthetic and naturally occurring, have been
shown to be selective and potent inhibitors of glycosidas-
es, glycosyltransferases or other carbohydrate processing
enzymes.3 Furthermore, an increasing number of imino-
sugar family members have exhibited great potential as
pharmaceuticals.1a,2c Although great effort has been ex-
pended and numerous synthetic procedures have been de-
veloped for the synthesis of iminosugars,4 efficient
methods for the rapid generation of iminosugars with the
structural diversity necessary for in-depth structure–activ-
ity studies are still lacking. Among the existing approach-
es, synthetic methods based on sugar-derived cyclic
nitrones have emerged as a potentially powerful strategy
for the diversity-oriented synthesis of iminosugars due to
the reactivity of the nitrone functionality. 

Nitrones have been shown to be very diverse synthetic in-
termediates for the construction of structurally complex
molecules5,6 because they are capable of undergoing a va-
riety of synthetically useful reactions, such as: 1,3-dipolar
cycloadditions,7 nucleophilic additions,8,9 and pinacol-
type coupling reactions, etc.10 Enantiomerically pure
polyfunctional cyclic nitrones, which have been widely
used in the synthesis of various natural and biologically
active nitrogen-containing compounds,6,9,11,12 are espe-
cially valuable in organic synthesis. Therefore, the search
for efficient and practical synthetic approaches toward cy-
clic nitrones is of ongoing interest.

Methods for the synthesis of cyclic nitrones13 include ox-
idation of hydroxylamines,14 amines15 and imines,16 con-
densation of ketones with hydroxylamines,17 and N-
alkylation of oximes.18 Among the existing methods, N-
alkylation of oximes is the most widely used strategy for
the formation of the nitrone functionality due to the rela-
tive ease with which the regio- and stereoselectivity in-
volved in the transformation can be controlled. A number
of methods have been developed for the synthesis of sug-
ar-derived cyclic nitrones18,19 from the readily available
sugar hemi-acetals. In these approaches the key steps in-
clude addition of O-silylated hydroxylamine or
H2NOTHP to the hemi-acetal to form the O-protected
oxime, followed by mesylation of the exposed OH, and
then intramolecular N-alkylation of the oxime. The draw-
backs associated with these procedures are that large
amounts of side-products are commonly formed from the
reaction and tedious work-up procedures are required;
hence, these procedures are not suitable for large-scale
preparations. In our earlier work we have tried to improve
the synthetic procedure12b by using the Wittig reaction to
open the cyclic sugar hemi-acetal ring; this was relatively
easy to work-up but was still not suitable for large-scale
preparations due to critical reaction conditions. Goti’s
one-pot procedure18d using NH2OH instead of NH2–
OSiR3 provided a shortened synthetic route, but its overall
yield was poor. Herein, we report an improved procedure
for the synthesis of cyclic nitrones from sugar hemi-ace-
tals that is based on our previous method. The key im-
provement was the use of NH2OMe instead of the Wittig
reagent to open the hemi-acetal ring. 

The synthesis of five-membered cyclic nitrones was first
investigated (Scheme 1). Sugar hemi-acetals 2,3,5-tri-O-
benzylfuranoses 1 were prepared through the reported
method from the corresponding aldoses in three steps.20a

Compound 1 was treated with O-methylhydroxylamine
hydrochloride in the presence of pyridine to form O-meth-
yl oxime ether 2. The exposed hydroxy group was then
mesylated to produce the oxime ether 3. Hydrolysis of 3
by using an aqueous solution of formaldehyde (37%) in
THF, catalyzed by TsOH, afforded aldehyde 4. Treatment
of 4 with hydroxylamine hydrochloride resulted in the for-
mation of the desired nitrone 5 (Scheme 1, Table 1). It is
remarkable that this seven-step synthesis was virtually all
conducted as a one-pot synthesis where only basic work-
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up was required between each step of the reaction se-
quence, i.e. the crude intermediates 1, 2, 3, and 4 were
used directly in the next step of reaction without further
purification. Only the final products, nitrones 5, were sub-
jected to further purification by column chromatography
(5a and 5b) or recrystallization (5c and 5d). The synthesis
was carried out on a multi-gram scale, producing up to
100 g of nitrones in good to excellent overall yields (23–
35% in seven steps based on the aldoses, or 36–40% in
four steps based on the sugar hemi-acetals 1; Table 1).21

Scheme 1 Reagents and conditions: (i) pyridine, NH2OMe·HCl; (ii)
Et3N, MsCl CH2Cl2; (iii) p-TsOH, aq HCHO (37%), THF; (iv)
NH2OH·HCl, NaHCO3, H2O, MeOH, r.t. to 60 °C.

The procedure was then successfully extended to the syn-
thesis of six-membered cyclic nitrones (Scheme 2). Sugar
hemi-acetals 2,3,4-tri-O-benzyl-pyranose 6 were pre-
pared through the reported method from the correspond-
ing aldoses in three steps.20b Cyclic nitrones 10 were
prepared following the procedure described above in good
to excellent overall yields (10–42% in seven steps based
on the aldoses, or 14–54% in four steps based on the sugar
hemi-acetals 6; Table 1). The synthesis of 10 was found to
be as robust as the synthesis of 5 in that it was performed
on multi-gram scale and that all the crude intermediates 6,

7, 8, and 9 were used directly in the subsequent reaction
without further purification. While the overall yields were
generally good to excellent, there was one exception in the
case of the synthesis of 10c, where the overall yield was
only 10% over the seven steps, based on D-ribose
(Table 1, entry 7).

Scheme 2 Reagents and conditions: (i) for 7a, 7b, and 7c:
H2NOMe·HCl, pyridine, CH2Cl2, r.t.; for 7d: H2NOMe·HCl, NaCO3,
EtOH–H2O, reflux; (ii) MsCl, Et3N, CH2Cl2, 0 °C; (iii) TsOH, aq
HCHO (37%), THF, r.t.; (iv) NH2OH·HCl, NaHCO3, EtOH–H2O
(4:1), r.t., 24 h, then 40 °C.

The relatively poor overall yield of 10c resulted from the
poor yield of the final cyclization step; in this case the in-
termediate oxime 11c (Figure 1) could also be isolated.
Attempts to improve the yield of 10c by optimizing the re-
agents and reaction conditions, unfortunately failed. It is
worth mentioning that hemi-acetal 6d, which was derived
from D-xylose, reacted poorly with MeONH2·HCl in the
presence of pyridine in CH2Cl2 at room temperature.
However, when the reaction was conducted at reflux in
EtOH–H2O, in the presence of Na2CO3, the desired oxime
ether 7d was obtained in 92% yields. 
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Table 1 Synthesis of  Sugar-Derived Cyclic Nitrones

Entry Starting material Cyclic nitronea Yield (%)b

1 D-arabinose 5a
23
(38)c

2 L-arabinose 5b 32
(38)c

3 D-ribose 5c 30
(36)c
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Figure 1 Structure of compound 11c

In summary, a practical and efficient method has been de-
veloped for the synthesis of sugar-derived cyclic nitrones,
starting from the aldose, through a seven-step reaction se-
quence. The merits of this new procedure are that it is: (a)
general and robust for the synthesis of both five- and six-
membered cyclic nitrones; (b) easy work-up after each re-
action step, and (c) amenable to large-scale preparation.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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(300 mL) and H2O (200 mL). The organic phase was 
separated and the aqueous phase was extracted with EtOAc 
(3 × 150 mL). The combined organic phases were dried with 
anhydrous Na2SO4. After filtration and concentration in 
vacuo, the resulting crude product was either recrystallized 
or purified by flash column chromatography (petroleum 
ether–EtOAc, 2:1→1:2). Method B: The same procedure as 
method A was used with purified compounds 1 and 6 as 
starting material. Compound 5a: 129.0 g (23% from 200 g 
D-arabinose); 79.4 g from 210.3 g 1a (38%). Yellow oil; 
[a]D

20 –78 (c 1.08, CH2Cl2) {Lit18d [a]D
23 –75.9 (c 0.54, 

CH2Cl2)}. IR (thin film): 3030 (w), 2866 (m), 1582 (s), 1496 
(w), 1454 (s), 1363 (m), 1095 (s), 737 (s), 697 (s) cm–1. 1H 
NMR (300 MHz, CDCl3): d = 7.27–7.14 (m, 15 H, Ph), 6.73 
(s, 1 H, H-2), 4.67 (t, J = 2.1 Hz, 1 H, H-3), 4.58–4.38 (m, 
6 H, PhCH2), 4.28 (dd, J = 7.6, 4.5 Hz, 1 H, H-4), 4.08–4.03 
(m, 1 H, H-5), 3.90 (dd, J = 10.1, 4.3 Hz, 1 H, H-6), 3.73 

(dd, J = 10.1, 1.6 Hz, 1 H, H-6). 13C NMR (75 MHz, 
CDCl3): d = 138.0, 137.4, 137.3, 133.4 (C-2), 128.7, 128.6, 
128.4, 128.2, 128.1, 128.0, 127.9, 127.6 (Ph), 83.2 (C-3), 
80.6 (C-4), 74.2 (C-5), 73.6, 73.2, 72.5, 64.5 (C-6). 
Compound 10a: 88.2 g (42% from 75 g D-arabinose); 94 g 
from 181.6 g 6a (52%). Light-yellow oil; [a]D

20 –44 (c 1.17, 
CHCl3). IR (thin film): 2960 (s), 2925 (s), 2855 (s), 1597 
(w), 1454 (m), 1260 (s), 1023 (s), 800 (s), 739 (m), 698 (m) 
cm–1. 1H NMR (300 MHz, CDCl3): d = 7.33–7.25 (m, 15 H, 
Ph), 7.01 (d, J = 2.9 Hz, 1 H, H-2), 4.94–4.58 (m, 6 H, 
PhCH2), 4.31 (d, J = 3.6 Hz, 1 H, H-3), 4.06–3.82 (m, 4 H, 
H-6, H-4, H-5). 13C NMR (75 MHz, CDCl3): d = 137.6, 
137.3, 128.6, 133.4 (C-2), 128.6, 128.5, 128.2, 128.1, 128.0, 
127.9, 127.8 (Ph), 74.6, 73.5, 72.9, 72.8, 72.1, 71.4 (C-3, C-
4, C-5), 60.0 (C-6). TOF-HRMS (ESI+): m/z [M + H]+ calcd 
for C26H28NO4: 418.2013; found: 418.2001.
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