Tetrahedron 65 (2009) 1673-1678

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Pd-catalyzed direct arylation of 3-fluorofurans utilizing the neighboring effect of fluorine atom: facile synthesis of tetrasubstituted monofluoro furans

Peng Li^{a,b}, Zhuo Chai^b, Gang Zhao^{b,*}, Shi-Zheng Zhu^{a,*}

^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China ^b Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

ARTICLE INFO

Article history: Received 27 October 2008 Received in revised form 6 December 2008 Accepted 9 December 2008 Available online 13 December 2008

Keywords: Arylation C-H activation Fluorinated furans Neighboring effect Aryl bromide

ABSTRACT

Pd-catalyzed direct arylation of 3-fluorofurans with a variety of aryl bromides was facilitated by the neighboring effect of fluorine atom to provide tetrasubstituted monofluoro furans in moderate to good yields.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Transition-metal-catalyzed direct arylation of aromatic compounds via C-H bond activation enables facile synthesis of useful biaryl compounds, and thus has become one of the focuses of organic synthesis in recent years.¹ In this field, heterocyclic arenes have received particular attentions as substitutes for the preactivated organometallic partners typically used in conventional cross-coupling reactions due to their peculiar electronic and structural properties.¹ However, in contrast to the numerous re-lated studies on nitrogen-^{1c,2} or sulfur-containing³ heterocyclic arenes, there are only rather limited examples dealing with furans and the reactive sites are mostly restricted to the C2 or C5 postion.⁴ Very recently, Hammond et al.⁵ has realized arylation at the C4position of 3-fluorofurans via a microwave promoted Suzuki crosscoupling reaction between 4-iodo-3-fluorofurans and aryl boronic acids, which adds to the limited methods available for the synthesis of multi-substituted fluorous furans.⁶ On the other hand, Fagnou et al.⁷ and Do and Daugulis⁸ have recently realized palladium- and copper-catalyzed direct arylation of perfluoroarenes, respectively, which well demonstrated the special role that the fluorine atom could play in this type of reactions. However, examples with fluoroheterocyclic compounds are rare, especially in the cases of monofluoro compounds. Based on these studies and our own experience⁹ with the chemistry of 3-fluorofurans, we reasoned that the direct arylation at the C4-position of these compounds may be possible and would provide a more atom-economical alternative to existing methods. Herein, we report the details of our research with this strategy.

2. Results and discussion

As a test reaction, the coupling of 3-fluoro-2,5-diphenylfuran 1a with 1-bromo-4-chlorobenzene was initially studied with several different Pd catalysts, bases, and solvents at varied temperatures (Table 1). It was found that Pd(OAc)₂, the most frequently used Pd catalyst for this type of reactions,¹ failed to effect the reaction (Table 1, entries 1 and 2). PdCl₂ or Pd(PPh₃)₄ also proved unsuitable under the examined reaction conditions (Table 1, entries 3 and 6). Incomplete conversion of 1a was observed with PdCl₂(PhCN)₂ or Pd₃(dba)₂, which provided the desired product 2e in 10% and 26% yields, respectively (Table 1, entries 4 and 5). To our delight, when the reaction was performed with 10 mol % of PdCl₂(PPh₃)₂ and 2 equiv of KOAc in DMF, the desired product was obtained in 60% yield (Table 1, entry 8). A slight higher yield (62% yield) was obtained when NMP was employed as the solvent (Table 1, entry 9). Contrastingly, when apolar toluene was used as the solvent or K₂CO₃ was used as the base, the reaction hardly proceeded (Table 1, entries 7 and 12). Moreover, either reducing the amount of PdCl₂(PPh₃)₂ to 5 mol % or employing NaOAc as the base led to

^{*} Corresponding authors. Tel.: +86 21 54925182; fax: +86 21 64166128.

E-mail addresses: zhaog@mail.sioc.ac.cn (G. Zhao), zhusz@mail.sioc.ac.cn (S.-Z. Zhu).

^{0040-4020/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.12.026

Table 1

Optimization studies for the Pd-catalyzed arylation of $\mathbf{1a}^{\mathrm{a}}$

Entry	Catalytic system	Temp	Solvent	Yield ^b
1	Pd(OAc) ₂ (10 mol %)+3 equiv	80 °C	DMSO	n.r.
	NaOAc			
2	Pd(OAc) ₂ (10 mol %)+2 equiv	80 °C	CH ₃ CN/H ₂ O	Trace
	K ₂ CO ₃ +50 mol % TBAB ^c +20 mol % PPh ₃		=9:1	
3	PdCl ₂ (10 mol %)+2 equiv KOAc	110 °C	DMF	n.r.
4	PdCl ₂ (PhCN) ₂ (10 mol %)+2 equiv KOAc	110 °C	DMF	10%
5	Pd ₃ (dba) ₂ (10 mol %)+2 equiv KOAc	110 °C	DMF	26%
6	Pd(PPh ₃) ₄ (10 mol %)+2 equiv K ₂ CO ₃	110 °C	DMF	Trace
7	PdCl ₂ (PPh ₃) ₂ (10 mol %)+2 equiv KOAc	110 °C	Toluene	Trace
8	PdCl ₂ (PPh ₃) ₂ (10 mol %)+2 equiv KOAc	110 °C	DMF	60%
9	PdCl ₂ (PPh ₃) ₂ (10 mol %)+2 equiv KOAc	110 °C	NMP ^c	62%
10	PdCl ₂ (PPh ₃) ₂ (5 mol %)+2 equiv KOAc	110 °C	NMP	61%
11	PdCl ₂ (PPh ₃) ₂ (10 mol %)+2 equiv NaOAc	110 °C	NMP	59%
12	$PdCl_{2}(PPh_{3})_{2} (10 mol \%)+2 equiv K_{2}CO_{3}$	110 °C	NMP	Trace

^a Compound **1a**/1-bromo-4-chlorobenzene=1:2.

^b Isolated yields.

^c TBAB: tetrabutylamine bromide; NMP: *N*-methyl pyrrolidone.

slightly lower yields (Table 1, entries 10 and 11). Thus, the optimum reaction conditions for the present transformation are 10 mol % of PdCl₂(PPh₃)₂ and 2 equiv of KOAc in NMP at 110 °C.

With the optimized conditions in hand, the coupling reactions of 3-fluoro-2,5-diphenylfuran **1a** with a series of aryl halides were then examined (Table 2). In general, most of the examined aryl halides participated in the reaction smoothly and the reaction completed in 12–16 h providing the desired products **2a–2g** in 51–73% yields (Table 2, entries 1–8). Neither the electronic nature nor the positions of the substituents on the phenyl ring exerted any considerable influence on the yields. However, in the case of 4-nitrophenyl bromide, a complex mixture was obtained (Table 2, entry 9).

Subsequently, we explored the arylation of different fluorosubstituted furans with 1-bromo-4-chlorobenzene and the results are summarized in Table 3. For substrates 1b-1g bearing substituted groups with different electronic natures on the different positions of R^2 , no marked difference in yields (51–65%) was observed (Table 3, entries 1–6). Furthermore, when R¹ or R² was an alkyl group, the reaction still proceeded smoothly to provide the desired products without apparent drop in yields (Table 3, entries 7 and 8). Notably, the substrate 2,5-diphenylfuran 1j without a fluorine atom failed to undergo the reaction, which was in support of the activating role of the neighboring fluorine atom in the present system (Table 3, entry 9). To examine the reaction scope further, substrate 3-fluoro-2,5-diphenylthiophene 1k, the thiophene counterpart of 1a, was also prepared and subjected to the same reaction conditions, but no reaction was detected (Table 3, entry 10).

Based on the above experimental results, an electrophilic mechanism similar to those of previous studies on the arylation of heterocycles¹¹ may be invoked for the present reaction (Scheme 1). The key step may involve the electrophilic attack on **1** to form the Pd(II) intermediate **A**,^{2a} which may explain the failure of substrate **1k** to undergo the reaction for that thiophenes in general are more electron-deficient than furans.¹² Subsequent abstraction of the acidic hydrogen atom in **A** with the help of a base would generate another intermediate **B**, which would then undergo reductive elimination to deliver the desired products **2** and release the Pd catalyst. The presence of the fluorine atom in **1** may not only

Table 2

Scope study of different aryl bromides with 3-fluoro-2,5-diphenylfuran (1a)^a

Table 2 (continued)

^a Compound **1a**/ArX=1:2.

^b Isolated yields.

^c The reaction time was 9 h.

^d The reaction system was complicated.

facilitate the formation of intermediate **A** through conjugative donation of the lone electron pairs, but also could increase the acidity of the hydrogen atom in **A** to form **B** due to its high electronegativity. However, the determination of the exact reaction mechanism as well as the role of the fluorine atom still requires further investigation.

3. Conclusion

In summary, we have successfully utilized the neighboring effect of the fluorine atom for functionalization at the C4 position of 3-fluorofurans to synthesize tetrasubstituted monofluoro furans via direct Pd-catalyzed arylation reactions. Using 10 mol% of PdCl₂(PPh₃)₂ as the catalyst, 2 equiv of KOAc as the base, and NMP as the solvent, the desired products were obtained in 51–73% yields within 12–16 h at 110 °C.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were recorded at 300 and 100 MHz, respectively, with TMS as the internal standard. ¹⁹F NMR spectra were recorded at 282 MHz with CFCl₃ as the external standard. IR spectra were recorded in cm⁻¹. Melting points were uncorrected. All solvents were distilled prior to use unless otherwise noted. All reactions sensitive to moisture or oxygen were conducted under an atmosphere of nitrogen or argon.

Compounds **1a–1j** were prepared according to the known procedures.^{9,10}

4.2. General procedure for the preparation of 2,4,5-trisubstituted 3-fluorofurans 2

Under an atmosphere of argon, compound **1** (0.2 mmol), aryl bromide (0.4 mmol), $PdCl_2(PPh_3)_2$ (14 mg, 0.02 mmol), and KOAc (39.2 mg, 0.4 mmol) were mixed together. Then 3 mL of *N*-methyl pyrrolidin-2-one (NMP) was added, the system was then heated to 120 °C for appropriate times. When the reaction was completed (monitored by TLC), the reaction system was cooled to room temperature and 3 mL of saturated aqueous NH₄Cl was added to quench the reaction. After extraction with Et₂O and drying with Na₂SO₄, the organic layer was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel to afford the desired products.

Table 3

Scope study of different 1 with 1-bromo-4-chlorobenzene^a

Table 3 (continued)

^b Isolated yields.

^c No reaction was detected.

Scheme 1. A plausible mechanism for the reaction of 1 with aryl halides.

4.2.1. 3-Fluoro-2,4,5-triphenylfuran (2a)

Yield: 51%; white solid; the ¹H NMR spectra agree well with that reported.^{6b}

4.2.2. 3-Fluoro-2,5-diphenyl-4-o-tolylfuran (2b)

Yield: 64%; colorless oil; IR (CH₂Cl₂, film): 1640, 1495, 1167, 1126, 1068, 944, 850, 763, 691 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.82 (d, ³*J*=8.1 Hz, 2H), 7.48–7.24 (m, 12H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =149.4 (d, ¹*J*_{CF}=253.8 Hz), 146.2 (d, ³*J*_{CF}=5.3 Hz), 137.9, 135.4 (d, ²*J*_{CF}=19.3 Hz), 131.0, 130.7, 129.5, 129.0, 128.9, 128.8, 128.0, 127.4, 126.5, 124.9, 123.8 (d, ³*J*_{CF}=5.2 Hz), 115.4 (d, ²*J*_{CF}=17.9 Hz), 20.2; ¹⁹F NMR (CDCl₃): δ =–163.0 (s, 1F); MS (EI) (*m*/*z*): 328 (M⁺); HRMS calcd for C₂₃H₁₇FO: 328.1263, found: 328.1266.

4.2.3. 3-Fluoro-4-(4-fluorophenyl)-2,5-diphenylfuran (2c)

Yield: 73%; white solid; mp: 127–128 °C; IR (CH₂Cl₂, film): 3056, 1641, 1512, 1494, 1225, 1159, 944, 842 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.80 (d, ³*J*=7.5 Hz, 2H), 7.56–7.11 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ =162.5 (d, ¹*J*_{CF}=246.4 Hz), 148.6 (d, ¹*J*_{CF}=254.6 Hz), 146.8 (d, ³*J*_{CF}=5.3 Hz), 135.5 (d, ²*J*_{CF}=19.4 Hz), 131.4, 131.3, 130.4, 128.8, 128.5, 128.2, 127.2, 125.8, 123.6 (d, ³*J*_{CF}=5.2 Hz), 116.0 (d, ²*J*_{CF}=20.8 Hz), 114.6 (d, ²*J*_{CF}=16.7 Hz); ¹⁹F NMR (CDCl₃): δ =–113.9 (dd, 1F), –165.1 (s, 1F); MS (EI) (*m*/*z*): 332 (M⁺). Anal. Calcd for C₂₂H₁₄F₂O (%): C, 79.51; H, 4.25. Found: C, 79.39; H, 4.39.

4.2.4. 3-(Biphenyl-4-yl)-4-fluoro-2,5-diphenylfuran (2d)

Yield: 52%; white solid; mp: 174–175 °C; IR (CH₂Cl₂, film): 1680, 1598, 1448, 1278, 989, 846, 764 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.82 (d, ³*J*=7.8 Hz, 2H), 7.69–7.26 (m, 17H); ¹³C NMR (100 MHz, CDCl₃): δ =148.7 (d, ¹*J*_{CF}=254.6 Hz), 145.7 (d, ³*J*_{CF}=6.0 Hz), 140.7, 140.5, 135.5 (d, ²*J*_{CF}=19.4 Hz), 130.6, 130.5, 129.9, 128.8, 128.7, 128.5, 128.1, 127.5, 127.4, 127.2, 127.0, 125.9, 124.8, 123.6 (d, ³*J*_{CF}=5.2 Hz), 115.2 (d, ²*J*_{CF}=16.4 Hz); ¹⁹F NMR (CDCl₃): δ =–164.7 (s, 1F); MS (EI) (*m*/*z*): 390 (M⁺); HRMS calcd for C₂₈H₁₉FO: 390.1420, found: 390.1424.

4.2.5. 3-(4-Chlorophenyl)-4-fluoro-2,5-diphenylfuran (2e)

Yield: 62%; pale yellow solid; mp: 109–110 °C; IR (CH₂Cl₂, film): 1643, 1493, 1392, 1194, 1093, 944, 836, 691 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.79 (d, ³*J*=7.8 Hz, 2H), 7.57–7.26 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ =148.3 (d, ¹*J*_{CF}=254.6 Hz), 145.8 (d, ³*J*_{CF}=5.9 Hz), 135.7 (d, ²*J*_{CF}=19.4 Hz), 134.0, 130.87, 130.85, 130.3, 129.1, 128.8, 128.7, 128.6, 128.3, 127.3, 125.9, 123.6 (d, ³*J*_{CF}=6.1 Hz), 114.4 (d, ²*J*_{CF}=15.6 Hz); ¹⁹F NMR (CDCl₃): δ =-165.0 (s, 1F); MS (EI) (*m*/*z*): 348 (M⁺); HRMS calcd for C₂₂H₁₄ClFO: 348.0717, found: 348.0720.

4.2.6. 3-(4-Chlorophenyl)-4-fluoro-2,5-diphenylfuran (2f)

Yield: 70%; colorless oil; IR (CH₂Cl₂, film): 3059, 1642, 1598, 1494, 1153, 1219, 944, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.83 (d, ³*J*=7.2 Hz, 2H), 7.58–7.26 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ =149.1 (d, ¹*J*_{CF}=255.3 Hz), 146.3 (d, ³*J*_{CF}=6.0 Hz), 135.6 (d, ²*J*_{CF}=18.6 Hz), 135.1, 132.6, 130.6, 130.3, 130.2, 129.4, 129.0, 128.8, 128.3, 127.5, 127.4, 125.2, 123.9, 123.8, 113.5 (d, ²*J*_{CF}=17.9 Hz); ¹⁹F NMR (CDCl₃): δ =–162.4 (s, 1F); MS (EI) (*m*/*z*): 348 (M⁺); HRMS calcd for C₂₂H₁₄ClFO: 348.0717, found: 348.0715.

4.2.7. 3-Fluoro-4-(naphthalen-1-yl)-2,5-diphenylfuran (2g)

Yield: 55%; yellow oil; IR (CH₂Cl₂, film): 3057, 1807, 1597, 1495, 1264, 1155, 932, 765, 690 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ =7.87–7.85 (m, 5H), 7.56–7.45 (m, 9H), 7.18–7.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =149.5 (d, ¹*J*_{CF}=254.6 Hz), 146.2 (d, ³*J*_{CF}=6.0 Hz), 135.2 (d, ²*J*_{CF}=19.3 Hz), 133.8, 132.0, 129.0, 128.7, 128.6, 128.3, 127.7, 127.5 (d, ⁴*J*_{CF}=1.6 Hz), 127.1 (d, ⁴*J*_{CF}=1.4 Hz), 126.6, 126.2, 125.6, 125.5, 124.9, 123.5 (d, ³*J*_{CF}=5.2 Hz), 113.8 (d, ²*J*_{CF}=17.9 Hz); ¹⁹F NMR (CDCl₃): δ =–162.7 (s, 1F); MS (EI) (*m*/*z*): 364 (M⁺); HRMS calcd for C₂₆H₁₇FO: 364.1263, found: 364.1262.

4.2.8. 3-(4-Chlorophenyl)-4-fluoro-2-phenyl-5-p-tolylfuran (3b)

Yield: 60%; white solid; mp: 136–137 °C; IR (CH₂Cl₂, film): 1641, 1600, 1509, 1088, 943, 842, 817, 763, 694, 648, 525 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.70–7.25 (m, 13H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =148.0 (d, ¹*J*_{CF}=253.1 Hz), 145.3 (d, ³*J*_{CF}=5.2 Hz), 137.2, 136.0 (d, ²*J*_{CF}=19.4 Hz), 133.9, 130.8, 130.4, 129.5, 129.1, 128.7, 128.6, 128.2, 125.9, 123.62, 123.58, 114.4 (d, ²*J*_{CF}=15.6 Hz), 21.4; ¹⁹F NMR (CDCl₃): δ =–166.1 (s, 1F); MS (EI) (*m*/*z*): 362 (M⁺); HRMS calcd for C₂₃H₁₆ClFO: 362.0874, found: 362.0877.

4.2.9. 3-(4-Chlorophenyl)-4-fluoro-5-(4-methoxyphenyl)-2-phenylfuran (**3***c*)

Yield: 52%; light yellow solid; mp: 109–110 °C; IR (CH₂Cl₂, film): 1599, 1508, 1249, 1177, 1073, 942, 694 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.74–7.29 (m, 11H), 7.10–6.98 (m, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =158.9, 147.3 (d, ¹J_{CF}=252.3 Hz), 144.9 (d, ³J _{CF}=6.0 Hz), 135.8 (d, ²J_{CF}=19.1 Hz), 133.9, 130.8, 130.4 (d, ⁴J_{CF}=2.3 Hz), 129.4, 128.5, 128.4 (d, ⁴J_{CF}=3.0 Hz), 128.0, 125.6, 125.13, 125.08, 121.6 (d, ³J_{CF}=5.2 Hz), 114.3 (d, ²J_{CF}=15.6 Hz), 55.3; ¹⁹F NMR (CDCl₃): δ =-167.7 (s, 1F); MS (EI) (*m*/*z*): 378 (M⁺). Anal. Calcd for C₂₃H₁₆ClFO₂ (%): C, 72.92; H, 4.26. Found: C, 73.01; H, 4.11.

4.2.10. 3-(4-Chlorophenyl)-4-fluoro-5-(2-fluorophenyl)-2-phenylfuran (**3d**)

Yield: 57%; light yellow solid; mp: 106–107 °C; IR (CH₂Cl₂, film): 1639, 1494, 1449, 1233, 842, 766, 691 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.75–7.13 (m, 13H); ¹³C NMR (100 MHz, CDCl₃): δ =158.2 (d, ¹*J*_{CF}=251.9 Hz), 148.6 (d, ¹*J*_{CF}=256.9 Hz), 147.1 (d, ³*J*_{CF}=5.1 Hz), 134.1, 131.4 (d, ²*J*_{CF}=20.5 Hz), 130.9, 130.1, 129.4 (d, ³*J*_{CF}=8.1 Hz), 129.1, 128.6, 128.5, 128.2 (d, ⁴*J*_{CF}=2.2 Hz), 127.3 (m, *J*=3.0 Hz), 126.0, 124.3 (d, ⁴*J*_{CF}=3.6 Hz), 116.8 (dd, ²*J*_{CF}=14.2 Hz, ³*J*_{CF}=5.1 Hz), 116.4 (d, ²*J*_{CF}=21.2 Hz), 114.2 (d, ²*J*_{CF}=16.0 Hz); ¹⁹F NMR (CDCl₃): δ =–113.0 (m, 1F), –161.0 (d, *J*_{FF}=244.5 Hz, 1F); MS (EI) (*m*/*z*): 366 (M⁺); HRMS calcd for C₂₂H₁₃ClF₂O: 366.0623, found: 366.0627.

4.2.11. 3-(4-Chlorophenyl)-4-fluoro-5-(3-fluorophenyl)-2-phenylfuran (**3e**)

Yield: 60%; light yellow solid; mp: 86–87 °C; IR (CH₂Cl₂, film): 1638, 1500, 1430, 1269, 1198, 882, 778, 682 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.56–6.95 (m, 13H); ¹³C NMR (100 MHz, CDCl₃): δ =161.1 (d, ¹*J*_{CF}=244.6 Hz), 149.0 (d, ¹*J*_{CF}=256.2 Hz), 146.4 (d, ³*J*_{CF}=5.8 Hz), 134.6 (d, ²*J*_{CF}=21.9 Hz), 130.8, 130.5, 130.4, 130.0, 129.2, 128.64, 128.57, 127.9 (d, ⁴*J*_{CF}=2.2 Hz), 126.0, 119.2 (m), 114.4 (d, ²*J*_{CF}=16.1 Hz) 114.1 (d, ²*J*_{CF}=21.1 Hz), 110.4 (dd, ²*J*_{CF}=24.1 Hz, ³*J*_{CF}=5.1 Hz); ¹⁹F NMR (CDCl₃): δ =–113.0 (dd, *J*_{FF}=15.8, 9.9 Hz, 1F), -163.2 (s, 1F); MS (EI) (*m*/*z*): 366 (M⁺); HRMS calcd for C₂₂H₁₃ClF₂O: 366.0623, found: 366.0626.

4.2.12. 3-(4-Chlorophenyl)-4-fluoro-5-(4-fluorophenyl)-2-phenylfuran (**3***f*)

Yield: 59%; white solid; mp: 113–114 °C; IR (CH₂Cl₂, film): 1508, 1235, 1093, 943, 831, 816, 761, 689, 653, 510 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.77–7.53 (m, 2H), 7.52–7.15 (m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ =161.8 (d, ¹*J*_{CF}=246.4 Hz), 148.0 (d, ¹*J*_{CF}=255.3 Hz), 145.7 (d, ³*J*_{CF}=5.2 Hz), 134.9 (d, ²*J*_{CF}=19.3 Hz), 134.0, 130.7, 130.1, 129.0, 128.5, 128.3, 128.0, 125.8, 125.4 (d, ³*J*_{CF}=5.2 Hz), 125.3 (d, ³*J*_{CF}=5.3 Hz), 115.8 (d, ²*J*_{CF}=216 Hz), 114.3 (d, ²*J*_{CF}=16.4 Hz); ¹⁹F NMR (CDCl₃): δ =–113.9 (s, 1F), –165.9 (s, 1F); MS (EI) (*m*/*z*): 366 (M⁺); HRMS calcd for C₂₂H₁₃ClF₂O: 366.0623, found: 366.0624.

4.2.13. 2,4-Bis(4-chlorophenyl)-3-fluoro-5-phenylfuran (3g)

Yield: 65%; light yellow solid; mp: 140–142 °C; IR (CH₂Cl₂, film): 1639, 1501, 1392, 1090, 942, 826, 702, 691, 505 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.70 (d, ³*J*=7.5 Hz, 2H), 7.55–7.26 (m, 11H); ¹³C NMR (100 MHz, CDCl₃): δ =148.6 (d, ¹*J*_{CF}=256.1 Hz), 146.1 (d, ³*J*_{CF}=6.0 Hz), 134.8 (d, ²*J*_{CF}=19.3 Hz), 134.1, 132.9, 130.8, 130.0 (d, ⁴*J*_{CF}=2.4 Hz), 129.1, 129.0, 128.6, 128.5, 127.9 (d, ⁴*J*_{CF}=2.2 Hz), 127.1 (d, ⁴*J*_{CF}=4.5 Hz), 126.0, 124.7 (d, ³*J*_{CF}=5.2 Hz), 114.4 (d, ²*J*_{CF}=15.7 Hz); ¹⁹F NMR (CDCl₃): δ =-164.1 (s, 1F); MS (EI) (*m*/*z*): 382 (M⁺); HRMS calcd for C₂₂H₁₃Cl₂FO: 382.0327, found: 382.0328.

4.2.14. 3-(4-Chlorophenyl)-5-ethyl-4-fluoro-2-phenylfuran (**3h**)

Yield: 57%; yellow oil; IR (CH₂Cl₂, film): 2976, 3939, 1704, 1676, 1588, 1448, 1092, 1016, 813, 693 cm⁻¹; ¹H NMR (300 MHz, CDCl₃):

δ=7.46–7.24 (m, 9H), 2.75 (q, ³*J*=7.8 Hz, 2H), 1.31 (t, ³*J*=7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ=147.3 (d, ¹*J*_{CF}=246.4 Hz), 144.7 (d, ³*J*_{CF}=6.0 Hz), 138.9 (d, ²*J*_{CF}=14.6 Hz), 133.5, 130.7, 129.0, 128.9, 128.5, 128.2, 127.8, 125.7, 113.1 (d, ²*J*_{CF}=16.4 Hz), 18.4 (d, ³*J*_{CF}=3.7 Hz), 11.9; ¹⁹F NMR (CDCl₃): δ=-174.3 (s, 1F); MS (EI) (*m*/*z*): 300 (M⁺); HRMS calcd for C₁₈H₁₄ClFO: 300.0717, found: 300.0716.

4.2.15. 3-(4-Chlorophenyl)-4-fluoro-2-pentyl-5-phenylfuran (3i)

Yield: 61%; yellow oil; IR (CH₂Cl₂, film): 2959, 1558, 1495, 1454, 1091, 1004, 959, 761, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.71–7.24 (m, 9H), 2.72 (t, *J*=7.8 Hz, 2H), 1.74–1.69 (m, 2H), 1.34–1.31 (m, 4H), 0.89 (t, *J*=6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ =150.4 (d, ³*J*_{CF}=5.2 Hz), 147.8 (d, ¹*J*_{CF}=254.6 Hz), 134.8 (d, ²*J*_{CF}=20.1 Hz), 133.4, 130.1, 129.3, 129.1, 128.9, 128.4, 127.0, 123.5 (d, ³*J*_{CF}=4.4 Hz), 114.0 (d, ²*J*_{CF}=14.9 Hz), 31.6, 28.7, 27.5, 22.6 14.2; ¹⁹F NMR (CDCl₃): δ =-166.5 (s, 1F); MS (EI) (*m*/*z*): 342 (M⁺); HRMS calcd for C₂₁H₂₀ClFO: 342.1187, found: 342.1190.

4.2.16. Preparation of 3-fluoro-2,5-diphenylthiophene (1k)

To a solution of 2,2-difluoro-1,4-diphenylbut-3-yn-1-ol ($\mathbf{4}$)^{6b} (258 mg, 1 mmol) in 5 mL of CH₂Cl₂ in an ice bath was added 0.33 mL of Et₃N (2.3 mmol), and the solution was stirred for about 10 min before methanesulfonyl chloride (0.12 mL, 1.5 mmol) was added slowly. Then the mixture was stirred at this temperature for 3 h (monitored by TLC). Saturated NH₄Cl (2 mL) was added to quench the reaction and the reaction mixture was extracted with CH₂Cl₂. After removal of the solvent in vacuum, the residue was dissolved in 3 mL of acetone and NaSH (90 mg, 1.6 mmol) was added at room temperature. After stirring for one day, 5 mL of NH₄Cl was added to quench the reaction. After removal of the volatile substance, the remaining aqueous layer was extracted with ether acetate, dried over Na₂SO₄, concentrated in vacuum, and purified by column chromatography on silica gel to afford 3-fluoro-2,5-diphenylthiophenerd (**1k**) in 28% yield.

Yield: 28%; white solid; mp: 95–96 °C; IR (CH₂Cl₂, film): 1573, 1561, 1395, 1011, 819, 719, 691 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.68–7.58 (m, 4H), 7.44–7.26 (m, 6H), 7.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ =153.9 (d, ¹*J*_{CF}=260.5 Hz), 139.8 (d, ²*J*_{CF}=9.0 Hz), 133.6, 131.4, 129.1, 129.0, 128.3, 127.5, 126.7 (d, ³*J*_{CF}=5.8 Hz), 125.2, 120.8 (d, ³*J*_{CF}=11.9 Hz), 114.6 (d, ²*J*_{CF}=27.5 Hz); ¹⁹F NMR (CDCl₃): δ =–126.9 (s, 1F); MS (EI) (*m*/*z*): 254 (M⁺); HRMS calcd for C₁₆H₁₁FS: 254.0566, found: 254.0567.

Acknowledgements

Generous financial support from the National Natural Science Foundation of China, QT Program and Shanghai Natural Science Council is gratefully acknowledged.

References and notes

- For reviews: (a) Lautens, M.; Scott, M. E.; Alberico, D. Chem. Rev. 2007, 107, 174;
 (b) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 1173; (c) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
- For recent examples: (a) Chuprakov, S.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Org. Lett. 2007, 9, 2333; (b) Lebrasseur, N.; Larrosa, L. J. Am. Chem. Soc. 2008, 130, 2926; (c) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020; (d) Bellina, F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529; (e) Old, D. W.; Harris, M. C.; Buchwald, S. L. Org. Lett. 2000, 2, 1403; (f) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575.
- For recent examples: (a) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006, 128, 11748; (b) Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc, J.-P.; Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3276; (c) Battace, A.; Lemhadri, M.; Zair, T.; Doucet, H.; Santelli, M. Adv. Synth. Catal. 2007, 349, 2507.
- (a) Besselièvre, F.; Mahuteau-Betzer, F.; Grierson, D. S.; Piguel, S. J. Org. Chem. 2007, 72, 3278; (b) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.; Taniguchi, H. J. Org. Chem. 1981, 46, 851.

- Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. J. Org. Chem. 2008, 73, 2886.
 (a) Sham, H.-L.; Betebenner, D.-A. J. Chem. Soc., Chem. Commun. 1991, 1134; (b) Arimitsu, S.; Hammond, G. B. J. Org. Chem. 2007, 72, 8559.
 Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 8754.
- bo, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128.
 Li, P.; Chai, Z.; Zhao, G.; Zhu, S.-Z. Synlett 2008, 2547.

- (a) Ceylan, M.; Gürdere, M. B.; Budak, Y.; Kazaz, V.; Seçen, H. Synthesis 2004, 11, 1750; (b) Amarnath, V.; Amarnath, K. J. Org. Chem. 1995, 60, 301.
 (a) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449; (b) Park, C.-H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2007, 9, 2333; (c) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050.
 Gilchrist, T. L. Heterocyclic Chemistry, 3rd ed.; Addison Wesley Longman: London 1007
- don, 1997.