A C onvenient Access to Variously Substituted Spiro[cyclopropane-1,4'oxazoline]s ${ }^{[\ddagger]}$

Suryakanta Dalai, ${ }^{[a]} \mathbf{M}$ azen $E s$-Sayed, ${ }^{[b]} \mathbf{M}$ arcus N ötzel, ${ }^{[a]}$ and Armin de M eijere* ${ }^{[a]}$

Keywords: A mides / Nitrogen heterocycles / M ichael addition / Buchwald-H artwig amination / Suzuki coupling / Cyclopropanes / Spiro compounds

Abstract

Michael additions of carboxamides $\mathbf{2 a - d}$ under basic conditions onto methyl 2-chloro-2-cyclopropylideneacetate (1) with subsequent ring closure furnished the 4-spirocyclopropanated methyl oxazolinecarboxylates 3a-d (51-81\% yields), from which the corresponding free carboxylic acids 4a-d were obtained by hydrolysis in excellent yield (89-93\%). Coupling reactions of $\mathbf{4 a} \mathbf{- d}$ with different o-hydroxyaniline derivatives in the presence of $\mathrm{HOAt} / \mathrm{EDC}$ and 2,4,6-collidine gave the anilides 5 in good to very good yields ($55-92 \%$). The latter under Mitsunobu reaction conditions ($\mathrm{Ph}_{3} \mathrm{P} / \mathrm{DEAD}$)

furnished the benzoxazole derivatives 6 (81-88\%). The bromine substituent in the N -methylated 4 -spirocyclopropanated 2-(bromophenyl)oxazoline-5-carboxanilides 8c,d were aminated with various secondary amines under BuchwaldHartwig reaction conditions to give the 2-(aminophenyl)oxazolinecarboxanilides 9 (12-90\%). Suzuki cross-couplings of 8 c with arene- and hetareneboronic acids provided the oxazolines with 2-biaryl substituents 10-13 (65-90\%).
(© Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, Germany, 2008)

Introduction

As has recently been demonstrated, the highly electrophilic Michael acceptor methyl 2-chloro-2-cyclopropylideneacetate (1) $)^{[1-3]}$ in the presence of sodium hydride undergoes addition of arenecarboxamides with subsequent intramolecular nucleophilic substitution of the chlorine atom to yield methyl 2'-arylspiro[cyclopropane-1,4'-oxazoline]-5^{\prime}-carboxylates $3 .{ }^{[4]}$ The latter essentially are protected cyclic derivatives of β-(N -acylamino)- α-hydroxycarboxylic acids and have been employed as such to prepare various analogues of Taxol (4); ${ }^{[5,6]}$ yet in more general terms they can be regarded as mimics of aryl-substituted hetarenes. Since a large number of biologically active compounds are composites of heterocycles including oxazolines ${ }^{[7]}$ and heterosubstitued arenes, we set out to develop a set of methods to further diversify the 4 -spirocyclopropanated 2-aryloxazolinecarboxylates $\mathbf{3}$ in order to make a library of potentially biologically active derivatives accessible, since one such compound had previously exhibited an interesting insecticidal activity. The fact that a spirocyclopropanated an-

[^0]alogue of Imidacloprid ${ }^{\circledR}$ is virtually as potent an insecticide as the commercial Imidacloprid itself, ${ }^{[8]}$ made this a reasonable endeavor.

Results and Discussion

By employing the previously published procedure ${ }^{[4]}$ methyl 2-chloro-2-cyclopropylideneacetate (1) ${ }^{[1,2]}$ in acetonitrile upon reaction with benzamide (2a) in the presence of sodium hydride gave methyl 2'-phenylspiro[cyclopro-pane-1,4'-oxazoline]-5-carboxylate (3a) in 54% isolated yield after column chromatography. A nalogously, 4-(tri-fluoromethyl)- as well as 4-bromo- and 3-bromobenzamide (2b-d) furnished the corresponding oxazolinecarboxylates 3b-d in yields ranging from 51 to 81% (Scheme 1 and Table 1). The bromobenzamides $\mathbf{2 c}$, d were specifically chosen in order to provide an opportunity for further derivatization of the products 3c and 3d by cross-coupling reactions. The hydrolyses of the esters 3a-d to the corresponding oxazolinecarboxylic acids 4a-d were brought about more efficiently than previously reported by treatment with 1 n aqueous sodium hydroxide in methanol/tetrahydrofuran (4:1). Thus, the free carboxylic acids were isolated after purification by column chromatography in 89-93\% yield.
W ith the 5-(benzoxazolyl)oxazoline derivatives as targets in mind, conversion of the oxazolinecarboxylic acids to the corresponding amides with substituted o-hydroxyanilines were intended. First attempts were made with the 3^{\prime}-phen-ylspiro[cyclopropane-1,4'-oxazoline]-5'-carboxylic acid (4a) and 5-chloro-2-hydroxyaniline by employing dicyclohexyl-

Scheme 1. 2'-A rylspiro[cyclopropane-1,4'-oxazoline]carboxylic acids 4a-d from arenecarboxamides and methyl 2-chloro-2-cyclopropylideneacetate (1). For details see Table 1.

Table 1. M ethyl 2'-arylspiro[cyclopropane-1,4'-oxazoline]-5'-carboxylates 3a-d and the corresponding oxazolinecarboxylic acids 4a-d from 1 (see Scheme 1).

A mide	Ar^{1}	Product	Y ield $(\%)$	Product	Y ield $(\%)$
2a	$\mathbf{P h}$	$\mathbf{3 a}$	54	$\mathbf{4 a}$	89
2b	$4-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}$	$\mathbf{3 b}$	81	$\mathbf{4 b}$	93
2c	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathbf{3 c}$	51	$\mathbf{4 c}$	91
2d	$3-\mathrm{BrC}_{6} \mathrm{H}_{4}$	3d	64	$\mathbf{4 d}$	90

carbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) in dichloromethane. However, after 18 h at $20^{\circ} \mathrm{C}$, the unchanged starting materials were completely recovered, and the same result was achieved with DCC and 1hydroxybenzotriazole (HOBT) in dichloromethane. ${ }^{[9]}$ An attempted conversion of the carboxylic acid $4 a$ to the acyl chloride by treatment with thionyl chloride and subsequent reaction with the aniline led to complete decomposition of the starting material $\mathbf{4 a}$. Eventually, the amide coupling succeeded in the presence of 1-hydroxy-7-azabenzotriazole (HOA t), $\quad \mathrm{N}$-[3-(dimethylamino)propyl]-N '-ethylcarbodiimide (EDC) and 2,4,6-collidine to furnish the oxazolinecarboxanilide 5aa in 92% yield. U nder these conditions, the reactions of the 2 -[4-(trifluoromethyl)phenyl]oxazolinecarboxylic acid $\mathbf{4 b}$ with different mono- and disubstituted 0 hydroxyanilines gave the corresponding anilides $\mathbf{5 b a}$, $\mathbf{5 b} \mathbf{b}$, 5bc, 5bd in 55-85\% yield (Scheme 2, Table 2).

Scheme 2. A mide coupling of oxazolinecarboxylic acids $\mathbf{4 a}, \mathbf{b}$ with o-hydroxyanilines followed by dehydrative cyclization to yield 5 (benzoxazolyl)oxazoline derivatives 6 . For details see Table 2.

Table 2. A mide coupling of oxazolinecarboxylic acids $\mathbf{4 a}, \mathbf{b}$ with 0 hydroxyanilines and dehydrative cyclization of the products to 5(benzoxazolyl)oxazoline derivatives 6 (see Scheme 2).

$\mathbf{4}$	Ar^{1}	X in $\mathrm{Ar}^{2} \mathrm{NH}_{2}$	Product	Y ield $(\%)$	Product	Yield $(\%)$
$\mathbf{4 a}$	Ph	$5-\mathrm{Cl}$	$\mathbf{5 a a}$	92	$\mathbf{6 a a}$	83
$\mathbf{4 b}$	$4-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}$	$5-\mathrm{Cl}$	$\mathbf{5 b a}$	85	$\mathbf{6 b a}$	85
$\mathbf{4 b}$	$\mathbf{4 -} \mathrm{~F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}$	$5-\mathrm{F}_{3} \mathrm{CO}$	$\mathbf{5 b b}$	55	$\mathbf{6 b b}$	81
$\mathbf{4 b}$	$\mathbf{4 -} \mathrm{~F}_{3} \mathrm{CC}_{6} \mathrm{C}_{4}$	$3,5-\mathrm{Cl}$	$\mathbf{5 b c}$	79	$\mathbf{6 b c}$	88
$\mathbf{4 b}$	$\mathbf{4 -} \mathrm{~F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}$	$5-\mathrm{F}_{3} \mathrm{C}$	$\mathbf{5 b d}$	78	$\mathbf{6 b d}$	81

A n attempted dehydrative cyclization of 5 aa with phosphorus pentoxide in carbon tetrachloride at $80^{\circ} \mathrm{C}$ also left the starting material unchanged, and with pyridinium p toluenesulfonate (PPTs) in dichloroethane after 12 h at $85^{\circ} \mathrm{C}$ only a small amount (12%) of the product 6aa was isolated. The desired product 6aa was also not observed when the same reaction was carried out in toluene by employing a D ean-Stark trap. Finally, under M itsunobu conditions ${ }^{[10]}\left(\mathrm{Ph}_{3} \mathrm{P}, \mathrm{DEAD}\right)$, the product 6aa was formed from 5aa in 83% isolable yield. A nalogously, the other anilides 5 were converted into the corresponding (benzoxazolyl)oxazolines 6ba, 6bb, 6bc, 6bd in 81-88\% yield (Scheme 2, Table 2).

The spiro[cyclopropane-1,4'-oxazoline]-5'-carboxylic acids $\mathbf{4 c}$, \mathbf{d} were further diversified with heteroatom-containing substituents by conversion to 3-(trifluoromethyl)anilides $\mathbf{7 c}, \mathbf{d}$ under the same conditions as employed for $\mathbf{4 a}, \mathrm{b}$, subsequent N -methylation with dimethyl sulfate and final Buch-wald- H artwig amination ${ }^{[11,12]}$ of the N-methylanilides $8 \mathrm{c}, \mathrm{d}$ with various secondary amines. An attempted amide coupling of the 4-bromophenyl derivative $\mathbf{4 c}$ with N -methyl-3(trifluoromethyl)aniline in the presence of HOAt, EDC•HCl and $2,4,6$-collidine did not give any of the desired product, but with 3-(trifluoromethyl)aniline under the same reaction conditions the anilide 7c was obtained in 92% yield, and methylation with dimethyl sulfate in the presence of potassium carbonate furnished the desired N-methyl derivative $\mathbf{8 c}$ as the precursor for the envisioned Pd-catalyzed aminations. A nalogously, the (3-bromophenyl)oxazolinecarboxanilide 8d was prepared in 73% overall yield. By employing wellestablished conditions $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{BINAP}, \mathrm{N}\right.$ atOBu], the cross coupling of 8 c with morpholine in toluene furnished the product 9ca in 71% yield within 16 h . The conditions as optimized with respect to the amount of catalyst called for $2 \mathrm{~mol}-\%$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $3 \mathrm{~mol}-\%$ of (\pm)-BINAP to give best yields. The same oxazoline 9 c with pyrrolidine under these conditions gave the product 9cb in 90% yield, but the N -methyl- and N -benzylpiperazine derivatives 9 cc and 9cd were obtained in only 59 and 62%, respectively (Scheme 3 and Table 3).

The cross coupling of $\mathbf{8 c}$ with the bicyclic secondary amine 3,3-dibenzyl-3-azabicyclo[3.1.0]hexane ${ }^{[13]}$ also proceeded smoothly to afford the product 9ce in 67% yield. The same five amines were also coupled with the 3-bromophenyl derivative 8d to give the corresponding 2-(3-aminophenyl)oxazolinecarboxamides 9da-9de; however, 5 mol$\%$ of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and $7.5 \mathrm{~mol}-\%$ of (\pm)-BINAP had to be

$4 c, d$

$$
\begin{aligned}
& \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5 \mathrm{~mol} \%), \\
& \pm \mathrm{BINAP}(7.5 \mathrm{~mol} \%) \\
& \hline
\end{aligned}
$$

NaOtBu, R ${ }_{2}$ NH, toluene $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$

Scheme 3. N-M ethyl-N -[3-(trifluoromethyl) phenyl]anilides 7c,d from 2'-(bromophenyl)spiro[cyclopropane-1,4'-oxazoline]-5'-carboxylic acids $\mathbf{4 c}, \mathbf{d}$ and subsequent Buchwald-H artwig amination of the bromophenyl groups in the N-methylanilides $8 \mathbf{c}, \mathbf{d}$ with various secondary amines. For details see Table 3.

Table 3. Buchwald-H artwig aminations of the bromophenyl substituents in the N -methyl- N -[3-(trifluoromethyl)phenyl]spiro[cyclo-propane-1,4'-oxazoline]-5'-carboxamides 8c,d (see Scheme 3).

Starting material $\mathbf{8}$	$\mathrm{R}_{2} \mathrm{NH}$	Product $\mathbf{9}$	Yield $(\%)$
8c	morpholine	9ca	71
8c	pyrrolidine	9cb	90
8c	N-methylpiperazine	9cc	59
8c	N-benzylpiperazine	9cd	62
8c	3,3-dibenzyl-3-azabicyclo[3.1.0]hexane	9ce	67
8d	morpholine	9da	82
8d	pyrrolidine	9db	73
8d	N-methylpiperazine	9dc	13
8d	N-benzylpiperazine	9dd	12
8d	3,3-dibenzyl-3-azabicyclo[3.1.0]hexane	9de	81

used in these cases. In spite of that, the yields of the N -benzyl-N -methylpiperazines were rather poor (13 and 12%, respectively), and the reactions did not go to completion even after 40 h (Scheme 3 and Table 3).

The possibility to further diversify the library of 2 '-aryl-spiro[cyclopropane-1,4'-oxazoline]-5'-carboxanilides 7 by palladium-catalyzed cross coupling with areneboronic acids (Suzuki-M iyaura coupling) ${ }^{[14]}$ was also tested. A fter several conditions had been tried, it was found that the coupling of 8 c with benzeneboronic acid required 10 mol -\% of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $40 \mathrm{~mol}-\%$ of $\mathrm{Ph}_{3} \mathrm{P}$ to go to completion within 16 h , and the product 10 c could be isolated in 90% yield. [p-(Trifluoromethoxy)phenyl]boronic acid under the same reaction conditions gave the product 11c in 84% yield. 3 -

Thienyl- and 2-naphthylboronic acid also formed the products 12c and 13c in 65 and 85% yield, respectively (Scheme 4 and Table 4).

Scheme 4. Suzuki-M iyaura coupling of (bromophenyl)oxazolinecarboxanilide 8c. For details see Table 4.

Table 4. 2'-Biarylspiro[cyclopropane-1,4'-oxazoline]-5'-carboxanilides 10c-13c by Suzuki-M iyaura coupling of the 2-(bromophenyl)oxazolinecarboxyamide derivative 8c (see Scheme 4).

Starting material	Ar^{2} in $\mathrm{Ar}^{2} \mathrm{~B}(\mathrm{OH})_{2}$	Product	Y ield $(\%)$
$\mathbf{8 c}$	Ph	$\mathbf{1 0 c}$	90
8c	4- $\mathrm{F}_{3} \mathrm{COC}_{6} \mathrm{H}_{4}$	$\mathbf{1 1 \mathbf { c }}$	80
8c	3-thienyl	$\mathbf{1 2 c}$	65
8c	2-naphthyl	$\mathbf{1 3 c}$	85

Experimental Section

General Remarks: All reagents were used as purchased without further purification. All reactions in organic solvents were carried out by using standard Schlenk techniques under dry nitrogen. The solvents were purified and dried prior to use according to conventional methods; tetrahydrofuran (THF) and toluene were freshly distilled from sodium/benzophenone. Solvents and reagents are abbreviated as follows: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=$ dichloromethane, $\mathrm{EtOAc}=$ ethyl acetate, $\mathrm{MeOH}=$ methanol, $\mathrm{C}_{5} \mathrm{H}_{12}=$ pentane, $\mathrm{Et} 2 \mathrm{O}=$ diethyl ether, DEAD = diethyl azodicarboxylate, $D C C=N, N^{\prime}$-dicyclohexylcarbodiimide, EDC = N-[3-(dimethylamino)propyl]-N'-ethylcarbodiimide, $\mathrm{HOB}=1$-hydroxybenzotriazole, $\mathrm{HOAt}=1$-hydroxy-7-azabenzotriazole. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at ambient temperature with either Bruker A M 250 or Varian 200 or 300 M Hz instruments. Chemical shifts (δ) are given in ppm relative to residual resonances of solvents $\left({ }^{1} \mathrm{H}: \delta=7.26 \mathrm{ppm}\right.$ for CDCl_{3} and $\delta=$ 3.31 ppm for $\mathrm{CD}_{3} \mathrm{OD} ;{ }^{13} \mathrm{C}: \delta=77.0 \mathrm{ppm}$ for CDCl_{3}, and $\delta=$ 49.0 ppm for $\mathrm{CD}_{3} \mathrm{OD}$). Coupling constants (J) are given in Hz . M ultiplicities of signals are described as follows: br. = broad, $\mathrm{s}=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet, $d t=$ doublet of triplets. The multiplicities of signals were determined by the DEPT technique: DEPT: $+=$ primary $\left(\mathrm{CH}_{3}\right)$ or tertiary (CH) (positive DEPT signal), $-=$ secondary $\left(\mathrm{CH}_{2}\right)$ (negative DEPT signal), $\mathrm{C}_{\text {quat }}$. $=$ quaternary C atoms. J values in ${ }^{13} \mathrm{C} N M R$ spectra refer to ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ couplings. "CPr" refers to cyclopropyl. IR : Bruker IFS 66. M S: Finnigan M AT 95, 70 eV . Chromatographic separations were carried out on M erck silica gel 60 ($0.063-0.200 \mathrm{~mm}, 70-230$ mesh ASTM). The dimensions of the columns are given in cm as "diameter \times height of the silica gel column". TLC: M acherey- N agel, ready-to-use TLC plates A lugram ${ }^{\circledR}$ Sil $G / U V_{254}$. Detection under UV light at 254 nm . M elting points (uncorrected) were determind in capillaries with a Büchi 510 apparatus. Elemental analyses: M ikroanalytisches Laboratorium des Instituts für Organische und Biomolekulare Chemie der U niversität G öttingen.
G eneral P rocedure for the P reparation of M ethyl $\mathbf{2}^{\prime}$-A rylspiro[cyclo-propane-1,4'-oxazoline]-5'-carboxylates 3 (GP1): A solution of methyl 2-chloro-2-cyclopropylideneacetate (1) ${ }^{[1,2]}$ and the respective carboxamide (1 equiv.) in anhydrous acetonitrile was treated with 1 equiv. of NaH (60% dispersion in mineral oil) at $0^{\circ} \mathrm{C}$. The resulting suspension was subsequently stirred at this temperature for 1 h and at $20^{\circ} \mathrm{C}$ for an additional 1 h . A fter removal of the solvent, the pale yellow residue was taken up with diethyl ether (300 mL) and the solution washed with water (100 mL). The aq. layer was extracted with diethyl ether ($2 \times 100 \mathrm{~mL}$), and the combined organic phases were dried with $\mathrm{M} \mathrm{gSO}_{4}$. The solvents were evaporated under reduced pressure, and the crude product was purified by column chromatography.
M ethyl 5-P henyl-6-oxa-4-azaspiro[2.4]hept-4-ene-7-carboxylate (3a): The crude product obtained from $1(2.50 \mathrm{~g}, 17.0 \mathrm{mmol})$, benzamide ($2 \mathrm{a}, 5.20 \mathrm{~g}, 17.0 \mathrm{mmol}$) and NaH ($595 \mathrm{mg}, 17.0 \mathrm{mmol}$) in anhydrous acetonitrile (50 mL) according to GP1 was purified by column chromatography $\left(\mathrm{R}_{\mathrm{f}}=0.38\right.$; pentane/Et20, 4:1; $3 \times 10 \mathrm{~cm}$) to yield $2.2 \mathrm{~g}(54 \%)$ of 3 a as a colorless solid, m.p. $48^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=2948,1732,1449,1284,1057,694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91-1.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 1.18-$ 1.27 (m, $1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}$), 1.32-1.42 (m, $1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 4.93 (s, $1 \mathrm{H}, \mathrm{CH}$), 7.39-7.54 (m, 3 H , aryl-H), 7.91-7.99 (m, 2 H , aryl-H) ppm. ${ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{APT}$): $\delta=10.4(-$, cPr-C), $14.7(-, \mathrm{cPr}-\mathrm{C}), 52.3\left(+, \mathrm{CH}_{3}\right), 53.3(-, \mathrm{CPr}-\mathrm{C}), 79.7(+, \mathrm{CH}-$ C), 127.0 (-, aryl-C), 128.0 (+2 C, aryl-C), 128.4 (,+ 2 C, aryl-C), 131.5 (+ , aryl-C), 163.5 (,- CN-C), 169.5 (-, CO-C) ppm. M S $(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=231(35)\left[\mathrm{M}^{+}\right], 172(100)\left[\mathrm{M}^{+}-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right], 144$ (60), 105 (26).

General Procedure for the H ydrolysis of M ethyl Spiro[cyclopropane-1,4'-oxazoline]carboxylates 3 (GP2): A q. NaOH ($1 \mathrm{~N}, 5$ equiv.) was added to a solution of the respective methyl oxazolinecarboxylate $\mathbf{3}$ (1 equiv.) in $\mathrm{MeOH} / \mathrm{THF}$ (4:1) at room temperature. The resulting solution was stirred for 30 min , then glacial AcOH (10 equiv.) was added, the mixture stirred for an additional 15 min , and the solvent evaporated in vacuo. The residue was filtered through a pad of SiO_{2} gel ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{A} \mathrm{COH}, 50: 1$) and the product crystallized from ether/hexane.
5-P henyl-6-oxa-4-azaspiro[2.4]hept-4-ene-7-carboxylic Acid (4a): From 3a ($3.40 \mathrm{~g}, 14.7 \mathrm{mmol}$), $\mathrm{NaOH}(2.96 \mathrm{~g}, 74 \mathrm{mmol})$ and AcOH $(8.80 \mathrm{~g}, 147 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH} / \mathrm{TH} \mathrm{F}(200 \mathrm{~mL})$ according to G P2 (R_{f} $\left.=0.40 ; \mathrm{Et}_{2} \mathrm{O} / \mathrm{AcOH}, 50: 1\right), 5.10 \mathrm{~g}(93 \%)$ of 4 a was obtained as a colorless solid, m.p $182^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=3061,3009,1717,1638$, 1457, 1364, 1211, 1069, $735 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=0.95-1.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 1.05-1.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 4.99(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}$), 7.40-7.59 (m, 3 H , aryl-H), 7.86-7.98 (m, 2 H , aryl-H) ppm. ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3} \mathrm{OD}, \mathrm{DEPT}$): $\delta=11.0(-, \mathrm{cPr}-\mathrm{C})$, 15.3 (-, cPr-C), 54.0 (quat. , CPr-C), 81.3 (,$+ \mathrm{CH}-\mathrm{C}$), 128.3 ($\mathrm{C}_{\text {quat. }}$, aryl-C), 129.3 (,+ 2 C, aryl-C), 129.9 (+2 C, aryl-C), 133.3 (+ , aryl-C), 166.2 (-, CN-C), 172.4 (-, CO-C) ppm. M S (70 eV): m/z $(\%)=217(48)[M+], 172(100)\left[M^{+}-\mathrm{CO}_{2} \mathrm{H}\right], 144$ (57), 104 (28).
General Procedure for the Preparation of 0 xazolinecarboxanilides 5 and 7 (GP3): To an ice-cold solution of the respective oxazolinecarboxylic acid 4 (1 equiv.) and HOAt (1.2 equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added EDC•HCl (1.5 equiv.) in one portion, the mixture was stirred for 15 min , then $2,4,6$-collidine (2.0 equiv.) and the respective aniline (1.3 equiv.) were added. The cooling bath was removed, and the resulting pale yellow reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 12 h and filtered through a pad of silica gel. The crude product was purified by column chromatography.
N -(5-C hloro-2-hydrox yphenyl)-5-phenyl-6-oxa-4-azaspiro[2.4]hept-4-ene-7-carboxamide (5aa): The crude product obtained from 4a
$(185 \mathrm{mg}, 0.85 \mathrm{mmol}), \mathrm{H} O A t(139 \mathrm{mg}, 1.02 \mathrm{mmol}), \mathrm{EDC} \cdot \mathrm{HCl}$ ($244 \mathrm{mg}, 1.27 \mathrm{mmol}$), 2,4,6-collidine ($206 \mathrm{mg}, 1.70 \mathrm{mmol}$) and 5-chloro-2-hydroxyaniline ($146 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ according to GP3 was purified by column chromatography $\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.25 ; pentane/ $/ \mathrm{t}_{2} \mathrm{O}, 1: 1$) to yield 268 mg (92%) of 5 aa as a colorless solid, m.p. $211^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=3381,3052,1668,1558,1431$, $1339,1195,1033 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): \delta=0.96-1.18$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{cPr}-\mathrm{H}$), 1.34-1.50 (m, $2 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$, 6.87-6.92 (m, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.05\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2,{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, aryl-H) 7.42-7.58 (m, 3 H , aryl-H), 7.77 (s, 1 H , aryl-H), 7.96-8.00 ($\mathrm{m}, 2 \mathrm{H}$, aryl-H), 8.27 (br. s, $1 \mathrm{H}, \mathrm{NH}$) ppm. ${ }^{13} \mathrm{C}$ NMR (75.5 M Hz , $\left.\mathrm{CDCl}_{3}, \mathrm{APT}\right): \delta=10.6(-, \mathrm{cPr}-\mathrm{C}), 14.5(-, \mathrm{cPr}-\mathrm{C}), 53.7(-, \mathrm{cPr}-\mathrm{C})$, 80.2 (,+ CH-C), 120.1 (+, aryl-C), 121.9 (+ , aryl-C), 125.5 (-, arylC), 126.6 (-, aryl-C), 127.0 (+, aryl-C), 127.9 (+2 C, aryl-C), 128.7 (+, 2 C, aryl-C), 131.9 (+, aryl-C), 146.8 (-, aryl-C), 161.5 (-, CN C), $168.2(-, \mathrm{CO}-\mathrm{C}) \mathrm{ppm} . \mathrm{M} \mathrm{S}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=344 / 342(6 / 20)$ $\left[M^{+}\right], 200(55), 173(100), 172(58), 105(54) . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{3}(342.8)$: calcd. C 63.07, H 4.41, N 8.17; found C 63.32, H 4.18, N 8.02.

G eneral Procedure (GP4) for the Preparation of (Benzoxazolyl)oxazolines 6: A solution of DEAD (2.2 equiv.) was added dropwise to a solution of the respective anilide 5 (1 equiv.) and $\mathrm{Ph}_{3} \mathrm{P}$ (2.2 equiv.) in anhydrous THF (10 mL) in an ice bath, and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 10 h . To the reaction mixture were added $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$, and the organic layer was separated. The aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$, the combined ethereal layers were dried with $\mathrm{M} \mathrm{gSO}_{4}$ and concentrated, and the residue was purified by column chromatography to yield the corresponding benzoxazoles.
5-C hloro-2-(5-phenyl-6-oxa-4-azaspiro[2.4]hept-4-en-7-yl)benzoxazole (6aa): The crude product obtained from $\mathbf{5 a a}$ (103 mg , $0.3 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(173 \mathrm{mg}, 0.66 \mathrm{mmol})$ and DEAD (115 mg , 0.66 mmol) according to GP 4 was purified by column chromatography ($\mathrm{R}_{\mathrm{f}}=0.35$; pentane/ $\mathrm{Et}_{2} \mathrm{O}, 5: 1$) to yield $83 \mathrm{mg}(85 \%)$ of 6 aa as a colorless solid, m.p. $129^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=3077,2971,1653$, 1569, 1427, 1335, 1293, 1078, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=0.54-0.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 0.98-1.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}-\mathrm{H})$, 1.18-1.28 (m, $1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}$), 1.36-1.45 (m, $1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}$), $5.70(\mathrm{~s}, 1 \mathrm{H}$, CH), 7.28-7.39 (m, 1 H, aryl-H), 7.40-7.57 (m, 4 H, aryl-H), 7.69 (s, 1 H , aryl-H), 7.95-8.02 (m, 2 H , aryl-H) ppm. ${ }^{13} \mathrm{C}$ N M R ($75.5 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{APT}$): $\delta=11.1(-, \mathrm{cPr}-\mathrm{C}), 14.7(-, \mathrm{cPr}-\mathrm{C}), 54.2$ (-, cPr-C), 77.8 (,$+ \mathrm{CH}-\mathrm{C}$), 111.9 (+ , aryl-C), 120.4 (+ , aryl-C), 126.1 (+ , aryl-C), 126.8 (- , aryl-C), 128.1 (,+ 2 C, aryl-C), 128.5 (+, 2 C, aryl-C), 130.2 (-, aryl-C), 131.6 (+, aryl-C), 141.5 (-, arylC), 149.5 (-, aryl-C), 163.2 (-, CN -C), 163.7 (-, CN -C) ppm. M S (70 eV): m/z (\%) = 325/323 (2/8) [M $\left.{ }^{+}\right], 172$ (16), 155 (100), 105 (18), 91 (82). $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$ (324.8): calcd. C 66.57, H 4.03, N 8.63; found C 66.58, H 3.84, N 8.55.
G eneral Procedure (GP5) for the Buchwald- H artwig A mination of (Bromophenyl)oxazolinecarboxanilides 8: A n oven-dried Schlenk flask purged with nitrogen, was charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and (\pm) BINAP in toluene (5 mL). The mixture was heated at $80^{\circ} \mathrm{C}$ with stirring for 5 min to dissolve the BINAP. A fter cooling, the respective (bromophenyl)oxazolinecarboxanilide 8 (1 equiv.), the respective secondary amine (1.5 equiv.), and NaOtBu (1.5 equiv.) were added, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 16 h . A fter cooling to room temperature, it was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography.
N -M ethyl-5-[4-(morpholin-4-yl)phenyl]-N-[3-(trifluoromethyl)-phenyl]-6-oxa-4-azaspiro[2.4]hept-4-ene-7-carboxamide (9ca): The crude product obtained from $8 \mathrm{c}(90.6 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(3.65 \mathrm{mg}),(\pm)-$ BINAP $(3.74 \mathrm{mg})$, morpholine $(26.0 \mathrm{mg}$,
0.30 mmol) and NaOtBu ($28.8 \mathrm{mg}, 0.30 \mathrm{mmol}$) according to GP5 was purified by column chromatography $\left(R_{f}=0.25 ; E t_{2} O\right)$ to yield 65 mg (71%) of 9 ca which crystallized from $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ as a colorless solid, m.p. 159-160 ${ }^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=3084,2969,2864,1655$, 1607, 1521, 1335, 1228, $1119 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}$): $\delta=0.62-0.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 0.98-1.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{cPr}-\mathrm{H}), 3.02-$ $3.20(\mathrm{~m}, 2 \mathrm{H}), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66-3.91(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}), 6.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, aryl-H) 7.03-7.50 (m, 6 H, aryl-H) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \mathrm{APT}$): $\delta=11.8(-, \mathrm{cPr}-\mathrm{C})$, $14.4(-, c P r-C), 39.0\left(+, \mathrm{CH}_{3}\right), 48.1\left(-, 2 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{C}\right), 53.4(-, \mathrm{cPr}-$ C), $66.6\left(-, 2 \mathrm{C}, \mathrm{CH}_{2}-\mathrm{C}\right), 80.8$ ($+\mathrm{CH}-\mathrm{C}$), 113.6 (+2 C , aryl-C), $117.0\left(-\right.$, aryl-C), $123.3\left(-, q,{ }^{1} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=264 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.2(+, \mathrm{q}$, ${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=4.3 \mathrm{~Hz}$, aryl-C), $124.3\left(+, \mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=3.2 \mathrm{~Hz}\right.$, aryl-C), 129.0 (,+ 2 C , aryl-C), 130.1 (+ , aryl-C), $131.8\left(-, q^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32.5 \mathrm{~Hz}\right.$, aryl-C), 143.2 (-, aryl-C), 153.1 (-, aryl-C), $162.4(-$, CN -C), 168.2 $(-, C O-C) p p m . M S(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=459(22)\left[\mathrm{M}^{+}\right], 285(16)$, 257 (20), 190 (100).
G eneral Procedure (G P6) for the Suzuki-M iyaura C oupling of (Bromophenyl)oxazolinecarboxanilide 8c: A 25 mL Schlenk flask was charged with $\mathrm{Pd}(\mathrm{OAC})_{2}(4.5 \mathrm{mg}, 10 \mathrm{~mol}-\%)$ and $\mathrm{P}(\mathrm{Ph})_{3}(21 \mathrm{mg}$, $40 \mathrm{~mol}-\%$) in toluene (5 mL). The mixture was deoxygenated for 5 min by bubbling nitrogen through it. To this solution was added $\mathbf{8 c}(90.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, the respective boronic acid (0.30 mmol) and aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.40 \mathrm{mmol}, 2 \mathrm{~N})$, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature, taken up in $\mathrm{Et}_{2} \mathrm{O}$ (25 mL), washed with water (10 mL), and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic phases were dried with $\mathrm{M} \mathrm{gSO}_{4}$ and concentrated in vacuo. The crude product was purified by column chromatography.
5-(Biphenyl-4-yl)-N -methyl-[3-(trifluoromethyl)phenyl]-6-oxa-4-aza-spiro[2.4]hept-4-ene-7-carboxamide (10c): The crude product obtained from $8 \mathbf{c}$ and phenylboronic acid (36.5 mg) according to the GP6 was purified by column chromatography ($\mathrm{R}_{\mathrm{f}}=0.30$; pentane/ $\mathrm{Et}_{2} \mathrm{O}, 1: 2$), to yield $81 \mathrm{mg}(90 \%)$ of 10 c as a colorless solid, m.p. $136-137^{\circ} \mathrm{C}$. IR (K Br): $\tilde{v}=3081,1660,1643,1334,1128,1067,705$ $\mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.74-0.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{cPr}-$ H), 1.03-1.38 (m, $3 \mathrm{H}, \mathrm{cPr}-\mathrm{H}$), $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.02(\mathrm{~s}, 1 \mathrm{H}$, CH-H), 7.09-7.59 (m, 13 H , aryl-H) ppm. ${ }^{13} \mathrm{C}$ N M R (75.5 M Hz , $\left.\mathrm{CDCl}_{3}, \mathrm{APT}\right): \delta=12.0(-, \mathrm{cPr}-\mathrm{C}), 14.7(-, \mathrm{cPr}-\mathrm{C}), 39.1\left(+, \mathrm{CH}_{3}\right)$, 53.7 (-, CPr-C), $81.0(+, \mathrm{CH}-\mathrm{C}), 123.2\left(-, \mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=262 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, $124.1\left(+, q,{ }^{3}\right)_{\mathrm{c}-\mathrm{F}}=3.8 \mathrm{~Hz}$, aryl-C), $124.4\left(+, q,{ }^{3} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=3.8 \mathrm{~Hz}\right.$, aryl-C), 125.2 (-, aryl-C), 126.6 (+, 2 C, aryl-C), 127.1 (,+ 2 C, aryl-C), 127.9 (+, aryl-C), 128.1 (,+ 2 C, aryl-C), 128.9 (+2 C, aryl-C), 130.2 (+, aryl-C), 132.0 (-, q, ${ }^{2} \mathrm{~J}_{\mathrm{c}-\mathrm{F}}=33.2 \mathrm{~Hz}$, aryl-C), 140.1 (-, aryl-C), 143.2 (-, aryl-C), 143.9 (-, aryl-C), 162.2 (-, CN C), $168.0(-, \mathrm{CO}-\mathrm{C}) \mathrm{ppm} . \mathrm{M} \mathrm{S}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=450(92)[\mathrm{M}+\mathrm{]}, 276$ (91), 248 (61), 181 (100). $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ (450.5): calcd. C $69.33, \mathrm{H}$ 4.70, N 6.22; found C 69.26, H 4.48, N 6.18.

Supporting Information (see footnote on the first page of this article): D etailed experimental procedures for and full characterization
of all the new compounds $\mathbf{3 b}-3 \mathrm{~d}, \mathbf{4 b}-4 \mathrm{~d}, 5 \mathrm{ba}-5 \mathrm{bd}, 6 \mathrm{ba}-6 \mathrm{bd}, 7 \mathrm{c}, 7 \mathrm{~d}$, 8d, 9cb-9ce, 9da-9de, 11c, 12c, 13c.

Acknowledgments

This work was supported by the L and N iedersachsen and the Bayer CropScience AG. The authors are grateful to Stefan Beußhausen, Göttingen, for technical assistance in assembling the final manuscript.
[1] T. Liese, F. Seyed-M ahdavi, A. de M eijere, Org. Synth. 1990, 69, 148-153.
[2] For an advanced synthesis of 1, see: M. Limbach, S. D alai, A . de M eijere, A dv. Synth. Catal. 2004, 346, 760-766.
[3] For reviews see: a) A. de M eijere, L. Wessjohann, Synlett 1990, 20-32; b) A. de M eijere, S. K ozhushkov, L. P. H adjiarapoglou, Top. Curr. Chem. 2000, 207, 149-227.
[4] M . W. N ötzel, M. Tamm, T. Labahn, M. N oltemeyer, M . EsSayed, A. de M eijere, J. Org. Chem. 2000, 65, 3850-3852.
[5] C. Liu, M . Tamm, M. W. Nötzel, A . de M eijere, J. K. Schilling, D. G.I. K ingston, Tetrahedron Lett. 2003, 44, 2049-2052.
[6] C. Liu, M. Tamm, M. W. N ötzel, K. Rauch, A. de M eijere, J. K. Schilling, A. Lakdawala, J. P. Snyder, S. L. Bane, N. Shanker, R. Rudravajhala, D. G.I. K ingston, Eur. J. Org. C hem. 2005, 3962-3972.
[7] a) M. R. Prinsep, R. E. M oore, I. A. Levine, G. M. Patterson, J. Nat. Prod. 1992, 55, 140-142; b) M. North, G. Pattenden, Tetrahedron 1990, 46, 8267-8290; c) T. Ishida, M. Tanaka, M. Nabae, M. Inoue, S. K ato, Y. H amada, T. Shioiri, J. Org. C hem. 1988, 53, 107-112.
[8] F. Brackmann, D. S. Y ufit, J. A K. H oward, M . Es-Sayed, A . de M eijere, Eur. J. Org. Chem. 2005, 600-609.
[9] A dopted from a previously published procedure: L. Lebreton, J. A nnat, P. Derrepas, P. D utarte, P. Renaut, J. M ed. C hem. 1999, 42, 277-290.
[10]A dopted from previously published procedures: a) D. M. Roush, M . M . Patel, Synth. Commun. 1985, 15, 675-679; b) P. W ief, C. P. M iller, Tetrahedron Lett. 1992, 33, 6267-6270; c) P. Jiao, J. Xu, Q. Zhang, M . C. K. Choi, A. S. C. Chan, Tetrahedron: A symmetry 2001, 12, 3081-3088.
[11] a) A. S. Guram, R. A. Rennels, S. L. Buchwald, A ngew. Chem. 1995, 107, 1456-1459; A ngew. Chem. Int. Ed. Engl. 1995, 34, 1348-1350; b) J. Louie, J. F. H artwig, Tetrahedron Lett. 1995, 36, 3609-3612.
[12] For a recent review, see: L. Jiang, S. L. Buchwald, in M etalC atalyzed Cross-C oupling Reactions, 2nd ed. (Eds.: A . de M eijere, F. D iederich), Wiley-VCH, Weinheim, 2004, pp. 699-760.
[13]A. de M eijere, C. M. Williams, A. K ourdioukov, S. V. Sviridov, V. Chaplinski, M. K ordes, A I. Savchenko, C. Stratmann, M. N oltemeyer, C hem. Eur. J. 2002, 8, 3789-3801.
[14] F or a recent review, see: N. M iyaura, in M etal-C atalyzed C rossC oupling R eactions, 2nd ed. (Eds.: A . de M eijere, F. D iederich), Wiley-VCH, Weinheim, 2004, pp. 41-123.

Received: A pril 1, 2008
Published Online: June 9, 2008

[^0]: [\ddagger] Cyclopropyl Building Blocks for Organic Synthesis, 148. Part 147: B. Y ucel, M. N oltemeyer, A . de M ijere, Eur. J. Org. C hem. 2008, 1072-1078. Part 146: J. Revuelta, S. C icchi, A. de M eijere, A. Brandi, Eur. J. Org. C hem. 2008, 1085-1091.
 [a] Institut für Organische und Biomolekulare Chemie der Georg-August-U niversität, Göttingen,
 Tammannstrasse 2, 37077 G öttingen, Germany
 Fax: + 49-551-399475
 E-mail: A rmin.deM eijere@chemieuni-goettingen.de
 [b] Bayer CropScience AG,
 A lfred-N obel-Strasse 50, 40789 M onheim, Germany
 \square Supporting information for this article is available on the WWW under http://www.eurjoc.org or from the author.

